

Plate 2xxxxxxRGB color space

Plate 1xxxxxxWireframe and rendered images

Wireframe renderer

Interactive flat
shading renderer

Interactive renderer
per-vertex interpolation

Blue

Black

Green

Yellow

White

Magenta

Cyan

Plate 3xxxxxxA texture applied to a geometry

Plate 4xxxxxxIllumination shaders

Texture Wireframe Rendered image

Lambert Illumination

Phong Illumination

K

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

3D Graphics Programming With
QuickDraw 3D

With Reference Sections

This document was created with FrameMaker 4.0.4

Apple Computer, Inc.

 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, APDA,
HyperCard, LaserWriter, Macintosh,
Macintosh Quadra, MPW, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
QuickDraw, QuickDraw 3D, and
QuickTime are trademarks of Apple
Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered
service mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
Dinosaur and car datasets provided
in QuickDraw 3D metafile format
courtesy of Viewpoint Data Labs,
Intl., Orem, UT.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Silicon Graphics is a registered
trademark and OpenGL is a
trademark of Silicon Graphics, Inc.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.
X Window System is a trademark of
the Massachusetts Institute of
Technology.

Simultaneously published in the
United States and Canada.

ISBN 0-201-48926-0
1 2 3 4 5 6 7 8 9-MA-9998979695
First Printing, June 1995

Library of Congress Cataloging-in-Publication Data

3D graphics programming with QuickDraw 3D : using QuickDraw 3D /
[Apple Computer, Inc.].

p. cm.
Includes index.
ISBN 0-201-48926-0
1. Macintosh (Computer)—Programming. 2. Computer graphics.

3. QuickDraw 3D. I. Apple Computer, Inc.
QA76.8.M3I427 1995
006.6—dc20 95-19363

CIP

This document was created with FrameMaker 4.0.4

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

v

Contents

Figures, Tables, and Listings xxiii

Preface

About This Book

xxix

Format of a Typical Chapter xxxi
Conventions Used in This Book xxxi

Special Fonts xxxi
Types of Notes xxxii

Development Environment xxxii
For More Information xxxiii

Chapter 1

Introduction to QuickDraw 3D

1-1

About QuickDraw 3D 1-3
Modeling and Rendering 1-4
Interacting 1-5
Extending QuickDraw 3D 1-6
Naming Conventions 1-8

Constants 1-9
Data Types 1-10
Functions 1-11

Retained and Immediate Modes 1-12
Using QuickDraw 3D 1-14

Compiling Your Application 1-15
Initializing and Terminating QuickDraw 3D 1-16
Creating a Model 1-18
Configuring a Window 1-21
Creating Lights 1-24
Creating a Draw Context 1-27
Creating a Camera 1-28
Creating a View 1-29
Rendering a Model 1-31

This document was created with FrameMaker 4.0.4

vi

QuickDraw 3D Reference 1-34
Constants 1-34

Gestalt Selectors and Response Values 1-34
Boolean Values 1-35
Status Values 1-35
Coordinate Axes 1-36

QuickDraw 3D Routines 1-36
Initializing and Terminating QuickDraw 3D 1-36
Getting Version Information 1-38
Managing Sets 1-39
Managing Shapes 1-44
Managing Strings 1-46

Summary of QuickDraw 3D 1-52
C Summary 1-52

Constants 1-52
QuickDraw 3D Routines 1-53

Errors, Warnings, and Notices 1-54

Chapter 2

3D Viewer

2-1

About the 3D Viewer 2-3
Controller Strips 2-5
Badges 2-6

Using the 3D Viewer 2-7
Checking for the 3D Viewer 2-7
Creating a Viewer 2-8
Attaching Data to a Viewer 2-10
Handling Viewer Events 2-11

3D Viewer Reference 2-11
Constants 2-11

Gestalt Selector and Response Values 2-11
Viewer Flags 2-12
Viewer State Flags 2-14

3D Viewer Routines 2-14
Creating and Configuring Viewers 2-14
Updating Viewer Data 2-24
Handling Viewer Events 2-25

vii

Getting Viewer Information 2-26
Handling Edit Commands 2-31

Summary of the 3D Viewer 2-34
C Summary 2-34

Constants 2-34
Data Types 2-35
3D Viewer Routines 2-35

Chapter 3

QuickDraw 3D Objects

3-1

About QuickDraw 3D Objects 3-3
The QuickDraw 3D Class Hierarchy 3-4

QuickDraw 3D Objects 3-5
QuickDraw 3D Object Subclasses 3-6
Shared Object Subclasses 3-7
Set Object Subclasses 3-9
Shape Object Subclasses 3-9
Group Object Subclasses 3-10
Shader Object Subclasses 3-11

Reference Counts 3-11
Using QuickDraw 3D Objects 3-14

Determining the Type of a QuickDraw 3D Object 3-14
Defining an Object Metahandler 3-15
Defining Custom Elements 3-17

QuickDraw 3D Objects Reference 3-18
QuickDraw 3D Objects Routines 3-18

Managing Objects Classes 3-18
Managing Objects 3-19
Determining Object Types 3-22
Managing Shared Objects 3-24
Registering Custom Elements 3-25

Application-Defined Routines 3-28
Summary of QuickDraw 3D Objects 3-34

C Summary 3-34
Constants 3-34
Data Types 3-36
QuickDraw 3D Objects Routines 3-38
Application-Defined Routines 3-39

viii

Chapter 4

Geometric Objects

4-1

About Geometric Objects 4-3
Attributes of Geometric Objects 4-5
Meshes 4-6
NURB Curves and Patches 4-10
Surface Parameterizations 4-13

Using Geometric Objects 4-17
Creating and Deleting Geometric Objects 4-17
Creating a Mesh 4-19
Traversing a Mesh 4-21

Geometric Objects Reference 4-23
Data Structures 4-23

Points 4-24
Rational Points 4-25
Polar and Spherical Points 4-26
Vectors 4-28
Quaternions 4-28
Rays 4-29
Parametric Points 4-30
Tangents 4-30
Vertices 4-31
Matrices 4-31
Bitmaps and Pixel Maps 4-32
Areas and Plane Equations 4-36
Point Objects 4-37
Lines 4-37
Polylines 4-38
Triangles 4-40
Simple Polygons 4-41
General Polygons 4-42
Boxes 4-45
Trigrids 4-47
Meshes 4-49
NURB Curves 4-50
NURB Patches 4-51
Markers 4-55

ix

Geometric Objects Routines 4-56
Managing Geometric Objects 4-56
Creating and Editing Points 4-59
Creating and Editing Lines 4-63
Creating and Editing Polylines 4-68
Creating and Editing Triangles 4-76
Creating and Editing Simple Polygons 4-81
Creating and Editing General Polygons 4-87
Creating and Editing Boxes 4-95
Creating and Editing Trigrids 4-103
Creating and Editing Meshes 4-110
Traversing Mesh Components, Vertices, Faces, and Edges 4-140
Creating and Editing NURB Curves 4-160
Creating and Editing NURB Patches 4-166
Creating and Editing Markers 4-173
Managing Bitmaps 4-180

Summary of Geometric Objects 4-182
C Summary 4-182

Constants 4-182
Data Types 4-183
Geometric Objects Routines 4-191

Errors, Warnings, and Notices 4-213

Chapter 5

Attribute Objects

5-1

About Attribute Objects 5-3
Types of Attributes and Attribute Sets 5-4
Attribute Inheritance 5-6

Using Attribute Objects 5-7
Creating and Configuring Attribute Sets 5-7
Iterating Through an Attribute Set 5-8
Defining Custom Attribute Types 5-9

Attribute Objects Reference 5-13
Constants 5-14

Attribute Types 5-14
Attribute Objects Routines 5-16

Drawing Attributes 5-16

x

Creating and Managing Attribute Sets 5-17
Registering Custom Attributes 5-23

Application-Defined Routines 5-24
Summary of Attribute Objects 5-27

C Summary 5-27
Constants 5-27
Data Types 5-27
Attribute Objects Routines 5-28
Application-Defined Routines 5-29

Errors 5-29

Chapter 6

Style Objects

6-1

About Style Objects 6-3
Backfacing Styles 6-4
Interpolation Styles 6-5
Fill Styles 6-6
Highlight Styles 6-6
Subdivision Styles 6-7
Orientation Styles 6-8
Shadow-Receiving Styles 6-9
Picking ID Styles 6-9
Picking Parts Styles 6-9

Using Style Objects 6-10
Style Objects Reference 6-10

Data Structures 6-11
Subdivision Style Data Structure 6-11

Style Objects Routines 6-12
Managing Styles 6-12
Managing Backfacing Styles 6-14
Managing Interpolation Styles 6-16
Managing Fill Styles 6-19
Managing Highlight Styles 6-22
Managing Subdivision Styles 6-25
Managing Orientation Styles 6-28
Managing Shadow-Receiving Styles 6-30
Managing Picking ID Styles 6-33
Managing Picking Parts Styles 6-36

xi

Summary of Style Objects 6-39
C Summary 6-39

Constants 6-39
Data Types 6-40
Style Objects Routines 6-40

Chapter 7

Transform Objects

7-1

About Transform Objects 7-3
Spaces 7-5
Types of Transforms 7-11

Matrix Transforms 7-11
Translate Transforms 7-11
Scale Transforms 7-12
Rotate Transforms 7-14
Rotate-About-Point Transforms 7-15
Rotate-About-Axis Transforms 7-16
Quaternion Transforms 7-16

Transform Objects Reference 7-16
Data Structures 7-17

Rotate Transform Data Structure 7-17
Rotate-About-Point Transform Data Structure 7-17
Rotate-About-Axis Data Structure 7-18

Transform Objects Routines 7-18
Managing Transforms 7-18
Creating and Manipulating Matrix Transforms 7-20
Creating and Manipulating Rotate Transforms 7-23
Creating and Manipulating Rotate-About-Point Transforms 7-28
Creating and Manipulating Rotate-About-Axis Transforms 7-33
Creating and Manipulating Scale Transforms 7-39
Creating and Manipulating Translate Transforms 7-42
Creating and Manipulating Quaternion Transforms 7-45

Summary of Transform Objects 7-48
C Summary 7-48

Constants 7-48
Data Types 7-48
Transform Objects Routines 7-49

Errors 7-54

xii

Chapter 8

Light Objects

8-1

About Light Objects 8-3
Ambient Light 8-4
Directional Lights 8-5
Point Lights 8-5
Spot Lights 8-6

Using Light Objects 8-8
Creating a Light 8-8
Manipulating Lights 8-9

Light Objects Reference 8-9
Constants 8-9

Light Attenuation Values 8-10
Light Fall-Off Values 8-10

Data Structures 8-11
Light Data Structure 8-11
Directional Light Data Structure 8-12
Point Light Data Structure 8-13
Spot Light Data Structure 8-13

Light Objects Routines 8-14
Managing Lights 8-14
Managing Ambient Light 8-19
Managing Directional Lights 8-21
Managing Point Lights 8-25
Managing Spot Lights 8-30

Summary of Light Objects 8-41
C Summary 8-41

Constants 8-41
Data Types 8-42
Light Objects Routines 8-43

Notices 8-47

Chapter 9

Camera Objects

9-1

About Camera Objects 9-3
Camera Placements 9-4
Camera Ranges 9-6
View Planes and View Ports 9-7

xiii

Orthographic Cameras 9-11
View Plane Cameras 9-13
Aspect Ratio Cameras 9-15

Using Camera Objects 9-17
Camera Objects Reference 9-17

Data Structures 9-17
Camera Placement Structure 9-18
Camera Range Structure 9-18
Camera View Port Structure 9-19
Camera Data Structure 9-19
Orthographic Camera Data Structure 9-20
View Plane Camera Data Structure 9-20
Aspect Ratio Camera Data Structure 9-21

Camera Objects Routines 9-22
Managing Cameras 9-22
Managing Orthographic Cameras 9-29
Managing View Plane Cameras 9-35
Managing Aspect Ratio Cameras 9-42

Summary of Camera Objects 9-47
C Summary 9-47

Constants 9-47
Data Types 9-47
Camera Objects Routines 9-49

Errors 9-53

Chapter 10

Group Objects

10-1

About Group Objects 10-3
Group Types 10-3
Group Positions 10-5
Group State Flags 10-6

Using Group Objects 10-7
Creating Groups 10-7
Accessing Objects by Position 10-8

Group Objects Reference 10-11
Constants 10-11

Group State Flags 10-11

xiv

Group Objects Routines 10-13
Creating Groups 10-13
Managing Groups 10-16
Managing Display Groups 10-24
Getting Group Positions 10-27
Getting Object Positions 10-34

Summary of Group Objects 10-38
C Summary 10-38

Constants 10-38
Data Types 10-38
Group Objects Routines 10-39

Errors 10-42

Chapter 11

Renderer Objects

11-1

About Renderer Objects 11-3
Types of Renderers 11-4
Constructive Solid Geometry 11-6
Transparency 11-9

Using Renderer Objects 11-9
Renderer Objects Reference 11-10

Constants 11-10
Vendor IDs 11-11
Engine IDs 11-11
CSG Object IDs 11-12
CSG Equations 11-12

Renderer Objects Routines 11-13
Creating and Managing Renderers 11-13
Managing Interactive Renderers 11-17

Summary of Renderer Objects 11-22
C Summary 11-22

Constants 11-22
Renderer Objects Routines 11-23

Errors and Warnings 11-24

xv

Chapter 12

Draw Context Objects

12-1

About Draw Context Objects 12-3
Macintosh Draw Contexts 12-5
Pixmap Draw Contexts 12-6

Using Draw Context Objects 12-7
Creating and Configuring a Draw Context 12-7
Using Double Buffering 12-8

Draw Context Objects Reference 12-8
Data Structures 12-8

Draw Context Data Structure 12-9
Macintosh Draw Context Structure 12-10
Pixmap Draw Context Structure 12-12

Draw Context Objects Routines 12-12
Managing Draw Contexts 12-12
Managing Macintosh Draw Contexts 12-22
Managing Pixmap Draw Contexts 12-27

Summary of the Draw Context Objects 12-30
C Summary 12-30

Constants 12-30
Data Types 12-30
Draw Context Objects Routines 12-31

Errors, Warnings, and Notices 12-34

Chapter 13

View Objects

13-1

About View Objects 13-3
Using View Objects 13-4

Creating and Configuring a View 13-4
Rendering an Image 13-4

View Objects Reference 13-6
View Objects Routines 13-7

Creating and Configuring Views 13-7
Rendering in a View 13-13
Picking in a View 13-17
Writing in a View 13-19
Bounding in a View 13-21
Setting Idle Methods 13-27

xvi

Writing Custom Data 13-28
Pushing and Popping the Graphics State 13-29
Getting a View’s Transforms 13-30
Managing a View’s Style States 13-33
Managing a View’s Attribute Set 13-38

Application-Defined Routines 13-41
Summary of View Objects 13-43

C Summary 13-43
Constants 13-43
View Objects Routines 13-44
Application-Defined Routines 13-48

Errors and Warnings 13-48

Chapter 14

Shader Objects

14-1

About Shader Objects 14-3
Surface-Based Shaders 14-4
Illumination Models 14-4

Lambert Illumination 14-5
Phong Illumination 14-6
Null Illumination 14-9

Textures 14-10
Using Shader Objects 14-10

Using Illumination Shaders 14-11
Using Texture Shaders 14-11
Creating Storage Pixmaps 14-15
Handling

uv

 Values Outside the Valid Range 14-16
Shader Objects Reference 14-16

Constants 14-17
Boundary-Handling Methods 14-17

Shader Objects Routines 14-18
Managing Shaders 14-18
Managing Shader Characteristics 14-19
Managing Texture Shaders 14-24
Managing Illumination Shaders 14-25
Managing Textures 14-28
Managing Pixmap Textures 14-30

xvii

Summary of Shader Objects 14-32
C Summary 14-32

Constants 14-32
Shader Objects Routines 14-32

Chapter 15

Pick Objects

15-1

About Pick Objects 15-3
Types of Pick Objects 15-4
Hit Identification 15-5
Hit Sorting 15-7
Hit Information 15-9

Using Pick Objects 15-11
Handling Object Picking 15-12
Handling Mesh Part Picking 15-14
Picking in Immediate Mode 15-15

Pick Objects Reference 15-17
Constants 15-17

Hit List Sorting Values 15-18
Hit Information Masks 15-18
Pick Parts Masks 15-20

Data Structures 15-20
Pick Data Structure 15-21
Window-Point Pick Data Structure 15-21
Window-Rectangle Pick Data Structure 15-22
Hit Path Structure 15-22
Hit Data Structure 15-23

Pick Objects Routines 15-24
Managing Pick Objects 15-25
Managing Shape Parts and Mesh Parts 15-31
Picking With Window Points 15-36
Picking With Window Rectangles 15-39

Summary of Pick Objects 15-43
C Summary 15-43

Constants 15-43
Data Types 15-44
Pick Objects Routines 15-46

Warnings 15-48

xviii

Chapter 16

Storage Objects

16-1

About Storage Objects 16-3
Using Storage Objects 16-5

Creating a Storage Object 16-5
Getting and Setting Storage Object Information 16-8

Storage Objects Reference 16-9
Storage Objects Routines 16-9

Managing Storage Objects 16-9
Creating and Accessing Memory Storage Objects 16-13
Creating and Accessing Handle Storage Objects 16-19
Creating and Accessing Macintosh Storage Objects 16-21
Creating and Accessing FSSpec Storage Objects 16-24
Creating and Accessing UNIX Storage Objects 16-27
Creating and Accessing UNIX Path Name Storage Objects 16-30

Summary of Storage Objects 16-33
C Summary 16-33

Constants 16-33
Storage Objects Routines 16-33

Errors 16-36

Chapter 17

File Objects

17-1

About File Objects 17-3
Using File Objects 17-7

Creating a File Object 17-7
Reading Data from a File Object 17-8
Writing Data to a File Object 17-11

File Objects Reference 17-12
Constants 17-12

File Mode Flags 17-12
Data Structures 17-13

Unknown Object Data Structures 17-14
File Objects Routines 17-14

Creating File Objects 17-15
Attaching File Objects to Storage Objects 17-15
Accessing File Objects 17-17
Accessing Objects Directly 17-22

xix

Setting Idle Methods 17-24
Reading and Writing File Subobjects 17-25
Reading and Writing File Data 17-27
Managing Unknown Objects 17-47
Managing View Hints Objects 17-52

Application-Defined Routines 17-65
Summary of File Objects 17-71

C Summary 17-71
Constants 17-71
Data Types 17-71
File Objects Routines 17-73
Application-Defined Routines 17-79

Errors, Warnings, and Notices 17-80

Chapter 18

QuickDraw 3D Pointing Device Manager

18-1

About the QuickDraw 3D Pointing Device Manager 18-3
Controllers 18-4
Controller States 18-7
Trackers 18-7

Using the QuickDraw 3D Pointing Device Manager 18-8
Controlling a Camera Position With a Pointing Device 18-8

QuickDraw 3D Pointing Device Manager Reference 18-11
Data Structures 18-11

Controller Data Structure 18-11
QuickDraw 3D Pointing Device Manager Routines 18-12

Creating and Managing Controllers 18-12
Managing Controller States 18-32
Creating and Managing Trackers 18-33

Application-Defined Routines 18-47
Summary of the QuickDraw 3D Pointing Device Manager 18-51

C Summary 18-51
Constants 18-51
Data Types 18-51
QuickDraw 3D Pointing Device Manager Routines 18-51
Application-Defined Routines 18-57

xx

Chapter 19

Error Manager

19-1

About the Error Manager 19-3
Using the Error Manager 19-4
Error Manager Reference 19-5

Error Manager Routines 19-5
Registering Error, Warning, and Notice Callback Routines 19-5
Determining Whether an Error Is Fatal 19-7
Getting Errors, Warnings, and Notices Directly 19-7
Getting Operating System Errors 19-9

Application-Defined Routines 19-11
Summary of the Error Manager 19-14

C Summary 19-14
Data Types 19-14
Error Manager Routines 19-14
Application-Defined Routines 19-15

Errors 19-15

Chapter 20

QuickDraw 3D Mathematical Utilities

20-1

About QuickDraw 3D Mathematical Utilities 20-3
QuickDraw 3D Mathematical Utilities Reference 20-4

Data Structures 20-4
Bounding Boxes 20-4
Bounding Spheres 20-5

QuickDraw 3D Mathematical Utilities 20-6
Setting Points and Vectors 20-6
Converting Dimensions of Points and Vectors 20-12
Subtracting Points 20-15
Calculating Distances Between Points 20-17
Determining Point Relative Ratios 20-23
Adding and Subtracting Points and Vectors 20-26
Scaling Vectors 20-30
Determining the Lengths of Vectors 20-32
Normalizing Vectors 20-33
Adding and Subtracting Vectors 20-34
Determining Vector Cross Products 20-37
Determining Vector Dot Products 20-39

xxi

Transforming Points and Vectors 20-41
Negating Vectors 20-48
Converting Points from Cartesian to Polar or Spherical Form 20-49
Determining Point Affine Combinations 20-51
Managing Matrices 20-55
Setting Up Transformation Matrices 20-62
Utility Functions 20-71
Managing Quaternions 20-71
Managing Bounding Boxes 20-84
Managing Bounding Spheres 20-89

Summary of QuickDraw 3D Mathematical Utilities 20-95
C Summary 20-95

Constants 20-95
Data Types 20-96
QuickDraw 3D Mathematical Utilities 20-96

Chapter 21

QuickDraw 3D Color Utilities

21-1

About the QuickDraw 3D Color Utilities 21-3
Using the QuickDraw 3D Color Utilities 21-4
QuickDraw 3D Color Utilities Reference 21-5

Data Structures 21-5
Color Structures 21-5

QuickDraw 3D Color Utilities 21-6
Summary of the QuickDraw 3D Color Utilities 21-13

C Summary 21-13
Data Types 21-13
QuickDraw 3D Color Utilities 21-13

Bibliography

BI-1

Glossary

GL-1

Index

IN-1

xxiii

Figures, Tables, and Listings

Color Plates

Color plates are immediately preceding the title page

Color Plate 1

Wireframe and rendered images

Color Plate 2

RGB color space

Color Plate 3

A texture applied to a geometry

Color Plate 4

Illumination shades

Chapter 1

Introduction to QuickDraw 3D

1-1

Figure 1-1

A simple three-dimensional picture 1-4

Figure 1-2

A model rendered by the wireframe renderer 1-6

Figure 1-3

A model rendered by the interactive renderer 1-7

Figure 1-4

The parts of QuickDraw 3D 1-8

Figure 1-5

A right-handed Cartesian coordinate system 1-19

Listing 1-1

Determining whether QuickDraw 3D is available 1-16

Listing 1-2

Initializing a connection with QuickDraw 3D 1-17

Listing 1-3

Terminating QuickDraw 3D 1-18

Listing 1-4

Creating a model 1-20

Listing 1-5

Creating a new window and attaching a window information
structure 1-22

Listing 1-6

Creating a group of lights 1-25

Listing 1-7

Creating a Macintosh draw context 1-27

Listing 1-8

Creating a camera 1-28

Listing 1-9

Creating a view 1-30

Listing 1-10

A basic rendering loop 1-32

Listing 1-11

Rendering a model 1-32

Chapter 2

3D Viewer

2-1

Figure 2-1

An instance of the 3D Viewer displaying three-
dimensional data 2-4

Figure 2-2

The controller strip of the 3D Viewer 2-5

Figure 2-3

A 3D model with a badge 2-6

This document was created with FrameMaker 4.0.4

xxiv

Listing 2-1

Determining whether the 3D Viewer is available 2-7

Listing 2-2

Creating a viewer object 2-9

Chapter 3

QuickDraw 3D Objects

3-1

Figure 3-1

The top levels of the QuickDraw 3D class hierarchy 3-4

Figure 3-2

Incrementing and decrementing reference counts 3-12

Listing 3-1

Reporting custom object methods 3-17

Chapter 4

Geometric Objects

4-1

Figure 4-1

A mesh 4-6

Figure 4-2

A mesh face with a hole 4-7

Figure 4-3

A NURB curve 4-10

Figure 4-4

The standard

uv

 parameterization for a pixmap 4-14

Figure 4-5

The standard surface parameterization of a box 4-15

Figure 4-6

A texture mapped onto a box 4-16

Figure 4-7

A planar point described with polar coordinates 4-26

Figure 4-8

A spatial point described with spherical coordinates 4-27

Figure 4-9

A ray 4-29

Figure 4-10

A line 4-38

Figure 4-11

A polyline 4-39

Figure 4-12

A triangle 4-40

Figure 4-13

A simple polygon 4-41

Figure 4-14

A general polygon 4-43

Figure 4-15

A box 4-45

Figure 4-16

The standard surface parameterization of a box 4-46

Figure 4-17

A trigrid 4-48

Figure 4-18

A NURB curve 4-50

Figure 4-19

A NURB patch 4-52

Figure 4-20

A marker 4-55

Listing 4-1

Creating a retained box 4-17

Listing 4-2

Creating an immediate box 4-18

Listing 4-3

Creating a simple mesh 4-19

Listing 4-4

Iterating through all faces in a mesh 4-21

Listing 4-5

Attaching corners to all vertices in all faces of a mesh 4-22

xxv

Chapter 5

Attribute Objects

5-1

Table 5-1

Natural sets of attributes for objects in a hierarchy 5-5

Listing 5-1

Creating and configuring a vertex attribute set 5-7

Listing 5-2

Counting the attributes in an attribute set 5-9

Listing 5-3

Reporting custom attribute methods 5-10

Listing 5-4

Disposing of a custom attribute’s data 5-11

Listing 5-5

Copying a custom attribute’s data 5-12

Listing 5-6

Initializing QuickDraw 3D and registering a custom
attribute type 5-13

Chapter 6

Style Objects

6-1

Figure 6-1

The front side of a polygon 6-8

Chapter 7

Transform Objects

7-1

Figure 7-1

A simple model illustrating the order in which transforms
are applied 7-4

Figure 7-2

A right-handed Cartesian coordinate system 7-5

Figure 7-3

A camera coordinate system 7-8

Figure 7-4

A window coordinate system 7-9

Figure 7-5

View state transformations 7-10

Figure 7-6

A translate transform 7-12

Figure 7-7

A scale transform 7-13

Figure 7-8

A rotate transform 7-14

Figure 7-9

A rotate-about-point transform 7-15

Figure 7-10

A rotate-about-axis transform 7-16

Chapter 8

Light Objects

8-1

Figure 8-1

A spot light 8-6

Figure 8-2

Fall-off algorithms 8-7

Listing 8-1

Creating a new point light 8-8

xxvi

Chapter 9

Camera Objects

9-1

Figure 9-1

A camera’s placement 9-5

Figure 9-2

The hither and yon planes 9-6

Figure 9-3

A parallel projection of an object 9-8

Figure 9-4

A perspective projection of an object 9-9

Figure 9-5

The default camera view port 9-10

Figure 9-6

Isometric and elevation projections 9-12

Figure 9-7

An orthographic camera 9-13

Figure 9-8

A view plane camera 9-14

Figure 9-9

An aspect ratio camera 9-15

Figure 9-10

The relation between aspect ratio cameras and view plane
cameras 9-16

Chapter 10

Group Objects

10-1

Listing 10-1

Creating a group 10-8

Listing 10-2

Accessing all the lights in a light group 10-8

Listing 10-3

Accessing all the lights in an ordered display group 10-9

Listing 10-4

Accessing all the lights in an ordered display group using

Q3Group_GetNextPosition

10-10

Chapter 11

Renderer Objects

11-1

Figure 11-1

An image drawn by the wireframe renderer 11-4

Figure 11-2

An image drawn by the interactive renderer 11-5

Figure 11-3 A constructed CSG object 11-6

Table 11-1 Calculating CSG equations 11-8

Chapter 12 Draw Context Objects 12-1

Figure 12-1 Using a two-dimensional graphics library in a Macintosh
draw context 12-6

Chapter 13 View Objects 13-1

Listing 13-1 Rendering a model 13-5
Listing 13-2 Creating and rendering a retained object 13-5
Listing 13-3 Creating and rendering an immediate object 13-6

xxvii

Chapter 14 Shader Objects 14-1

Figure 14-1 Effects of the Lambert illumination shader 14-5
Figure 14-2 Effects of the Phong illumination shader 14-6
Figure 14-3 Phong illumination with various specular exponents and

coefficients 14-8
Figure 14-4 Effects of the null illumination shader 14-9

Listing 14-1 Applying an illumination shader 14-11
Listing 14-2 Applying a texture shader in a submitting loop 14-12
Listing 14-3 Applying a texture shader in a group 14-12
Listing 14-4 Applying a texture shader as an attribute 14-13

Chapter 15 Pick Objects 15-1

Figure 15-1 Determining a vertex sorting distance 15-8
Figure 15-2 Determining an edge sorting distance 15-8
Figure 15-3 Determining a face sorting distance 15-9

Table 15-1 Hit-tests for window-space pick objects 15-6
Table 15-2 Pick geometries and information types supported by

view objects 15-11

Listing 15-1 Picking objects 15-12
Listing 15-2 Picking mesh parts 15-14
Listing 15-3 Picking in immediate mode 15-15

Chapter 16 Storage Objects 16-1

Listing 16-1 Creating a Macintosh storage object 16-6
Listing 16-2 Creating a UNIX storage object 16-6
Listing 16-3 Creating a memory storage object 16-6

Chapter 17 File Objects 17-1

Figure 17-1 Types of file objects 17-6

Listing 17-1 Creating a new file object 17-8
Listing 17-2 Reading metafile objects 17-9
Listing 17-3 Writing 3D data to a file object 17-12

xxviii

Chapter 18 QuickDraw 3D Pointing Device Manager 18-1

Figure 18-1 A sample configuration of input devices, controllers,
and trackers 18-5

Listing 18-1 Searching for a particular 3D pointing device 18-8
Listing 18-2 Activating and deactivating a pointing device 18-9
Listing 18-3 Receiving notification of changes in a pointing device 18-10
Listing 18-4 Polling for data from a pointing device 18-10

Chapter 21 QuickDraw 3D Color Utilities 21-1

Figure 21-1 RGB color space 21-3
Listing 21-1 Specifying the color white 21-4
Listing 21-2 Adding two colors 21-4

xxix

P R E F A C E

About This Book

This book,

3D Graphics Programming With QuickDraw 3D,

 describes
QuickDraw 3D, a graphics library that you can use to define three-dimensional
(3D) models, apply colors and other attributes to parts of the models, and
create images of those models. You can use these capabilities to develop a wide
range of applications, including interactive three-dimensional modeling,
simulation and animation, data visualization, computer-aided drafting and
design, games, and many other uses.

QuickDraw 3D provides these basic services:

■

A large number of predefined geometric object types. You can create
multiple instances of any type of object and assign them individual
characteristics.

■

Support for standard lighting types and illumination algorithms.

■

Support for standard methods of projecting a model onto a viewing plane.

■

Ability to perform both immediate and retained mode rendering, and
support for multiple rendering styles.

■

Built-in support for reading and writing data stored in a standard 3D data
file format (the QuickDraw 3D Object Metafile).

■

Support for any available 3D pointing devices, including devices that
provide multiple degrees of freedom.

■

Support for multiple operating and window systems. QuickDraw 3D is
extremely portable and operates independently of the native window
system. It provides consistent capabilities and performance across all
supported platforms.

■

Fast interactive rendering.

This book describes the application programming interfaces that you can use to
develop applications and other software using QuickDraw 3D. Although
QuickDraw 3D provides a large set of basic 3D objects and operations, it is also
designed for easy extensibility, so that you can add custom capabilities (for
instance, custom attributes) to those provided by QuickDraw 3D

.

This document was created with FrameMaker 4.0.4

xxx

P R E F A C E

To use this book, you should be generally familiar with computer graphics and
with 3D modeling and rendering techniques. This book explains some of the
fundamental 3D concepts, but it is not intended to be either an introduction to
or a technical reference for 3D graphics in general. Rather, it explains how
QuickDraw 3D implements the standard techniques for 3D modeling,
rendering, and interaction. You can consult the Bibliography near the end of
this book for a list of some books that might help you acquire a basic
knowledge of those techniques.

Note

The book

3D Computer Graphics,

second edition, by Alan
Watt is particularly helpful for beginners.

◆

You should also be familiar with the techniques that underlie object-oriented
programming. QuickDraw 3D is object oriented in the sense that many of its
capabilities are accessed by creating and manipulating QuickDraw 3D objects.
In addition, QuickDraw 3D classes (of which QuickDraw 3D objects are
instances) are arranged in a hierarchy, which provides for method inheritance
and method overriding.

Note

Currently, only C language programming interfaces are
available.

◆

You should begin this book by reading the chapter “Introduction to
QuickDraw 3D.” That chapter describes the basic capabilities provided by
QuickDraw 3D and the QuickDraw 3D application programming interfaces
that you use to create and manipulate objects in that hierarchy. It also provides
source code samples illustrating how to use QuickDraw 3D to define,
configure, and render simple 3D models.

If you just want to be able to display an existing 3D model in a window and
don’t need to use the powerful capabilities of QuickDraw 3D, you can use the
3D Viewer supplied with QuickDraw 3D. The 3D Viewer allows you to display
3D data with minimal programming effort. It is therefore analogous to the
movie controller provided with QuickTime. Read the chapter “3D Viewer” for
complete information.

Once you are familiar with the basic uses of QuickDraw 3D, you can read the
remaining chapters in this book for more information on any particular topic.
For example, for complete information on the types of lights provided by
QuickDraw 3D, see the chapter “Light Objects.”

xxxi

P R E F A C E

Format of a Typical Chapter 0

Almost all chapters in this book follow a standard structure. For example, the
chapter “Attribute Objects” contains these sections:

■

“About Attribute Objects.” This section provides an overview of the features
QuickDraw 3D provides for managing attribute objects.

■

“Using Attribute Objects.” This section describes the tasks you can
accomplish using attribute objects.

■

“Attribute Objects Reference.” This section provides a complete reference for
QuickDraw 3D attribute objects by describing the constants, data structures,
and routines you can use to manage attribute objects. Each routine
description also follows a standard format, which presents the routine
declaration followed by a description of every parameter of the routine.
Note, however, that this section is not included in the printed version of this
book; it is available only online, on the enclosed CD-ROM.

■

“Summary of Attribute Objects.” This section provides the C interfaces for
the constants, data structures, routines, and result codes associated with
attribute objects.

Conventions Used in This Book 0

This book uses special conventions to present certain types of information.
Words that require special treatment appear in specific fonts or font styles.
Certain information, such as parameter blocks, appears in special formats so
that you can scan it quickly.

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (

this is

Courier

).

Words that appear in

boldface

 are key terms or concepts and are defined in the
glossary.

xxxii

P R E F A C E

Types of Notes 0

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but
possibly not essential to an understanding of the main text.
(An example appears on page 1-4.)

◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on
page 1-14.)

▲

▲ W A R N I N G

Warnings like this indicate potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. (An example appears on page 16-8.)

▲

Development Environment 0

The system software routines described in this book are available using C
interfaces. How you access these routines depends on the development
environment you are using. When showing QuickDraw 3D routines, this book
uses the C interfaces available with the Macintosh Programmer’s Workshop
(MPW).

All code listings in this book are shown in C. They show methods of using
various routines and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and, in most cases, tested. However,
Apple Computer, Inc., does not intend for you to use these code samples in
your application.

xxxiii

P R E F A C E

For More Information 0

APDA is Apple’s worldwide source for over three hundred development tools,
technical resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the quarterly

APDA Tools Catalog

featuring all current versions of Apple and the most
popular third-party development tools. Ordering is easy; there are no
membership fees, and application forms are not required for most of our
products. APDA offers convenient payment and shipping options, including
site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information of registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.
1 Infinite Loop, M/S 303-2T
Cupertino, CA 95014

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

C H A P T E R 1

Contents

1-1

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction to QuickDraw 3D

About QuickDraw 3D 1-3
Modeling and Rendering 1-4
Interacting 1-5
Extending QuickDraw 3D 1-6
Naming Conventions 1-8

Constants 1-9
Data Types 1-10
Functions 1-11

Retained and Immediate Modes 1-12
Using QuickDraw 3D 1-14

Compiling Your Application 1-15
Initializing and Terminating QuickDraw 3D 1-16
Creating a Model 1-18
Configuring a Window 1-21
Creating Lights 1-24
Creating a Draw Context 1-27
Creating a Camera 1-28
Creating a View 1-29
Rendering a Model 1-31

QuickDraw 3D Reference 1-34
Constants 1-34

Gestalt Selectors and Response Values 1-34
Boolean Values 1-35
Status Values 1-35
Coordinate Axes 1-36

This document was created with FrameMaker 4.0.4

C H A P T E R 1

1-2

Contents

QuickDraw 3D Routines 1-36
Initializing and Terminating QuickDraw 3D 1-36
Getting Version Information 1-38
Managing Sets 1-39
Managing Shapes 1-44
Managing Strings 1-46

Summary of QuickDraw 3D 1-52
C Summary 1-52

Constants 1-52
QuickDraw 3D Routines 1-53

Errors, Warnings, and Notices 1-54

C H A P T E R 1

About QuickDraw 3D

1-3

Introduction to QuickDraw 3D 1

This chapter provides an introduction to QuickDraw 3D, a graphics library that
you can use to manage virtually all aspects of 3D graphics, including modeling,
rendering, and data storage. For example, you can use QuickDraw 3D to define
three-dimensional models, apply colors or other attributes to parts of the
models, and create images of those models. QuickDraw 3D provides a large set
of capabilities for creating and interacting with models of 3D objects.

This chapter begins by describing the basic capabilities provided by
QuickDraw 3D. Then it describes the application programming interfaces
that you use to create and manipulate QuickDraw 3D objects. The section
“Using QuickDraw 3D,” beginning on page 1-14 provides source code
examples illustrating how to use QuickDraw 3D to define, configure, and
render simple three-dimensional objects. The section “QuickDraw 3D
Reference,” beginning on page 1-34, describes the QuickDraw 3D routines you
need to use to initialize and terminate QuickDraw 3D, as well as some basic
routines for managing sets, shapes, and strings.

About QuickDraw 3D 1

QuickDraw 3D

 is a graphics library developed by Apple Computer that you
can use to create, configure, and render three-dimensional objects. It is
specifically designed to be useful to a wide range of software developers, from
those with very little knowledge of 3D modeling concepts and rendering
techniques to those with very extensive experience with those concepts and
techniques.

At the most basic level, you can use the file format and file-access routines
provided by QuickDraw 3D to read and display 3D graphics created by some
other application. For example, a word-processing application might want to
import a picture created by a 3D modeling or image-capturing application.
QuickDraw 3D supports the

3D Viewer,

 which you can use to display 3D data
and objects in a window and allow users limited interaction with that data,
without having to learn any of the core QuickDraw 3D application
programming interfaces.

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Introduction to QuickDraw 3D

1-4

About QuickDraw 3D

Note

See the chapter “3D Viewer” for complete information
about the 3D viewer, as well as complete source code
samples illustrating how to create and manage a
viewer object.

◆

You can also use QuickDraw 3D for more sophisticated applications, such as
interactive 3D modeling and rendering, animation, data visualization, or any of
thousands of other ways of interpreting and displaying data in three (or more)
dimensions. Figure 1-1 illustrates the kinds of images you can produce using
QuickDraw 3D. It shows a texture, a wireframe model, and the result of
applying the texture to that model. See also Color Plate 3 at the beginning of
this book.

Figure 1-1

A simple three-dimensional picture

Modeling and Rendering 1

To create images such as that shown in Figure 1-1, you typically engage in
at least two distinguishable main tasks: modeling and rendering.

Modeling

is the process of creating a representation of real or abstract objects, and

rendering

 is the process of creating an image (on the screen or some other
medium) of a model. QuickDraw 3D subdivides each of these tasks into a
number of subtasks.

Texture Wire-frame Rendered image

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D

1-5

In QuickDraw 3D,

modeling

 involves

■

creating, configuring, and positioning basic

geometric objects

 and

groups

 of
geometric objects. QuickDraw 3D defines many basic types of geometric
objects and a large number of ways to

transform

 such objects.

■

assigning sets of

attributes

 (such as diffuse and specular colors) to objects
and

parts

of

 objects.

■

applying

textures

 to surfaces of objects.

■

configuring a model’s

lights

 and

shading.

 QuickDraw 3D supplies four types
of lights (ambient light, directional lights, spot lights, and point lights) and
several types of shaders.

In QuickDraw 3D,

rendering

 involves

■

specifying a

camera

 position and type. A camera type is defined by a
method of projecting the model onto a flat surface, called the view plane.
QuickDraw 3D provides two types of cameras that use perspective
projection (the aspect ratio and view plane cameras) and one type of camera
that uses parallel projection (the orthographic camera).

■

specifying a

renderer

 or method of rendering. QuickDraw 3D provides a
wireframe and an interactive renderer. Renderers support different

styles

of rendering (for example, points, edges, or filled shapes).

■

creating a

view

 (a collection of a group of lights, a camera, and a renderer
and its styles) and rendering the model using the view to create an

image.

Interacting 1

Often, modeling and rendering are not easily separable, particularly in
applications that support interactive 3D modeling. When, for example, the user
selects a sphere and drags it using the mouse or other pointing device, the
application needs to change the model (reposition the sphere) and render a
new image. (Indeed, the application may generate a series of new images to
show the sphere changing location as the user drags it.) QuickDraw 3D
supports a third main task,

interacting

 with a model (that is, selecting and
manipulating objects in the model).

C H A P T E R 1

Introduction to QuickDraw 3D

1-6

About QuickDraw 3D

In QuickDraw 3D,

interacting

 involves

■

determining what kinds of

pointing devices

 are available on a particular
computer and possibly configuring one or more of those devices to control
items in a 3D model (such as a camera or a light).

■

identifying the objects in a model that are close to the cursor when the user
clicks or drags in the model’s image. This is called

picking

.

QuickDraw 3D supplies an extensive set of routines that you can use to
perform these tasks. For complete details, see the chapters “QuickDraw 3D
Pointing Device Manager” and “Pick Objects.”

Extending QuickDraw 3D 1

QuickDraw 3D is designed to be easily extensible, so that you can, if necessary,
add capabilities that are not part of the basic QuickDraw 3D feature set. For
instance, you’ve already seen that QuickDraw 3D supplies two types of
renderers, the wireframe and interactive renderers. The wireframe renderer
creates line renderings of models, as illustrated in Figure 1-2.

Figure 1-2

A model rendered by the wireframe renderer

The interactive renderer uses a more complex rendering algorithm that allows
illumination and shading effects to be produced. Figure 1-3 shows the same
teapot model rendered by the interactive renderer.

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D

1-7

Figure 1-3

A model rendered by the interactive renderer

QuickDraw 3D is extensible:

■

You can define

custom attributes

 and assign them to shapes or sets.

In addition, QuickDraw 3D is designed to be portable to other software
platforms and to support a variety of hardware accelerators:

■

QuickDraw 3D is

cross-platform.

 It is available on the Macintosh Operating
System and will be available on other operating systems that use alternative
window systems as well. This portability to other window systems is
accomplished by isolating all window system-specific information into a
layer called a

draw context,

 which is associated with a view. QuickDraw 3D
automatically handles system-dependent issues such as byte ordering.

■

QuickDraw 3D renderers can take advantage of

hardware accelerators,

 if
available.

Finally, QuickDraw 3D defines a platform-independent

metafile

 (that is, a
file format) for storing and interchanging 3D data. This metafile is intended
to provide a standard format according to which applications can read and
write 3D data, even applications that use 3D graphics systems other than
QuickDraw 3D. QuickDraw 3D itself includes routines that you can use to read
and write data in the metafile format. Apple Computer, Inc. also supplies a
parser that you can use to read and write metafile data on operating systems
that do not support QuickDraw 3D.

C H A P T E R 1

Introduction to QuickDraw 3D

1-8

About QuickDraw 3D

Figure 1-4 shows the functional components of QuickDraw 3D.

Figure 1-4

The parts of QuickDraw 3D

Naming Conventions 1

The QuickDraw 3D application programming interfaces are designed, as much
as possible, to mirror the QuickDraw 3D class hierarchy described in the
chapter “QuickDraw 3D Objects.” They are also designed to exhibit as much
uniformity as can reasonably be achieved by names describing a large and
heterogeneous collection of objects instantiating classes in that hierarchy.
Ideally, once you are acquainted with the various conventions governing the
programming interfaces and the class hierarchy, you should be able to make
correct guesses about the names of constants, data structures, and routines.
In very many cases, the names of constants and routines are largely self-
documenting, thanks to a strict adherence to the naming conventions. This
section describes those conventions and provides some examples.

Customizable in 1.0

Application

I/O

Geometries

Widgets
Camera Attributes ShadersPicking Lights

Accelerators

Customizable in future versions

Hardware/OS

Renderers

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D

1-9

Constants 1

All constants defined in the QuickDraw 3D application programming
interfaces have the prefix

kQ3

. Very simple constants consist solely of the

kQ3

 prefix and a specific value indicator. Here are some examples:

typedef enum TQ3Boolean {

kQ3False,

kQ3True

} TQ3Boolean;

typedef enum TQ3Status {

kQ3Failure,

kQ3Success

} TQ3Status;

Most other enumerated constants consist of the standard

kQ3

 prefix, followed
by a type, followed by a specific value. Here are some examples:

typedef enum TQ3Axis {

kQ3AxisX,

kQ3AxisY,

kQ3AxisZ

} TQ3Axis;

Other constants are defined using the C preprocessor

#define

 mechanism.
Here are some examples:

#define kQ3ObjectTypeElement Q3_OBJECT_TYPE('e','l','m','n')

#define kQ3ObjectTypePick Q3_OBJECT_TYPE('p','i','c','k')

#define kQ3ObjectTypeShared Q3_OBJECT_TYPE('s','h','r','d')

#define kQ3ObjectTypeView Q3_OBJECT_TYPE('v','i','e','w')

#define kQ3ObjectTypeInvalid 0

In general, these kinds of constants specify types of objects in the
QuickDraw 3D class hierarchy or methods defining the behaviors of those
types. These constants use the macros

Q3_OBJECT_TYPE

 or

Q3_METHOD_TYPE

.
See page 3-34 for a definition of these macros.

C H A P T E R 1

Introduction to QuickDraw 3D

1-10

About QuickDraw 3D

Data Types 1

All data structures and data types defined in the QuickDraw 3D application
programming interfaces have the prefix

TQ3

. Like constant names, data type
names never contain the underscore character (

_

). When emphasis is required,
subwords of a data type name are capitalized and usually proceed from
general to specific.

There are four distinguishable classes in data type names.

■

Opaque objects, whose definitions are private, begin with the prefix

TQ3

 and
end with the suffix

Object

. Between the prefix and the suffix are one or
more words indicating the type of the opaque object. Here are some
examples:

TQ3GeometryObject

TQ3ViewObject

TQ3CameraObject

TQ3StyleObject

TQ3DrawContextObject

■

Data structures used in defining characteristics of opaque objects begin with
the prefix

TQ3

 and end with the suffix

Data

. Between the prefix and the
suffix are one or more words indicating the type of the object. Here are some
examples:

TQ3TriangleData

TQ3BoxData

TQ3OrthographicCameraData

■

Data structures that contain data not specifically used to define
characteristics of an opaque object begin with the prefix

TQ3

. Following the
prefix are one or more words indicating the type of the data the structure
contains. Here are some examples:

TQ3Point3D

TQ3Vector2D

TQ3ColorRGB

TQ3ColorARGB

■

Attributes are opaque objects, but they are named differently to distinguish
them from other opaque objects. Attributes are of type

TQ3Attribute

.

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D

1-11

IMPORTANT

All floating-point numbers used in the QuickDraw 3D
application programming interfaces are single precision.

▲

Functions 1

All functions defined in the QuickDraw 3D application programming
interfaces have the prefix

Q3

. The

class

 of an identifier immediately follows its
type prefix. Then the

method

 occurs, separated from the class by an underscore.
A method is almost always expressed as a verb-noun sequence. Here are some
examples:

Q3Polygon_GetVertexPosition

Q3NURBCurve_SetControlPoint

Q3Light_SetBrightness

Q3SpotLight_GetFallOff

Q3View_GetLocalToWorldInverseTransposeMatrixState

Q3Triangle_New

Some functions are so simple that they have no distinguishable class and
method. Here are some examples:

Q3Initialize

Q3IsInitialized

Q3Exit

As much as possible, function parameters are ordered consistently throughout
the application programming interfaces. In virtually all cases, the first
parameter is a data type that corresponds to the object being operated on.
When there are two or more additional parameters, they are placed in their
natural or intuitive ordering.

Most QuickDraw 3D functions return a status code, which is of type
TQ3Status. A status code is either kQ3Success or kQ3Failure, indicating that
the function has succeeded or failed. When a function fails, you can call a
further function to get a specific error code. Alternatively, you can install an
error-reporting callback routine to handle failures. See the chapter “Error
Manager” for complete details on handling errors.

Functions that create opaque objects usually return a function result whose
type is a reference to the type of the newly created object (for instance,
TQ3CameraObject for a new camera object). An object reference is an opaque

C H A P T E R 1

Introduction to QuickDraw 3D

1-12 About QuickDraw 3D

pointer to the object. When these kinds of routines fail, they return the
value NULL.

Retained and Immediate Modes 1

A graphics system operates in retained mode if it retains a copy of all the data
describing a model. In other words, a retained mode graphics system requires
you to completely specify a model by passing model data to the system using
predefined data structures. The graphics system organizes the data internally,
usually in a hierarchical database. Once an object is added to that database, you
can change the object only by calling specific editing routines provided by the
graphics system.

By contrast, a graphics system operates in immediate mode if the application
itself maintains the data that describe a model. For example, original
QuickDraw is a two-dimensional graphics system that operates in immediate
mode. You draw objects on the screen, using QuickDraw, by calling routines
that completely specify the objects to be drawn. QuickDraw does not maintain
any information about a picture internally; it simply takes the data provided by
the application and immediately draws the appropriate objects.

Note
OpenGL is an example of a 3D graphics system that
operates in immediate mode. QuickDraw GX is an
example of a 2D graphics system that operates in
retained mode. ◆

QuickDraw 3D supports both immediate and retained modes of specifying and
drawing models. The principal advantage of immediate mode imaging is that
the model data is immediately available to you and is not duplicated by the
graphics system. The data is stored in whatever form you like, and you can
change that data at any time. The main disadvantage of immediate mode
imaging is that you need to maintain the sometimes quite lengthy object data,
and you need to perform geometric operations on that data yourself. In
addition, it can be difficult to accelerate immediate mode rendering, because
you generally need to specify the entire model to draw a single frame, whether
or not the entire model has changed since the previous frame. This can involve
passing large amounts of data to the graphics system.

Retained mode imaging typically supports higher levels of abstraction than
immediate mode imaging and is more amenable to hardware acceleration and
caching. In addition, the hierarchical arrangement of the model data allows the

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D 1-13

graphics system to perform very quick updates whenever the data is altered.
To avoid duplicating data between your application and the graphics system’s
database, your application should match the data types of the graphics system
and use the extensive editing functions to change a model’s data.

Another important advantage of retained mode imaging is that it’s very easy to
read and write retained objects.

To create a point, for example, in retained mode, you fill in a data structure
of type TQ3PointData and pass it to the Q3Point_New function. This
function copies the data in that structure and returns an object of type
TQ3GeometryObject, which you use for all subsequent operations on the point.
For example, to draw the point in retained mode, you pass that geometric
object returned by Q3Point_New to the Q3Geometry_Submit function inside
a rendering loop. To change the data associated with the point, you
call point-editing functions, such as Q3Point_GetPosition and
Q3Point_SetPosition. Finally, when you have finished using the point, you
must call Q3Object_Dispose to have QuickDraw 3D delete the point from its
internal database.

It’s much simpler to draw a point in immediate mode. You do not need to
call any QuickDraw 3D routine to create a point in immediate mode; instead,
you merely have to maintain the point data yourself, typically in a structure
of type TQ3PointData. To draw a point in immediate mode, you call the
Q3Point_Submit function, passing it a pointer to that structure. Note,
however, that when using immediate mode, you need to know exactly
what types of objects you’re drawing and hardcode the appropriate routines
in your source code.

Note
Immediate mode rendering does not require any memory
permanently allocated to QuickDraw 3D, but it might
require QuickDraw 3D to perform temporary allocations
while rendering is occurring. ◆

In general, if most of a model remains unchanged from frame to frame, you
should use retained mode imaging to create and draw the model. If, however,
many parts of the model do change from frame to frame, you should probably
use immediate mode imaging, creating and rendering a model on a shape-by-
shape basis. You can, of course, use a combination of retained and immediate
mode imaging: you can create retained objects for the parts of a model that
remain static and draw quickly changing objects in immediate mode.

C H A P T E R 1

Introduction to QuickDraw 3D

1-14 Using QuickDraw 3D

Using QuickDraw 3D 1

This section describes the most basic ways of using QuickDraw 3D. In
particular, it provides source code examples that show how you can

■ determine whether QuickDraw 3D is available

■ initialize a connection to QuickDraw 3D and later close that connection

■ create and configure geometric objects in a three-dimensional model

■ specify a group of lights to illuminate those objects

■ create a camera to specify a point of view and a method of projecting the
three-dimensional model to create a two-dimensional image of the model

■ render (that is, draw) the model

For complete details on any of these topics, you should read the corresponding
chapter later in this book. For example, see the chapter “Light Objects” for
complete information about the types of lights provided by QuickDraw 3D.

IMPORTANT

The code samples shown in this section provide only very
rudimentary error handling. You should read the chapter
“Error Manager” to learn how to write and register an
application-defined error-handling routine, or how to
determine explicitly which errors have occurred during
the execution of QuickDraw 3D routines. ▲

QuickDraw 3D currently is supported only on PowerPC-based Macintosh
computers. It exists as a shared library, in two forms. A debugging version
is available for use by developers while writing their applications or other
software products. An optimized version of the QuickDraw 3D shared library
is available for end users of those applications and other products. The
debugging version provides more extensive information than the optimized
version. For instance, the debugging version of QuickDraw 3D issues errors,
warnings, and notices at the appropriate times; the optimized version issues
only errors and warnings.

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-15

Compiling Your Application 1

In order for your application’s code to work correctly with the code contained
in the QuickDraw 3D shared library, you need to ensure that you use the same
compiler settings that were used to compile the QuickDraw 3D shared library.
Otherwise, it’s possible for QuickDraw 3D to misinterpret information you
pass to it. For example, all the enumerated constants defined by QuickDraw 3D
are of the int data type, where an int value is 4 bytes. If your application
passes a value of some other size or type for one of those constants, it’s likely
that QuickDraw 3D will not correctly interpret that value. Accordingly, if the
default setting of your compiler does not make enumerated constants to be of
type int, you must override that default setting, typically by including pragma
directives in your source code or by using an appropriate compiler option.

There are currently three important compiler settings:

■ Enumerated constants are of the int data type.

■ Elements of type char or short that are contained in an array that is
contained in a structure may be aligned on non-longword boundaries.

■ Fields in a structure that contain pointers or data of type long, float, or
double are aligned on longword boundaries.

The interface file QD3D.h contains compiler pragmas for several popular C
compilers. For example, QD3D.h contains this line for the PPCC compiler,
specifying field alignment on longword boundaries for pointers or data of
type long, float, or double:

#pragma options align=power

Some compilers might not provide pragmas for the three important compiler
settings listed above. For example, the PPCC compiler does not currently
provide a pragma for setting the size of enumerated constants. PPCC does
however support the -enums compiler option, which you can use to set the size
of a enumerated constants.

IMPORTANT

Consult the documentation for your compiler to determine
how to specify the size of enumerated constants and to
configure structure field alignment so as to conform to the
settings of QuickDraw 3D. ▲

C H A P T E R 1

Introduction to QuickDraw 3D

1-16 Using QuickDraw 3D

Initializing and Terminating QuickDraw 3D 1

Before calling any QuickDraw 3D routines, you need to verify that the
QuickDraw 3D software is available in the current operating environment.
Then you need to create and initialize a connection to the QuickDraw 3D
software.

On the Macintosh Operating System, you can verify that QuickDraw 3D is
available by calling the MyEnvironmentHasQuickDraw3D function defined in
Listing 1-1.

Listing 1-1 Determining whether QuickDraw 3D is available

Boolean MyEnvironmentHasQuickDraw3D (void)

{

return((Boolean) Q3Initialize != kUnresolvedSymbolAddress);

}

The MyEnvironmentHasQuickDraw3D function checks to see whether the
address of the Q3Initialize function has been resolved. If it hasn’t been
resolved (that is, if the Code Fragment Manager couldn’t find the
QuickDraw 3D shared library when launching your application),
MyEnvironmentHasQuickDraw3D returns the value FALSE to its caller.
Otherwise, if the address of the Q3Initialize function was successfully
resolved, MyEnvironmentHasQuickDraw3D returns TRUE.

Note
For the function MyEnvironmentHasQuickDraw3D to work
properly, you must establish soft links (also called weak
links) between your application and the QuickDraw 3D
shared library. For information on soft links, see the book
Inside Macintosh: PowerPC System Software. For specific
information on establishing soft links, see the
documentation for your software development system. ◆

On the Macintosh Operating System, you can verify that QuickDraw 3D is
available in the current operating environment by calling the Gestalt function

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-17

with the gestaltQD3D selector. Gestalt returns a long word whose value
indicates the availability of QuickDraw 3D. Currently these values are defined:

enum {

gestaltQD3DNotPresent = 0,

gestaltQD3DAvailable = 1

}

You should ensure that the value gestaltQD3DAvailable is returned before
calling any QuickDraw 3D routines.

Note
For more information on the Gestalt function, see Inside
Macintosh: Operating System Utilities. ◆

You create and initialize a connection to the QuickDraw 3D software by calling
the Q3Initialize function, as illustrated in Listing 1-2.

Listing 1-2 Initializing a connection with QuickDraw 3D

OSErr MyInitialize (void)

{

TQ3Status myStatus;

myStatus = Q3Initialize(); /*initialize QuickDraw 3D*/

if (myStatus == kQ3Failure)

DebugStr("\pQ3Initialize returned failure.");

return (noErr);

}

Once you’ve successfully called Q3Initialize, you can safely call other
QuickDraw 3D routines. If Q3Initialize returns unsuccessfully (as
indicated by the kQ3Failure result code), you shouldn’t call any
QuickDraw 3D routines other than the error-reporting routines (such as
Q3Error_Get or Q3Error_IsFatalError) or the Q3IsInitialized function.
See the chapter “Error Manager” for details on QuickDraw 3D’s error-
handling capabilities.

C H A P T E R 1

Introduction to QuickDraw 3D

1-18 Using QuickDraw 3D

When you have finished using QuickDraw 3D, you should call Q3Exit to close
your connection with QuickDraw 3D. In most cases, you’ll do this when
terminating your application. Listing 1-3 illustrates how to call Q3Exit.

Listing 1-3 Terminating QuickDraw 3D

void MyFinishUp (void)

{

TQ3Status myStatus;

myStatus = Q3Exit(); /*unload QuickDraw 3D*/

if (myStatus == kQ3Failure)

DebugStr("\pQ3Exit returned failure.");

}

Creating a Model 1

As you learned earlier (in “Modeling and Rendering” on page 1-4), creating an
image of a three-dimensional model involves several steps. You must first
create a model and then specify key information about the scene (such as the
lighting and camera angle). This section shows how to create a simple model
containing three-dimensional objects.

Objects in QuickDraw 3D are defined using a Cartesian coordinate system that
is right-handed (that is, if the thumb of the right hand points in the direction of
the positive x axis and the index finger points in the direction of the positive y
axis, then the middle finger, when made perpendicular to the other two fingers,
points in the direction of the positive z axis). Figure 1-5 shows a right-handed
coordinate system.

Note
For a more complete description of the coordinate spaces
used by QuickDraw 3D, see the chapter “Transform
Objects” later in this book. ◆

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-19

Figure 1-5 A right-handed Cartesian coordinate system

The model created by the MyNewModel function defined in Listing 1-4 consists
of a number of boxes that spell out the words “Hello World.” The words are
written in block letters, with each letter composed of a number of individual
boxes. MyNewModel uses the inelegant but straightforward method of defining
the 34 boxes by creating four arrays of 34 elements each. As you’ll see later
(in the chapter “Geometric Objects”), a box is defined by four pieces of
information, an origin and three vectors that specify its sides:

typedef struct TQ3BoxData {

TQ3Point3D origin;

TQ3Vector3D orientation;

TQ3Vector3D majorAxis;

TQ3Vector3D minorAxis;

TQ3AttributeSet *faceAttributeSet;

TQ3AttributeSet boxAttributeSet;

} TQ3BoxData;

First, MyNewModel creates a new and empty ordered display group to contain
all the boxes. Then the function loops through the data arrays, creating boxes
and adding them to the group.

y axis

x axis

z axis

Origin

C H A P T E R 1

Introduction to QuickDraw 3D

1-20 Using QuickDraw 3D

Listing 1-4 Creating a model

TQ3GroupObject MyNewModel (void)

{

TQ3GroupObject myModel;

TQ3GeometryObject myBox;

TQ3BoxData myBoxData;

TQ3GroupPosition myGroupPosition;

/*Data for boxes comprising Hello and World block letters.*/

long i;

float xorigin[34] = {

-12.0, -9.0, -11.0, -7.0, -6.0, -6.0, -6.0, -2.0, -1.0,

3.0, 4.0, 8.0, 9.0, 9.0, 11.0, -13.0, -12.0, -11.0, -9.0,

-7.0, -6.0, -6.0, -4.0, -2.0, -1.0, -1.0, 1.0, 1.0, 3.0,

4.0, 8.0, 9.0, 9.0, 11.0};

float yorigin[34] = {

0.0, 0.0, 3.0, 0.0, 6.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

6.0, 0.0, 0.0, -8.0, -8.0, -7.0, -8.0, -8.0, -8.0, -2.0,

-8.0, -8.0, -2.0, -5.0, -4.0, -8.0, -8.0, -8.0, -8.0, -8.0,

-2.0, -7.0};

float height[34] = {

7.0, 7.0, 1.0, 7.0, 1.0, 1.0, 1.0, 7.0, 1.0, 7.0, 1.0, 7.0,

1.0, 1.0, 7.0, 7.0, 1.0, 3.0, 7.0, 7.0, 1.0, 1.0, 7.0, 7.0,

1.0, 1.0, 2.0, 3.0, 7.0, 1.0, 7.0, 1.0, 1.0, 5.0};

float width[34] = {

1.0, 1.0, 2.0, 1.0, 3.0, 2.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0,

2.0, 2.0, 1.0, 1.0, 3.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0,

2.0, 2.0, 1.0, 1.0, 1.0, 3.0, 1.0, 2.0, 2.0, 1.0};

/*Create an ordered display group for the complete model.*/

myModel = Q3OrderedDisplayGroup_New();

if (myModel == NULL)

goto bail;

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-21

/*Add all the boxes to the model.*/

myBoxData.faceAttributeSet = NULL;

myBoxData.boxAttributeSet = NULL;

for (i=0; i<34; i++) {

Q3Point3D_Set(&myBoxData.origin, xorigin[i], yorigin[i], 1.0);

Q3Vector3D_Set(&myBoxData.orientation, 0, height[i], 0);

Q3Vector3D_Set(&myBoxData.minorAxis, width[i], 0, 0);

Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2);

myBox = Q3Box_New(&myBoxData);

myGroupPosition = Q3Group_AddObject(myModel, myBox);

/*now that myBox has been added to group, dispose of our reference*/

Q3Object_Dispose(myBox);

if (myGroupPosition == NULL)

goto bail;

}

return (myModel); /*return the completed model*/

bail:

/*If any of the above failed, then return an empty model.*/

return (NULL);

}

Note
The MyNewModel function can leak memory. Your
application should use a different error-recovery
strategy than is used in Listing 1-4. ◆

If successful, MyNewModel returns the group object containing the 34 boxes to
its caller.

Configuring a Window 1

Usually, you’ll want to display the two-dimensional image of a three-
dimensional model in a window. To do this, it’s useful to define a custom
window information structure that holds all the information about the
QuickDraw 3D objects that are associated with the window. In the simplest

C H A P T E R 1

Introduction to QuickDraw 3D

1-22 Using QuickDraw 3D

cases, this information includes the model itself, the view, the illumination
shading to be applied, and the desired styles of rendering the model. You
might define a window information structure like this:

struct WindowInfo {

TQ3ViewObject view;

TQ3GroupObject model;

TQ3ShaderObject illumination;

TQ3StyleObject interpolation;

TQ3StyleObject backfacing;

TQ3StyleObject fillstyle;

};

typedef struct WindowInfo WindowInfo, *WindowInfoPtr,

**WindowInfoHandle;

A standard way to attach an application-defined data structure (such as the
WindowInfo structure) to a window is to set a handle to that structure as
the window’s reference constant. This technique is used in Listing 1-5.

Note
For a more complete description of using a window’s
reference constant to maintain window-specific
information, see the discussion of document records in
Inside Macintosh: Overview. ◆

Listing 1-5 Creating a new window and attaching a window information structure

void MyNewWindow (void)

{

WindowPtr myWindow;

Rect myBounds = {42, 4, 442, 604};

WindowInfoHandle myWinfo;

/*Create new window.*/

myWindow = NewCWindow(0L, &myBounds, "\pWindow!", 1, documentProc,

(WindowPtr) -1, true, 0L);

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-23

if (myWindow == NULL)

goto bail;

SetPort(myWindow);

/*Create storage for the new window and attach it to window.*/

myWinfo = (WindowInfoHandle) NewHandle(sizeof(WindowInfo));

if (myWinfo == NULL)

goto bail;

SetWRefCon(myWindow, (long) myWinfo);

HLock((Handle) myWinfo);

/*Create a new view.*/

(**myWinfo).view = MyNewView(myWindow);

if ((**myWinfo).view == NULL)

goto bail;

/*Create model to display.*/

(**myWinfo).model = MyNewModel(); /*see Listing 1-4 on page 1-20*/

if ((**myWinfo).model == NULL)

goto bail;

/*Configure an illumination shader.*/

(**myWinfo).illumination = Q3PhongIllumination_New();

if ((**myWinfo).illumination == NULL)

goto bail;

/*Configure the rendering styles.*/

(**myWinfo).interpolation =

Q3InterpolationStyle_New(kQ3InterpolationStyleNone);

if ((**myWinfo).interpolation == NULL)

goto bail;

(**myWinfo).backfacing =

Q3BackfacingStyle_New(kQ3BackfacingStyleRemoveBackfacing);

if ((**myWinfo).backfacing == NULL)

goto bail;

C H A P T E R 1

Introduction to QuickDraw 3D

1-24 Using QuickDraw 3D

(**myWinfo).fillstyle = Q3FillStyle_New(kQ3FillStyleFilled);

if ((**myWinfo).fillstyle == NULL)

goto bail;

HUnlock((Handle) myWinfo);

return;

bail:

/*If failed for any reason, then close the window.*/

if (myWinfo != NULL)

DisposeHandle((Handle) myWinfo);

if (myWindow != NULL)

DisposeWindow(myWindow);

}

The MyNewWindow function creates a new window and a new window
information structure, attaches the structure to the window, and then fills out
several fields of that structure. In particular, MyNewWindow creates a new
illumination shader that implements a Phong illumination model. You need an
illumination shader for a view’s lights to have any effect. (See the chapter
“Shader Objects” for complete information on the available illumination
shaders.) Then MyNewWindow disables interpolation between vertices of faces,
removes unseen backfaces of objects in the model, and sets the renderer to
render filled faces on those objects. These settings are actually passed to the
renderer by submitting the styles during rendering. See “Rendering a Model,”
beginning on page 1-31 for details.

Note
The MyNewWindow function can leak memory. Your
application should use a different error-recovery
strategy than is used in Listing 1-5. ◆

Creating Lights 1

When you use any renderer more powerful than the wireframe renderer, you’ll
want to create and configure a set of lights to provide illumination for the
object in the model. As you’ve seen, QuickDraw 3D provides a number of
types of lights, each of which can emit light of various colors and intensities.

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-25

The function MyNewLights defined in Listing 1-6 creates a group of lights. It
creates an ambient light, a point light, and a directional light. See the chapter
“Light Objects” for more details on creating lights.

Listing 1-6 Creating a group of lights

TQ3GroupObject MyNewLights (void)

{

TQ3GroupPosition myGroupPosition;

TQ3GroupObject myLightList;

TQ3LightData myLightData;

TQ3PointLightData myPointLightData;

TQ3DirectionalLightData myDirLightData;

TQ3LightObject myAmbientLight, myPointLight, myFillLight;

TQ3Point3D pointLocation = { -10.0, 0.0, 10.0 };

TQ3Vector3D fillDirection = { 10.0, 0.0, 10.0 };

TQ3ColorRGB WhiteLight = { 1.0, 1.0, 1.0 };

/*Set up light data for ambient light.*/

myLightData.isOn = kQ3True;

myLightData.brightness = .2;

myLightData.color = WhiteLight;

/*Create ambient light.*/

myAmbientLight = Q3AmbientLight_New(&myLightData);

if (myAmbientLight == NULL)

goto bail;

/*Create a point light.*/

myLightData.brightness = 1.0;

myPointLightData.lightData = myLightData;

myPointLightData.castsShadows = kQ3False;

myPointLightData.attenuation = kQ3AttenuationTypeLinear;

myPointLightData.location = pointLocation;

myPointLight = Q3PointLight_New(&myPointLightData);

C H A P T E R 1

Introduction to QuickDraw 3D

1-26 Using QuickDraw 3D

if (myPointLight == NULL)

goto bail;

/*Create a directional light for fill.*/

myLightData.brightness = .2;

myDirLightData.lightData = myLightData;

myDirLightData.castsShadows = kQ3False;

myDirLightData.direction = fillDirection;

myFillLight = Q3DirectionalLight_New(&myDirLightData);

if (myFillLight == NULL)

goto bail;

/*Create light group and add each of the lights to the group.*/

myLightList = Q3LightGroup_New();

if (myLightList == NULL)

goto bail;

myGroupPosition = Q3Group_AddObject(myLightList, myAmbientLight);

Q3Object_Dispose(myAmbientLight); /*balance the reference count*/

if (myGroupPosition == 0)

goto bail;

myGroupPosition = Q3Group_AddObject(myLightList, myPointLight);

Q3Object_Dispose(myPointLight); /*balance the reference count*/

if (myGroupPosition == 0)

goto bail;

myGroupPosition = Q3Group_AddObject(myLightList, myFillLight);

Q3Object_Dispose(myFillLight); /*balance the reference count*/

if (myGroupPosition == 0)

goto bail;

return (myLightList);

bail:

/*If any of the above failed, then return nothing!*/

return (NULL);

}

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-27

The MyNewLights function is straightforward. It fills out the fields of the
relevant data structures (TQ3LightData, TQ3PointLightData, and
TQ3DirectionalLightData) and calls the appropriate functions to create new
light objects using the information in those structures. If successful, it adds
those light objects to a group of lights. The group of lights will be added to a
view, as shown in the following section.

Note
The MyNewLights function can leak memory. ◆

Creating a Draw Context 1

A draw context contains information that is specific to a particular type of
window system, such as the extent of the pane to draw into and the method of
clearing the window. You need to create a draw context and add it to a view in
order to render a model. Listing 1-7 illustrates how to create a draw context for
drawing into Macintosh windows.

Listing 1-7 Creating a Macintosh draw context

TQ3DrawContextObject MyNewDrawContext (WindowPtr theWindow)

{

TQ3DrawContextObject myDrawContext;

TQ3DrawContextData myDrawContextData;

TQ3MacDrawContextData myMacDrawContextData;

TQ3ColorARGB myClearColor;

/*Set the background color.*/

Q3ColorARGB_Set(&myClearColor, 1.0, 0.6, 0.9, 0.9);

/*Fill in draw context data.*/

myDrawContextData.clearImageMethod = kQ3ClearMethodWithColor;

myDrawContextData.clearImageColor = myClearColor;

myDrawContextData.paneState = kQ3False;

myDrawContextData.maskState = kQ3False;

myDrawContextData.doubleBufferState = kQ3True;

C H A P T E R 1

Introduction to QuickDraw 3D

1-28 Using QuickDraw 3D

/*Fill in Macintosh-specific draw context data.*/

myMacDrawContextData.drawContextData = myDrawContextData;

myMacDrawContextData.window = (CWindowPtr) theWindow;

myMacDrawContextData.library = kQ3Mac2DLibraryNone;

myMacDrawContextData.viewPort = NULL;

myMacDrawContextData.grafPort = NULL;

/*Create draw context.*/

myDrawContext = Q3MacDrawContext_New(&myMacDrawContextData);

return (myDrawContext);

}

Essentially, MyNewDrawContext just fills in the fields of a
TQ3MacDrawContextData structure and calls Q3MacDrawContext_New to
create a new Macintosh draw context.

Creating a Camera 1

The remaining step before you can create a view is to create a camera object.
A camera object specifies a point of view and a method of projecting the
three-dimensional model into two dimensions. Listing 1-8 illustrates how to
create a camera. See the chapter “Camera Objects” for complete details on the
routines called in MyNewCamera.

Listing 1-8 Creating a camera

TQ3CameraObject MyNewCamera (void)

{

TQ3CameraObject myCamera;

TQ3CameraData myCameraData;

TQ3ViewAngleAspectCameraData myViewAngleCameraData;

TQ3Point3D cameraFrom = { 0.0, 0.0, 15.0 };

TQ3Point3D cameraTo = { 0.0, 0.0, 0.0 };

TQ3Vector3D cameraUp = { 0.0, 1.0, 0.0 };

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-29

/*Fill in camera data.*/

myCameraData.placement.cameraLocation = cameraFrom;

myCameraData.placement.pointOfInterest = cameraTo;

myCameraData.placement.upVector = cameraUp;

myCameraData.range.hither = .1;

myCameraData.range.yon = 15.0;

myCameraData.viewPort.origin.x = -1.0;

myCameraData.viewPort.origin.y = 1.0;

myCameraData.viewPort.width = 2.0;

myCameraData.viewPort.height = 2.0;

myViewAngleCameraData.cameraData = myCameraData;

myViewAngleCameraData.fov = Q3Math_DegreesToRadians(100.0);

myViewAngleCameraData.aspectRatioXToY = 1;

myCamera = Q3ViewAngleAspectCamera_New(&myViewAngleCameraData);

/*Return a camera.*/

return (myCamera);

}

Like before, the MyNewCamera function simply fills out the fields of the
appropriate data structures and calls the Q3ViewAngleAspectCamera_New
function to create a new camera object.

IMPORTANT

All angles in QuickDraw 3D are specified in radians. You
can use the Q3Math_DegreesToRadians macro to convert
degrees to radians, as illustrated in Listing 1-8, which sets
the fov field to 100 degrees. ▲

Creating a View 1

A view is a collection of a model, a group of lights, a camera, a renderer, and a
draw context. Now that you’ve defined functions that create all the requisite
parts of a view (except the renderer), you can create a view, as illustrated in
Listing 1-9. To do this, you create a new empty view object and then explicitly
add the parts to it.

C H A P T E R 1

Introduction to QuickDraw 3D

1-30 Using QuickDraw 3D

IMPORTANT

To create an image in a window, a view must contain at
least a camera, a renderer, and a draw context. ▲

Listing 1-9 Creating a view

TQ3ViewObject MyNewView (WindowPtr theWindow)

{

TQ3Status myStatus;

TQ3ViewObject myView;

TQ3DrawContextObject myDrawContext;

TQ3RendererObject myRenderer;

TQ3CameraObject myCamera;

TQ3GroupObject myLights;

myView = Q3View_New();

if (myView == NULL)

goto bail;

/*Create and set draw context.*/

myDrawContext = MyNewDrawContext(theWindow);

if (myDrawContext == NULL)

goto bail;

myStatus = Q3View_SetDrawContext(myView, myDrawContext);

Q3Object_Dispose(myDrawContext);

if (myStatus == kQ3Failure)

goto bail;

/*Create and set renderer.*/

myRenderer = Q3Renderer_NewFromType(kQ3RendererTypeInteractive);

if (myRenderer == NULL)

goto bail;

myStatus = Q3View_SetRenderer(myView, myRenderer);

Q3Object_Dispose(myRenderer);

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-31

if (myStatus == kQ3Failure)

goto bail;

/*Create and set camera.*/

myCamera = MyNewCamera();

if (myCamera == NULL)

goto bail;

myStatus = Q3View_SetCamera(myView, myCamera);

Q3Object_Dispose(myCamera);

if (myStatus == kQ3Failure)

goto bail;

/*Create and set lights.*/

myLights = MyNewLights();

if (myLights == NULL)

goto bail;

myStatus = Q3View_SetLightGroup(myView, myLights);

Q3Object_Dispose(myLights);

if (myStatus == kQ3Failure)

goto bail;

return (myView);

bail:

/*If any of the above failed, then don't return a view.*/

return (NULL);

}

Rendering a Model 1

To render a model using a view, you call QuickDraw 3D functions that submit
the various shape objects (for instance, geometric objects, groups of geometric
objects, and styles) that you want to appear in the view. Because a model might
be too complex to process in a single pass (and for other reasons as well), you
should call the rendering routines in a rendering loop. A rendering loop begins
with a call to the Q3View_StartRendering function and should end when a

C H A P T E R 1

Introduction to QuickDraw 3D

1-32 Using QuickDraw 3D

call to the Q3View_EndRendering function returns some value other than
kQ3ViewStatusRetraverse. Within the body of the rendering loop, you
should submit the shapes you want rendered. Listing 1-10 shows the general
structure of a rendering loop.

Listing 1-10 A basic rendering loop

Q3View_StartRendering(myView);

do {

/*Submit your shape objects here.*/

Q3DisplayGroup_Submit(myGroup);

} while (Q3View_EndRendering(myView) == kQ3ViewStatusRetraverse);

The Q3View_EndRendering function returns a view status value that indicates
whether the renderer has finished processing the model. The available view
status values are defined by these constants:

typedef enum {

kQ3ViewStatusDone,

kQ3ViewStatusRetraverse,

kQ3ViewStatusError,

kQ3ViewStatusCancelled

} TQ3ViewStatus;

Listing 1-11 illustrates how to render the model defined in Listing 1-4
(page 1-20), using the view created and configured in Listing 1-9 (page 1-30).
The MyDraw function defined in Listing 1-11 retrieves the window information
structure attached to a window and uses the information in it to render
the model.

Listing 1-11 Rendering a model

void MyDraw (WindowPtr theWindow)

{

WindowInfoHandle myWinfo;

TQ3Status myStat;

TQ3DrawContextObject myDrawContext;

TQ3ViewStatus myViewStatus;

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 1-33

if (theWindow == NULL)

return;

myWinfo = (WindowInfoHandle) GetWRefCon(theWindow);

HLock((Handle) myWinfo);

/*Start rendering.*/

myStat = Q3View_StartRendering((**myWinfo).view);

if (myStat == kQ3Failure)

goto bail;

do {

myStat = Q3Shader_Submit((**myWinfo).illumination, (**myWinfo).view);

if (myStat == kQ3Failure)

goto bail;

myStat = Q3Style_Submit((**myWinfo).interpolation, (**myWinfo).view);

if (myStat == kQ3Failure)

goto bail;

myStat = Q3Style_Submit((**myWinfo).backfacing, (**myWinfo).view);

if (myStat == kQ3Failure)

goto bail;

myStat = Q3Style_Submit((**myWinfo).fillstyle, (**myWinfo).view);

if (myStat == kQ3Failure)

goto bail;

myStat = Q3DisplayGroup_Submit((**myWinfo).model, (**myWinfo).view);

if (myStat == kQ3Failure)

goto bail;

myViewStatus = Q3View_EndRendering((**myWinfo).view);

} while (myViewStatus == kQ3ViewStatusRetraverse);

HUnlock((Handle) myWinfo);

return;

C H A P T E R 1

Introduction to QuickDraw 3D

1-34 QuickDraw 3D Reference

bail:

HUnlock((Handle) myWinfo);

SysBeep(50);

}

The rendering loop allows your application to work with any current and
future renderers that require multiple passes through a model’s data in order to
provide features such as transparency and CSG.

For complete information about rendering loops and other kinds of submitting
loops, see the chapter “View Objects” in this book.

QuickDraw 3D Reference 1

This section describes the basic constants and routines provided by
QuickDraw 3D. See the section “Summary of QuickDraw 3D,” beginning on
page 1-52 for a list of the basic data types defined by QuickDraw 3D.

Constants 1

This section describes the basic constants provided by QuickDraw 3D.

Gestalt Selectors and Response Values 1

You can pass the gestaltQD3D selector to the Gestalt function to determine
information about the availability of QuickDraw 3D.

enum {

gestaltQD3D = 'qd3d'

}

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-35

Gestalt returns information to you by returning a long word in the response
parameter. Currently, the returned values are defined by constants:

enum {

gestaltQD3DNotPresent = 0,

gestaltQD3DAvailable = 1

}

Constant descriptions

gestaltQD3DNotPresent

QuickDraw 3D is not available.
gestaltQD3DAvailable

QuickDraw 3D is available.

Boolean Values 1

QuickDraw 3D defines Boolean values.

typedef enum TQ3Boolean {

kQ3False,

kQ3True

} TQ3Boolean;

Constant descriptions

kQ3False False.
kQ3True True.

Status Values 1

Most QuickDraw 3D routines return a status code, which is of type TQ3Status.

typedef enum TQ3Status {

kQ3Failure,

kQ3Success

} TQ3Status;

C H A P T E R 1

Introduction to QuickDraw 3D

1-36 QuickDraw 3D Reference

Constant descriptions

kQ3Failure The routine failed.
kQ3Success The routine succeeded.

Coordinate Axes 1

QuickDraw 3D provides constants for the three coordinate axes in a Cartesian
coordinate system.

typedef enum TQ3Axis {

kQ3AxisX,

kQ3AxisY,

kQ3AxisZ

} TQ3Axis;

Constant descriptions

kQ3AxisX The x axis.
kQ3AxisY The y axis.
kQ3AxisZ The z axis.

QuickDraw 3D Routines 1

This section describes the routines you must call to initialize and terminate
QuickDraw 3D. It also describes the routines you can use to create and
manipulate sets, shapes, and strings.

Initializing and Terminating QuickDraw 3D 1

To use the services of QuickDraw 3D, you need to call Q3Initialize before
calling any other QuickDraw 3D functions. When you are finished using
QuickDraw 3D services, you should call Q3Exit.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-37

Q3Initialize 1

You should call the Q3Initialize function to initialize a connection to
QuickDraw 3D.

TQ3Status Q3Initialize (void);

DESCRIPTION

The Q3Initialize function initializes a connection between your application
and the QuickDraw 3D graphics library. QuickDraw 3D allocates whatever
internal storage it needs to manage subsequent calls to QuickDraw 3D
routines, and it initializes any subcomponents it needs to call. If Q3Initialize
returns kQ3Failure, you should not call any QuickDraw 3D routines other
than the Q3IsInitialized function or the error-reporting routines provided
by the Error Manager. Calling Q3Initialize more than once results in a
warning being posted but is otherwise acceptable.

SPECIAL CONSIDERATIONS

You must call Q3Initialize to create a connection to the QuickDraw 3D
software before calling any other QuickDraw 3D routines.

ERRORS

kQ3ErrorAlreadyInitialized
kQ3ErrorNotInitialized
kQ3ErrorOutOfMemory

Q3Exit 1

You should call the Q3Exit function to close your application’s connection to
QuickDraw 3D.

TQ3Status Q3Exit (void);

C H A P T E R 1

Introduction to QuickDraw 3D

1-38 QuickDraw 3D Reference

DESCRIPTION

The Q3Exit function closes your application’s connection to QuickDraw 3D
and deallocates any memory used by that connection. You should call Q3Exit
when your application is finished using QuickDraw 3D routines. After calling
Q3Exit, you should not call any QuickDraw 3D routines other than
Q3Initialize, Q3IsInitialized, or the error-reporting routines provided by
the Error Manager. Calling Q3Exit more than once results in a warning being
posted but is otherwise acceptable.

ERRORS

kQ3ErrorMemoryLeak

Q3IsInitialized 1

You can use the Q3IsInitialized function to determine whether your
application has successfully initialized a connection to QuickDraw 3D.

TQ3Boolean Q3IsInitialized (void);

DESCRIPTION

The Q3IsInitialized function returns a Boolean value that indicates whether
your application has successfully initialized a connection to the QuickDraw 3D
shared library (kQ3True) or not (kQ3False).

Getting Version Information 1

QuickDraw 3D provides a routine that you can use to get the installed version
of QuickDraw 3D.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-39

Q3GetVersion 1

You can use the Q3GetVersion function to get the version of the installed
QuickDraw 3D software.

TQ3Status Q3GetVersion (

unsigned long *majorRevision,

unsigned long *minorRevision);

majorRevision

On exit, a major revision number.

minorRevision

On exit, a minor revision number.

DESCRIPTION

The Q3GetVersion function returns, in the majorRevision and minorRevision
parameters, the major and minor revision numbers of the QuickDraw 3D
software currently installed. See the description of the 'vers' resource in the
book Inside Macintosh: Macintosh Toolbox Essentials for information about major
and minor revision numbers.

ERRORS

kQ3ErrorNotInitialized

Managing Sets 1

A set object (or, more briefly, a set) is a collection of zero or more elements, each
of which has both an element type and some associated element data.
QuickDraw 3D provides routines that you can use to create a new set, get the
type of a set, add elements to a set, get the data associated with an element in a
set, loop through all the elements in a set, and perform other operations on sets.

In general, you’ll use the routines described in this section to handle sets
containing elements with custom element types. You should use other
QuickDraw 3D routines to handle sets that consist solely of elements with
predefined element types. For example, to create a set of vertex attributes, you
can use the Q3VertexAttributeSet_New function (to create a new empty set of

C H A P T E R 1

Introduction to QuickDraw 3D

1-40 QuickDraw 3D Reference

vertex attributes) and the Q3AttributeSet_Add function (to add elements to
that set). See the chapter “Attribute Objects” for information on managing
attribute sets. See the section “Defining Custom Elements” on page 3-17 for
information on handling custom element types.

Q3Set_New 1

You can use the Q3Set_New function to create a new set.

TQ3SetObject Q3Set_New (void);

DESCRIPTION

The Q3Set_New function returns, as its function result, a new set object. The set
is initially empty. If Q3Set_New cannot create a new set object, it returns NULL.

Q3Set_GetType 1

You can use the Q3Set_GetType function to get the type of a set.

TQ3ObjectType Q3Set_GetType (TQ3SetObject set);

set A set object.

DESCRIPTION

The Q3Set_GetType function returns, as its function result, the type of the set
specified by the set parameter. The types of sets currently supported by
QuickDraw 3D are defined by constants:

kQ3SetTypeAttribute

If the type of the set cannot be determined or is invalid, Q3Set_GetType returns
the value kQ3ObjectTypeInvalid.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-41

Q3Set_Add 1

You can use the Q3Set_Add function to add an element to a set.

TQ3Status Q3Set_Add (

TQ3SetObject set,

TQ3ElementType type,

const void *data);

set A set object.

type An element type.

data A pointer to the element’s data.

DESCRIPTION

The Q3Set_Add function adds the element specified by the type and data
parameters to the set specified by the set parameter. The set must already
exist when you call Q3Set_Add. Note that the element data is copied into
the set. Accordingly, you can reuse the data parameter once you have
called Q3Set_Add.

If the specified element type is a custom element type, Q3Set_Add uses
the custom type’s kQ3MethodTypeElementCopyAdd or
kQ3MethodTypeElementCopyReplace custom methods. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

Q3Set_Get 1

You can use the Q3Set_Get function to get the data associated with an element
in a set.

TQ3Status Q3Set_Get (

TQ3SetObject set,

TQ3ElementType type,

void *data);

set A set object.

C H A P T E R 1

Introduction to QuickDraw 3D

1-42 QuickDraw 3D Reference

type An element type.

data On entry, a pointer to a structure large enough to hold the data
associated with elements of the specified type. On exit, a
pointer to the data of the element having the specified type.

DESCRIPTION

The Q3Set_Get function returns, in the data parameter, the data currently
associated with the element whose type is specified by the type parameter in
the set specified by the set parameter. If no element of that type is in the set,
Q3Set_Get returns kQ3Failure.

If you pass the value NULL in the data parameter, no data is copied back to
your application. (Passing NULL might be useful simply to determine whether a
set contains a specific type of element.)

If the specified element type is a custom element type, Q3Set_Get uses
the custom type’s kQ3MethodTypeElementCopyGet custom method. See
the chapter “QuickDraw 3D Objects” for complete information on custom
element types.

Q3Set_Contains 1

You can use the Q3Set_Contains function to determine whether a set contains
an element of a particular type.

TQ3Boolean Q3Set_Contains (

TQ3SetObject set,

TQ3ElementType type);

set A set object.

type An element type.

DESCRIPTION

The Q3Set_Contains function returns, as its function result, a Boolean value
that indicates whether the set specified by the set parameter contains
(kQ3True) or does not contain (kQ3False) an element of the type specified by
the type parameter.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-43

Q3Set_GetNextElementType 1

You can use the Q3Set_GetNextElementType function to iterate through the
elements in a set.

TQ3Status Q3Set_GetNextElementType (

TQ3SetObject set,

TQ3ElementType *type);

set A set object.

type On entry, an element type, or kQ3ElementTypeNone to get the
first element type in the specified set. On exit, the element type
that immediately follows the specified element type in the set,
or kQ3ElementTypeNone if there are no more element types.

DESCRIPTION

The Q3Set_GetNextElementType function returns, in the type parameter, the
type of the element that immediately follows the element having the type
specified by the type parameter in the set specified by the set parameter. To
get the type of the first element in the set, pass kQ3ElementTypeNone in the
type parameter. Q3Set_GetNextElementType returns kQ3ElementTypeNone
when it has reached the end of the list of elements.

Q3Set_Empty 1

You can use the Q3Set_Empty function to empty a set of all the elements it
contains.

TQ3Status Q3Set_Empty (TQ3SetObject target);

target A set object.

C H A P T E R 1

Introduction to QuickDraw 3D

1-44 QuickDraw 3D Reference

DESCRIPTION

The Q3Set_Empty function removes all the elements currently in the set
specified by the target parameter.

If the specified element type is a custom element type, Q3Set_Empty uses the
custom type’s kQ3MethodTypeElementDelete custom method. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

Q3Set_Clear 1

You can use the Q3Set_Clear function to remove an element of a certain type
from a set.

TQ3Status Q3Set_Clear (TQ3SetObject set, TQ3ElementType type);

set A set object.

type An element type.

DESCRIPTION

The Q3Set_Clear function removes the element whose type is specified by the
type parameter from the set specified by the set parameter.

If the specified element type is a custom element type, Q3Set_Clear uses the
custom type’s kQ3MethodTypeElementDelete custom method. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

Managing Shapes 1

QuickDraw 3D provides routines that you can use to manage shape objects (or
shapes). A shape object is any object that affects how and where a renderer
renders an object in a view.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-45

Q3Shape_GetType 1

You can use the Q3Shape_GetType function to get the type of a shape.

TQ3ObjectType Q3Shape_GetType (TQ3ShapeObject shape);

shape A shape object.

DESCRIPTION

The Q3Shape_GetType function returns, as its function result, the type of the
shape specified by the shape parameter. The types of shapes currently
supported by QuickDraw 3D are defined by these constants:

kQ3ShapeTypeCamera

kQ3ShapeTypeGeometry

kQ3ShapeTypeGroup

kQ3ShapeTypeLight

kQ3ShapeTypeShader

kQ3ShapeTypeStyle

kQ3ShapeTypeTransform

kQ3ShapeTypeUnknown

If the type of the shape cannot be determined or is invalid, Q3Shape_GetType
returns the value kQ3ObjectTypeInvalid.

Q3Shape_GetSet 1

You can use the Q3Shape_GetSet function to get the set currently associated
with a shape.

TQ3Status Q3Shape_GetSet (

TQ3ShapeObject shape,

TQ3SetObject *set);

shape A shape object.

set On exit, the set currently associated with the specified shape.

C H A P T E R 1

Introduction to QuickDraw 3D

1-46 QuickDraw 3D Reference

DESCRIPTION

The Q3Shape_GetSet function returns, in the set parameter, the set of
elements currently associated with the shape object specified by the shape
parameter.

Q3Shape_SetSet 1

You can use the Q3Shape_SetSet function to set the set associated with a shape.

TQ3Status Q3Shape_SetSet (

TQ3ShapeObject shape,

TQ3SetObject set);

shape A shape object.

set The desired set to be associated with the specified shape.

DESCRIPTION

The Q3Shape_SetSet function sets the set of elements to be associated with the
shape object specified by the shape parameter to the set specified by the set
parameter.

Managing Strings 1

QuickDraw 3D provides routines that you can use to manage string objects (or
strings). A string object is an object that contains a sequence of characters.

Q3String_GetType 1

You can use the Q3String_GetType function to get the type of a string.

TQ3ObjectType Q3String_GetType (TQ3StringObject stringObj);

stringObj A string object.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-47

DESCRIPTION

The Q3String_GetType function returns, as its function result, the type of the
string specified by the stringObj parameter. The type of string currently
supported by QuickDraw 3D is defined by a constant:

kQ3StringTypeCString

If the type of the string cannot be determined or is invalid, Q3String_GetType
returns the value kQ3ObjectTypeInvalid.

Q3CString_New 1

You can use the Q3CString_New function to create a new C string.

TQ3StringObject Q3CString_New (const char *string);

string A pointer to a null-terminated C string.

DESCRIPTION

The Q3CString_New function returns, as its function result, a new string object
of type kQ3StringTypeCString using the sequence of characters pointed to by
the string parameter. That sequence of characters should be a standard C
string (that is, an array of characters terminated by the null character). The
characters are copied into the new string object’s private data, so you can
dispose of the array pointed to by the string parameter if Q3CString_New
returns successfully. If Q3CString_New cannot allocate memory for the string, it
returns the value NULL.

C H A P T E R 1

Introduction to QuickDraw 3D

1-48 QuickDraw 3D Reference

Q3CString_GetLength 1

You can use the Q3CString_GetLength function to get the length of a C
string object.

TQ3Status Q3CString_GetLength (

TQ3StringObject stringObj,

unsigned long *length);

stringObj A C string object.

length On exit, the length of the specified C string object.

DESCRIPTION

The Q3CString_GetLength function returns, in the length parameter, the
number of characters in the data associated with the C string object specified
by the stringObj parameter. The length returned does not include the null
character that terminates a C string. You should use Q3CString_GetLength to
get the length of only string objects of type kQ3StringTypeCString.

Q3CString_GetString 1

You can use the Q3CString_GetString function to get the character data of a C
string object.

TQ3Status Q3CString_GetString (

TQ3StringObject stringObj,

char **string);

stringObj A C string object.

string On entry, the value NULL. On exit, a pointer to a copy of the
character data associated with the specified C string object.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-49

DESCRIPTION

The Q3CString_GetString function returns, through the string parameter, a
pointer to a copy of the character data associated with the C string object
specified by the stringObj parameter. The value of the string parameter
must be NULL when you call Q3CString_GetString, because it allocates
memory and overwrites the string parameter. For instance, the following
sequence of calls will cause a memory leak:

myStatus = Q3CString_GetString(myStringObj, &myString);

myStatus = Q3CString_GetString(myStringObj, &myString);

After the second call to Q3CString_GetString, the memory allocated by
the first call to Q3CString_GetString is leaked; you cannot deallocate
that memory because you’ve lost its address. You must make certain
to call Q3CString_EmptyData to release the memory allocated by
Q3CString_GetString when you are finished using the string data, and
always before calling Q3CString_GetString with the same string pointer.
Here is an example:

myStatus = Q3CString_GetString(myStringObj, &myString);

myStatus = Q3CString_EmptyData(&myString);

myStatus = Q3CString_GetString(myStringObj, &myString);

If the value of the string parameter is not NULL, Q3CString_GetString
generates a warning.

You should use Q3CString_GetString only with string objects of type
kQ3StringTypeCString.

ERRORS AND WARNINGS

kQ3WarningPossibleMemoryLeak

C H A P T E R 1

Introduction to QuickDraw 3D

1-50 QuickDraw 3D Reference

Q3CString_SetString 1

You can use the Q3CString_SetString function to set the character data of a C
string object.

TQ3Status Q3CString_SetString (

TQ3StringObject stringObj,

const char *string);

stringObj A C string object.

string On entry, a pointer a C string specifying the character data to be
associated with the specified C string object.

DESCRIPTION

The Q3CString_SetString function sets the character data associated with the
C string object specified by the stringObj parameter to the sequence of
characters pointed to by the string parameter. That sequence of characters
should be a standard C string (that is, an array of characters terminated by the
null character). The characters are copied into the specified string object’s
private data, so you can dispose of the array pointed to by the string
parameter if Q3CString_SetString returns successfully.

You should use Q3CString_SetString only with string objects of type
kQ3StringTypeCString.

Q3CString_EmptyData 1

You can use the Q3CString_EmptyData function to dispose of the memory
allocated by a previous call to Q3CString_GetString.

TQ3Status Q3CString_EmptyData (char **string);

string On entry, a pointer to a copy of the character data returned by a
previous call to Q3CString_GetString. On exit, the value NULL.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 1-51

DESCRIPTION

The Q3CString_EmptyData function deallocates the memory pointed to by the
string parameter. The value of the string parameter must have been
returned by a previous call to the Q3CString_GetString function. If
successful, Q3CString_EmptyData sets the value of the string parameter to
NULL. Thus, you can alternate calls to Q3CString_GetString and
Q3CString_EmptyData without explicitly setting the character pointer to NULL.

You should use Q3CString_EmptyData only with string objects of type
kQ3StringTypeCString.

C H A P T E R 1

Introduction to QuickDraw 3D

1-52 Summary of QuickDraw 3D

Summary of QuickDraw 3D 1

C Summary 1

Constants 1

Gestalt Selector and Response Values

enum {

gestaltQD3D = 'qd3d',

gestaltQD3DNotPresent = 0,

gestaltQD3DAvailable = 1

}

Basic Constants

typedef enum TQ3Boolean {

kQ3False,

kQ3True

} TQ3Boolean;

typedef enum TQ3Status {

kQ3Failure,

kQ3Success

} TQ3Status;

typedef enum TQ3Axis {

kQ3AxisX,

kQ3AxisY,

kQ3AxisZ

} TQ3Axis;

C H A P T E R 1

Introduction to QuickDraw 3D

Summary of QuickDraw 3D 1-53

QuickDraw 3D Routines 1

Initializing and Terminating QuickDraw 3D

TQ3Status Q3Initialize (void);

TQ3Status Q3Exit (void);

TQ3Boolean Q3IsInitialized (void);

Getting Version Information

TQ3Status Q3GetVersion (unsigned long *majorRevision,

unsigned long *minorRevision);

Managing Sets

TQ3SetObject Q3Set_New (void);

TQ3ObjectType Q3Set_GetType (TQ3SetObject set);

TQ3Status Q3Set_Add (TQ3SetObject set,

TQ3ElementType type,

const void *data);

TQ3Status Q3Set_Get (TQ3SetObject set,

TQ3ElementType type,

void *data);

TQ3Boolean Q3Set_Contains (TQ3SetObject set, TQ3ElementType type);

TQ3Status Q3Set_GetNextElementType (

TQ3SetObject set, TQ3ElementType *type);

TQ3Status Q3Set_Empty (TQ3SetObject target);

TQ3Status Q3Set_Clear (TQ3SetObject set, TQ3ElementType type);

Managing Shapes

TQ3ObjectType Q3Shape_GetType (TQ3ShapeObject shape);

TQ3Status Q3Shape_GetSet (TQ3ShapeObject shape, TQ3SetObject *set);

TQ3Status Q3Shape_SetSet (TQ3ShapeObject shape, TQ3SetObject set);

Managing Strings

TQ3ObjectType Q3String_GetType(TQ3StringObject stringObj);

TQ3StringObject Q3CString_New (const char *string);

TQ3Status Q3CString_GetLength (TQ3StringObject stringObj,

unsigned long *length);

TQ3Status Q3CString_GetString (TQ3StringObject stringObj,

char **string);

TQ3Status Q3CString_SetString (TQ3StringObject stringObj,

const char *string);

TQ3Status Q3CString_EmptyData (char **string);

Errors, Warnings, and Notices 1

kQ3ErrorInternalError
kQ3ErrorNoRecovery
kQ3ErrorNotInitialized
kQ3ErrorAlreadyInitialized
kQ3ErrorUnimplemented
kQ3ErrorRegistrationFailed
kQ3ErrorMemoryLeak
kQ3ErrorOutOfMemory
kQ3ErrorNULLParameter
kQ3ErrorParameterOutOfRange
kQ3ErrorInvalidParameter
kQ3ErrorInvalidData
kQ3ErrorAcceleratorAlreadySet
kQ3ErrorInvalidObject
kQ3ErrorInvalidObjectType

C H A P T E R 1

Introduction to QuickDraw 3D

Summary of QuickDraw 3D 1-55

kQ3ErrorInvalidObjectName
kQ3ErrorObjectClassInUse
kQ3ErrorAccessRestricted
kQ3ErrorMetaHandlerRequired
kQ3ErrorNeedRequiredMethods
kQ3ErrorNoSubClassType
kQ3ErrorUnknownElementType
kQ3ErrorNotSupported
kQ3ErrorNoExtensionsFolder
kQ3ErrorExtensionError
kQ3ErrorPrivateExtensionError
kQ3ErrorBadStringType

kQ3WarningInternalException

kQ3WarningNoObjectSupportForDuplicateMethod
kQ3WarningNoObjectSupportForWriteMethod
kQ3WarningNoObjectSupportForReadMethod
kQ3WarningNoObjectSupportForDrawMethod
kQ3WarningUnknownElementType
kQ3WarningTypeAndMethodAlreadyDefined
kQ3WarningTypeIsOutOfRange
kQ3WarningTypeHasNotBeenRegistered
kQ3WarningInvalidSubObjectForObject
kQ3WarningInvalidHexString
kQ3WarningUnknownObject
kQ3WarningInvalidTableOfContents
kQ3WarningUnresolvableReference
kQ3WarningNoAttachMethod
kQ3WarningInconsistentData
kQ3WarningLowMemory
kQ3WarningPossibleMemoryLeak

kQ3NoticeDataAlreadyEmpty

kQ3NoticeMethodNotSupported
kQ3NoticeObjectAlreadySet

C H A P T E R 2

Contents

2-1

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 3D Viewer

About the 3D Viewer 2-3
Controller Strips 2-5
Badges 2-6

Using the 3D Viewer 2-7
Checking for the 3D Viewer 2-7
Creating a Viewer 2-8
Attaching Data to a Viewer 2-10
Handling Viewer Events 2-11

3D Viewer Reference 2-11
Constants 2-11

Gestalt Selector and Response Values 2-11
Viewer Flags 2-12
Viewer State Flags 2-14

3D Viewer Routines 2-14
Creating and Configuring Viewers 2-14
Updating Viewer Data 2-24
Handling Viewer Events 2-25
Getting Viewer Information 2-26
Handling Edit Commands 2-31

Summary of the 3D Viewer 2-34
C Summary 2-34

Constants 2-34
Data Types 2-35
3D Viewer Routines 2-35

This document was created with FrameMaker 4.0.4

C H A P T E R 2

About the 3D Viewer

2-3

3D Viewer 2

This chapter describes the 3D Viewer, which provides a high-level interface for
displaying 3D objects and other data in a window and allowing users limited
interaction with those objects. You can use the functions described here to
present 3D data (stored either in a file or in memory) to users quickly and
easily. The 3D Viewer provides controls with which the user can manipulate
several aspects of the displayed data, such as the point of view.

To use this chapter, you should already be familiar with the basic capabilities of
QuickDraw 3D, as described in the first sections of the chapter “Introduction to
QuickDraw 3D” earlier in this book.

IMPORTANT

The 3D Viewer allows you to display 3D data in metafiles
(or in memory) with minimal programming effort. It is
analogous to the movie controller provided with
QuickTime, which allows you, also with minimal
programming effort, to display and allow users to control
movies. If your application needs more advanced
rendering or interaction capabilities, or if you want to
allow users to create and manipulate objects dynamically,
you should use the lower-level QuickDraw 3D application
programming interfaces instead of the higher-level
3D Viewer programming interfaces.

▲

About the 3D Viewer 2

The

3D Viewer

 (or, more briefly, the

Viewer

) is a shared library that provides a
very simple method for displaying 3D models, together with a set of controls
that permit limited interaction with those models. Figure 2-1 shows an instance
of the 3D Viewer displaying a sample three-dimensional model.

This document was created with FrameMaker 4.0.4

C H A P T E R 2

3D Viewer

2-4

About the 3D Viewer

Figure 2-1

An instance of the 3D Viewer displaying three-dimensional data

An instance of the 3D Viewer is a

viewer object.

 Every viewer object is
associated with exactly one window, within which the viewer object must be
entirely contained. The viewer object can occupy the entire content region of
the window, or it can occupy some smaller portion of the window. Your
application can create more than one viewer object; indeed, it can create more
than one viewer object associated with a single window.

Note

The 3D Viewer is currently available only on the
Macintosh Operating System.

◆

When a viewer object is first created and displayed to the user, it consists of a

picture area

 that contains the displayed image and either a controller strip or a
badge. The

controller strip

 is a rectangular area at the bottom of the viewer
object that contains one or more controls. (See the following section for a
complete explanation of these controls.) A

badge

 is a visual element that is
displayed in the picture area when the controller strip is not visible. The user
can click on the badge to make the controller strip appear.

The part of the window that contains the picture area and the controller strip (if
present) is the

viewer pane

 (or

viewer frame

). In Figure 2-1, the viewer pane
entirely fills the window’s content region. Alternatively, you can place the
viewer pane in part of the window; you would do this to embed a 3D picture in
a document window.

C H A P T E R 2

3D Viewer

About the 3D Viewer

2-5

It’s important to understand that the 3D Viewer is built on top of
QuickDraw 3D, but you don’t need to call any QuickDraw 3D functions to use
the 3D Viewer. The 3D Viewer is a shared library that is separate from the
QuickDraw 3D shared library. You can call

Q3ViewerNew

 (and any other
3D Viewer functions) without having called

Q3Initialize

 to initialize
QuickDraw 3D. The models displayed by the Viewer must be structured
according to the QuickDraw 3D Object Metafile specification, but the metafile
data can be stored either in a file or in memory.

Controller Strips 2

The 3D Viewer provides control elements for manipulating the location and
orientation of the user’s point of view (that is, of the view’s camera). Figure 2-2
shows a controller strip provided by the 3D Viewer.

Figure 2-2

The controller strip of the 3D Viewer

These controls are, from left to right:

■

The

camera angle button.

 This control allows the user to view the model
from a different camera angle. Holding down the camera angle button
causes a pop-up menu to appear, listing the available cameras.

■

The

distance button.

 This control allows the user to move closer to or farther
away from the model. Clicking the distance button and then dragging the
cursor downward in the picture area causes the displayed object to move
closer. Dragging the cursor upward in the picture area causes the displayed
object to move farther away.

■

The

rotate button.

 This control allows the user to rotate an object. Clicking
the rotate button and then dragging the cursor in the picture area causes the
displayed object to rotate in the direction in which the cursor is dragged.

■

The

zoom button.

 This control allows the user to alter the field of view of
the current camera, thereby zooming in or out on the object in the model.

C H A P T E R 2

3D Viewer

2-6

About the 3D Viewer

■

The

move button.

 This control allows the user to move an object. Clicking
the move button and then dragging on the object in the picture area causes
the object to be moved to a new location.

Your application controls which of these buttons are displayed in a viewer
object’s controller strip at the time you create the viewer object, by
appropriately setting a viewer’s flags. See Listing 2-2 on page 2-9 for an
example of setting a viewer’s flags.

Badges 2

The 3D Viewer allows your application to distinguish 3D data from static
graphics in documents by the use of a badge. Figure 2-3 shows a viewer pane
with a badge.

Figure 2-3

A 3D model with a badge

The badge lets the user know that the image represents a 3D model rather
than a static image. A badge appears when the viewer object is first displayed
and the

kQ3ViewerShowBadge

 flag is set in the object’s viewer flags. When
the user clicks the badge, the badge disappears and the standard controller
strip appears.

C H A P T E R 2

3D Viewer

Using the 3D Viewer

2-7

Your application can control whether the 3D Viewer displays a badge in a
viewer pane by appropriately setting a viewer’s flags. See “Viewer Flags” on
page 2-12 for more information.

Using the 3D Viewer 2

This section provides examples of how to use the 3D Viewer to display 3D data
in a window.

Checking for the 3D Viewer 2

Before calling any 3D Viewer routines, you need to verify that the 3D Viewer
software is available in the current operating environment. On the Macintosh
Operating System, you can verify that the 3D Viewer is available by calling the

MyEnvironmentHas3DViewer

 function defined in Listing 2-1.

Listing 2-1

Determining whether the 3D Viewer is available

Boolean MyEnvironmentHas3DViewer (void)

{

return((Boolean)Q3ViewerNew != kUnresolvedSymbolAddress);

}

The

MyEnvironmentHas3DViewer

 function checks whether the address of the

Q3ViewerNew

 function has been resolved. If it hasn’t been resolved (that is, if
the Code Fragment Manager couldn’t find the 3D Viewer shared library when
launching your application),

MyEnvironmentHas3DViewer

 returns the value

FALSE

 to its caller. Otherwise, if the address of the

Q3ViewerNew

 function was
successfully resolved,

MyEnvironmentHas3DViewer

 returns

TRUE

.

C H A P T E R 2

3D Viewer

2-8

Using the 3D Viewer

Note

For the function

MyEnvironmentHas3DViewer

 to work
properly, you must establish soft links (also called

weak
links

) between your application and the 3D Viewer shared
library. For information on soft links, see the book

Inside
Macintosh: PowerPC System Software.

 For specific
information on establishing soft links, see the
documentation for your software development system.

◆

On the Macintosh Operating System, you can verify that the 3D Viewer is
available in the current operating environment by calling the

Gestalt

 function
with the

gestaltQuickDraw3DViewer

 selector.

Gestalt

 returns a long word
whose value indicates the availability of the 3D Viewer. Currently these values
are defined:

enum {

gestaltQuickDraw3DViewer = 'q3vc',

gestaltQ3ViewerNotAvailable = 0,

gestaltQ3ViewerAvailable = 1

}

You should ensure that the value

gestaltQ3ViewerAvailable

 is returned
before calling any 3D Viewer routines.

Note

For more information on the

Gestalt

 function, see

Inside Macintosh: Operating System Utilities

.

◆

Creating a Viewer 2

You can create a viewer object by calling the

Q3ViewerNew

 function. You pass

Q3ViewerNew

 a pointer to the window in which you want the viewer to appear,
the rectangle that is to contain the viewer pane, and a selector indicating which
viewer features to enable.

Q3ViewerNew

 returns a reference to a viewer object.
Listing 2-2 illustrates one way to call

Q3ViewerNew

. The function

MyCreateViewer

 defined in Listing 2-2 creates a viewer pane that occupies
the entire content region of the window whose address is passed to it as
a parameter.

C H A P T E R 2

3D Viewer

Using the 3D Viewer

2-9

Listing 2-2

Creating a viewer object

TQ3ViewerObject MyCreateViewer (WindowPtr myWindow)

{

TQ3ViewerObject myViewer;

Rect myRect;

/*Get rectangle enclosing the window’s content region.*/

myRect = myWindow->portRect;

if (EmptyRect(&myRect)) /*make sure we got a nonempty rect*/

goto bail;

/*Create a new viewer object in entire content region.*/

myViewer = Q3ViewerNew((CGrafPtr)myWindow, &myRect, kQ3ViewerDefault);

if (myViewer == NULL)

goto bail;

return (myViewer); /*return new viewer object*/

bail:

/*If any of the above failed, return an empty viewer object.*/

return (NULL);

}

The third parameter to the call to

Q3ViewerNew

 is a set of

viewer flags

 that
specify information about the appearance and behavior of the new viewer
object. In Listing 2-2, the viewer flag parameter is set to the value

kQ3ViewerDefault

, indicating that the default values of the viewer flags are
to be used. See “Viewer Flags,” beginning on page 2-12 for a complete
description of the available viewer flags.

C H A P T E R 2

3D Viewer

2-10

Using the 3D Viewer

Attaching Data to a Viewer 2

You specify the 3D model to be displayed in a viewer pane’s picture area
by calling either the

Q3ViewerUseFile

 or

Q3ViewerUseData

 function.

Q3ViewerUseFile

 takes a reference to an existing viewer object and a file
reference number of an open metafile, as follows:

myErr = Q3ViewerUseFile(myViewer, myFsRefNum);

You use the

Q3ViewerUseData

 function to specify a 3D model whose data is
already in memory (either on the Clipboard or elsewhere in RAM).

Q3ViewerUseData

 takes a reference to an existing viewer object, a pointer to
the metafile data in RAM, and the number of bytes occupied by that data.
Here’s an example of calling

Q3ViewerUseData

:

myErr = Q3ViewerUseData(myViewer, myDataPtr, myDataSize);

IMPORTANT

The data in the buffer whose address and size you pass to

Q3ViewerUseData must be in the QuickDraw 3D Object
Metafile format. ▲

Once you attach the metafile data to a visible viewer object, the user is able to
see the 3D model in the viewer pane. If, however, the viewer pane was
invisible when it was created, you need to call the Q3ViewerDraw function to
make it visible.

The 3D Viewer treats the model data as a single group. You can get a reference
to the model data currently displayed in the viewer’s picture area by calling
the Q3ViewerGetGroup function. You can change that model data by calling the
Q3ViewerUseGroup function.

You can also retrieve the view object associated with a viewer object by calling
the Q3ViewerGetView function. You can then modify some of the view settings,
such as the lights or the camera. If you wish, you can also restore the view
settings to their original values by calling the Q3ViewerRestoreView function.

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-11

Handling Viewer Events 2

The final thing you need to do to support the 3D Viewer is to modify your
main event loop so that events in the viewer controller strip and in the viewer
pane can be handled. You need to add a line like this to your event loop:

isViewerEvent = Q3ViewerEvent(myViewer, myEvent);

The Q3ViewerEvent function determines whether the event specified by the
myEvent event record affects the specified viewer object. If so, Q3ViewerEvent
handles the event and returns TRUE as it function result. Otherwise,
Q3ViewerEvent returns FALSE.

3D Viewer Reference 2

This section describes the constants and routines that you can use to create and
manage instances of the 3D Viewer.

Constants 2

This section describes the constants you might need to use when creating and
managing a viewer object.

Gestalt Selector and Response Values 2

You can pass the gestaltQuickDraw3DViewer selector to the Gestalt function
to determine information about the availability of the 3D Viewer.

enum {

gestaltQuickDraw3DViewer = 'q3vc'

}

C H A P T E R 2

3D Viewer

2-12 3D Viewer Reference

Gestalt returns information to you by returning a long word in the response
parameter. Currently, the returned values are defined by constants:

enum {

gestaltQ3ViewerNotAvailable = 0,

gestaltQ3ViewerAvailable = 1

}

Constant descriptions

gestaltQ3ViewerNotAvailable

The 3D Viewer is not available.
gestaltQ3ViewerAvailable

The 3D Viewer is available.

Viewer Flags 2

When you create a new viewer object (by calling Q3ViewerNew), you need
to specify a set of viewer flags that control various aspects of the new
viewer object.

enum {

kQ3ViewerShowBadge = 1<<0,

kQ3ViewerActive = 1<<1,

kQ3ViewerControllerVisible = 1<<2,

kQ3ViewerDrawFrame = 1<<3,

kQ3ViewerDraggingOff = 1<<4,

kQ3ViewerButtonCamera = 1<<5,

kQ3ViewerButtonTruck = 1<<6,

kQ3ViewerButtonOrbit = 1<<7,

kQ3ViewerButtonZoom = 1<<8,

kQ3ViewerButtonDolly = 1<<9,

kQ3ViewerDefault = (kQ3ViewerViewerActive |

kQ3ViewerControllerVisible |

kQ3ViewerButtonCamera |

kQ3ViewerButtonTruck |

kQ3ViewerButtonOrbit)

};

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-13

Constant descriptions

kQ3ViewerShowBadge

If this flag is set, a badge is displayed in the viewer pane
whenever the controller strip is not visible. See “Badges”
on page 2-6 for complete details on when the badge
appears and disappears. If this flag is clear, no badge is
displayed.

kQ3ViewerActive If this flag is set, the viewer object is active.
kQ3ViewerControllerVisible

If this flag is set, the controller strip is visible. If this flag
is clear, the controller strip is not visible. If the
kQ3ViewerShowBadge flag is set, the controller strip is
visible whenever the badge is not displayed.

kQ3ViewerDrawFrame

If this flag is set, a frame is drawn around the viewer
pane. If this flag is clear, no frame is drawn around
the viewer pane.

kQ3ViewerDraggingOff

If this flag is set, dragging is turned off in the viewer pane.
kQ3ViewerButtonCamera

If this flag is set, the camera angle button in the controller
strip is displayed and is active.

kQ3ViewerButtonTruck

If this flag is set, the distance button in the controller strip
is displayed and is active.

kQ3ViewerButtonOrbit

If this flag is set, the rotate button in the controller strip is
displayed and is active.

kQ3ViewerButtonZoom

If this flag is set, the zoom button in the controller strip is
displayed and is active.

kQ3ViewerButtonDolly

If this flag is set, the move button in the controller strip is
displayed and is active.

kQ3ViewerDefault The default configuration for a viewer object.

C H A P T E R 2

3D Viewer

2-14 3D Viewer Reference

Viewer State Flags 2

The Q3ViewerGetState function returns a long integer that encodes
information about the current state of a viewer object. Bits of the returned long
integer are addressed using these viewer state flags:

enum {

kQ3ViewerEmpty = 0,

kQ3ViewerHasModel = 1

};

Constant descriptions

kQ3ViewerEmpty If this flag is set, there is no image currently displayed by
the specified viewer object.

kQ3ViewerHasModelIf this flag is set, there is an image currently displayed by
the specified viewer object.

3D Viewer Routines 2

This section describes the routines that you can use to create and manage the
3D Viewer. You can use these routines to

■ create a new viewer object

■ dispose of a viewer object

■ attach a file or block of data to a viewer object

■ handle editing operations associated with a viewer object

Note
You don’t need to use all of these routines in order to use
the 3D Viewer. For a description of which routines are
required, see “Using the 3D Viewer,” beginning on
page 2-7. ◆

Creating and Configuring Viewers 2

This section describes the routines you can use to create and configure new
viewer objects. See “Creating a Viewer” on page 2-8 for complete source code
examples that illustrate how to use these routines.

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-15

Q3ViewerNew 2

You can use the Q3ViewerNew function to create a new viewer object.

TQ3ViewerObject Q3ViewerNew (

CGrafPtr port,

Rect *rect,

unsigned long flags);

port A pointer to a color graphics port that specifies the window
with which the new viewer is to be associated.

rect The desired viewer pane for the new viewer object. This
rectangle is specified in window coordinates, where the origin
(0, 0) is the upper-left corner of the window and values increase
to the right and down the window.

flags A set of viewer flags.

DESCRIPTION

The Q3ViewerNew function returns, as its function result, a reference to a
new viewer object that is to be drawn in the window specified by the port
parameter, in the location specified by the rect parameter. The flags
parameter specifies the desired set of viewer flags. See “Viewer Flags” on
page 2-12 for information on the flags you can specify when calling
Q3ViewerNew.

The Q3ViewerNew function calls the QuickDraw 3D function Q3Initialize if
your application has not already called it.

Q3ViewerDispose 2

You can use the Q3ViewerDispose function to dispose of a viewer object.

OSErr Q3ViewerDispose (TQ3ViewerObject theViewer);

theViewer A viewer object.

C H A P T E R 2

3D Viewer

2-16 3D Viewer Reference

DESCRIPTION

The Q3ViewerDispose function disposes of the viewer object specified by the
theViewer parameter.

Q3ViewerUseFile 2

You can use the Q3ViewerUseFile function to set the file containing the 3D
model to be displayed in a viewer object.

OSErr Q3ViewerUseFile (TQ3ViewerObject theViewer, long refNum);

theViewer A viewer object.

refnum The file reference number of an open file.

DESCRIPTION

The Q3ViewerUseFile function sets the 3D data file to be displayed in the
viewer object specified by the theViewer parameter to the open file having the
file reference number specified by the refnum parameter.

Q3ViewerUseData 2

You can use the Q3ViewerUseData function to set the memory-based data
displayed in a viewer object.

OSErr Q3ViewerUseData (

TQ3ViewerObject theViewer,

void *data,

long size);

theViewer A viewer object.

data A pointer to the beginning of a block of data in memory.

size The size, in bytes, of the specified block of data.

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-17

DESCRIPTION

The Q3ViewerUseData function sets the 3D data to be displayed in the viewer
object specified by the theViewer parameter to the data block beginning at the
address specified by the data parameter and having the size specified by the
size parameter.

Q3ViewerDraw 2

You can use the Q3ViewerDraw function to draw a viewer object.

OSErr Q3ViewerDraw (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerDraw function draws the viewer object specified by the
theViewer parameter. You need to call this function only if the viewer flags
or other visible features of a viewer have changed. For example, to change
a viewer’s pane, you need to call Q3ViewerSetBounds followed by
Q3ViewerDraw. Similarly, if the viewer flags of a new viewer object have the
kQ3ViewerActive flag clear, then to make the viewer object active you need to
set that flag by calling Q3ViewerSetFlags and then draw the viewer by calling
Q3ViewerDraw.

Q3ViewerGetView 2

You can use the Q3ViewerGetView function to get the view object associated
with a viewer object.

TQ3ViewObject Q3ViewerGetView (TQ3ViewerObject theViewer);

theViewer A viewer object.

C H A P T E R 2

3D Viewer

2-18 3D Viewer Reference

DESCRIPTION

The Q3ViewerGetView function returns, as its function result, the view object
currently associated with the viewer specified by the theViewer parameter.

Q3ViewerRestoreView 2

You can use the Q3ViewerRestoreView function to restore the camera
associated with a viewer object.

OSErr Q3ViewerRestoreView (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerRestoreView function restores the camera settings of the viewer
specified by the theViewer parameter to the original camera specified in the
associated view hints object. If there is no view hints object associated with the
specified viewer, Q3ViewerRestoreView creates a new default camera.

Q3ViewerGetFlags 2

You can use the Q3ViewerGetFlags function to get the current viewer flags for
a viewer object.

unsigned long Q3ViewerGetFlags (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetFlags function returns, as its function result, the current set
of viewer flags for the viewer specified by the theViewer parameter.

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-19

Q3ViewerSetFlags 2

You can use the Q3ViewerSetFlags function to set the viewer flags for a
viewer object.

OSErr Q3ViewerSetFlags (

TQ3ViewerObject theViewer,

unsigned long flags);

theViewer A viewer object.

flags A set of viewer flags. See “Viewer Flags” on page 2-12 for a
description of the constants you can use to set or clear
individual viewer flags.

DESCRIPTION

The Q3ViewerSetFlags function sets the viewer flags associated with the
viewer object specified by the theViewer parameter to the values passed in the
flags parameter.

IMPORTANT

Any changes to a viewer’s flags will not be visible until
you call Q3ViewerDraw with the specified viewer object. ▲

Q3ViewerGetBounds 2

You can use the Q3ViewerGetBounds function to get the rectangle that bounds
a viewer’s pane.

OSErr Q3ViewerGetBounds (

TQ3ViewerObject theViewer,

Rect *bounds);

theViewer A viewer object.

bounds On exit, the rectangle that bounds the pane currently associated
with the specified viewer object.

C H A P T E R 2

3D Viewer

2-20 3D Viewer Reference

DESCRIPTION

The Q3ViewerGetBounds function returns, through the bounds parameter, the
rectangle that currently bounds the pane associated with the viewer object
specified by the bounds parameter.

Q3ViewerSetBounds 2

You can use the Q3ViewerSetBounds function to set the rectangle that bounds a
viewer’s pane.

OSErr Q3ViewerSetBounds (

TQ3ViewerObject theViewer,

Rect *bounds);

theViewer A viewer object.

bounds The desired viewer pane for the specified viewer object. This
rectangle is specified in window coordinates, where the origin
(0, 0) is the upper-left corner of the window and values increase
to the right and down the window.

DESCRIPTION

The Q3ViewerSetBounds function sets the bounds of the viewer pane of the
viewer object specified by the theViewer parameter to the rectangle specified
by the bounds parameter.

IMPORTANT

Any changes to a viewer’s bounds will not be visible until
you call Q3ViewerDraw with the specified viewer object. ▲

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-21

Q3ViewerGetPort 2

You can use the Q3ViewerGetPort function to get the color graphics port
associated with a viewer object.

CGrafPtr Q3ViewerGetPort (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetPort function returns, as its function result, a pointer to the
color graphics port currently associated with the viewer object specified by the
theViewer parameter.

Q3ViewerSetPort 2

You can use the Q3ViewerSetPort function to set the color graphics port
associated with a viewer object.

OSErr Q3ViewerSetPort (TQ3ViewerObject theViewer, CGrafPtr port);

theViewer A viewer object.

port A pointer to a color graphics port that specifies the window
with which the specified viewer is to be associated.

DESCRIPTION

The Q3ViewerSetPort function sets the color graphics port associated with the
viewer object specified by the theViewer parameter to the port specified by the
port parameter.

C H A P T E R 2

3D Viewer

2-22 3D Viewer Reference

Q3ViewerGetGroup 2

You can use the Q3ViewerGetGroup function to get the group of objects
currently associated with a viewer.

TQ3GroupObject Q3ViewerGetGroup (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetGroup function returns, as its function result, a reference to
the group containing the objects currently associated with the viewer specified
by the theViewer parameter. The reference count of that group is incremented.
You should therefore dispose of the group when you have finished using it.

Q3ViewerUseGroup 2

You can use the Q3ViewerUseGroup function to set the group of objects
associated with a viewer.

OSErr Q3ViewerUseGroup (

TQ3ViewerObject theViewer,

TQ3GroupObject group);

theViewer A viewer object.

group A group.

DESCRIPTION

The Q3ViewerUseGroup function sets the group of objects associated with the
viewer specified by the theViewer parameter to the group specified by the
group parameter.

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-23

Q3ViewerGetBackgroundColor 2

You can use the Q3ViewerGetBackgroundColor function to get the background
color of a viewer.

OSErr Q3ViewerGetBackgroundColor (

TQ3ViewerObject theViewer,

TQ3ColorARGB *color);

theViewer A viewer object.

color On exit, the current background color.

DESCRIPTION

The Q3ViewerGetBackgroundColor function returns, in the color parameter,
the background color of the viewer specified by the theViewer parameter.

Q3ViewerSetBackgroundColor 2

You can use the Q3ViewerSetBackgroundColor function to set the background
color of a viewer.

OSErr Q3ViewerSetBackgroundColor (

TQ3ViewerObject theViewer,

TQ3ColorARGB *color);

theViewer A viewer object.

color The desired background color.

DESCRIPTION

The Q3ViewerSetBackgroundColor function sets the background color of the
viewer specified by the theViewer parameter to the color specified by the
color parameter.

C H A P T E R 2

3D Viewer

2-24 3D Viewer Reference

Updating Viewer Data 2

The 3D Viewer provides routines that you can use to update the file or memory
copy of the 3D data displayed in a viewer.

Q3ViewerWriteFile 2

You can use the Q3ViewerWriteFile function to update the file data being
displayed in a viewer.

OSErr Q3ViewerWriteFile (

TQ3ViewerObject theViewer,

long refNum);

theViewer A viewer object.

refnum The file reference number of an open file.

DESCRIPTION

The Q3ViewerWriteFile function writes the 3D data currently associated with
the viewer object specified by the theViewer parameter to the file specified by
the refnum parameter.

Q3ViewerWriteData 2

You can use the Q3ViewerWriteData function to update the memory data
being displayed in a viewer.

unsigned long Q3ViewerWriteData (

TQ3ViewerObject theViewer,

void **data);

theViewer A viewer object.

data A pointer to the beginning of a block of data in memory.

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-25

DESCRIPTION

The Q3ViewerWriteData function writes the 3D data currently associated with
the viewer object specified by the theViewer parameter to the memory location
specified by the data parameter.

Handling Viewer Events 2

Viewer objects support several routines for handling events that occur in a
viewer pane.

Q3ViewerEvent 2

You can use the Q3ViewerEvent function to give the 3D Viewer an opportunity
to handle events involving a viewer object.

Boolean Q3ViewerEvent (

TQ3ViewerObject theViewer,

EventRecord *evt);

theViewer A viewer object.

evt An event record.

DESCRIPTION

The Q3ViewerEvent function returns, as its function result, a Boolean value
that indicates whether the event specified by the evt parameter relates to the
viewer object specified by the theViewer parameter and was successfully
handled (TRUE) or whether that event either does not relate to that viewer
object or could not be handled by the 3D Viewer (FALSE). The evt parameter is
a pointer to an event record, which you usually obtain by calling the Event
Manager function WaitNextEvent.

Q3ViewerEvent can handle most of the events relating to a viewer object. For
example, it handles all user events relating to the controller strip displayed
with a viewer object. For information on how to handle editing commands in a
viewer pane, see “Handling Edit Commands,” beginning on page 2-31.

C H A P T E R 2

3D Viewer

2-26 3D Viewer Reference

SPECIAL CONSIDERATIONS

You should call Q3ViewerEvent in your main event loop to give the 3D Viewer
an opportunity to handle events in a window that relate to a viewer object.

Q3ViewerAdjustCursor 2

You can use the Q3ViewerAdjustCursor function to allow the 3D Viewer to
adjust the cursor when it is inside a viewer object.

Boolean Q3ViewerAdjustCursor (

TQ3ViewerObject theViewer,

Point *pt);

theViewer A viewer object.

pt The location of the cursor, in the local coordinates of the
window that contains the specified viewer object.

DESCRIPTION

The Q3ViewerAdjustCursor function adjusts the cursor to whatever shape is
appropriate when the cursor is located at the point specified by the pt
parameter inside the viewer object specified by the theViewer parameter. You
should call Q3ViewerAdjustCursor in response to a mouse-moved event.
Q3ViewerAdjustCursor returns a Boolean value that indicates whether the
shape of the cursor was changed (True) or not (False).

Getting Viewer Information 2

The 3D Viewer provides routines that you can use to get information about a
viewer object.

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-27

Q3ViewerGetState 2

You can use the Q3ViewerGetState function to get the current state of a
viewer object.

unsigned long Q3ViewerGetState (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetState function returns a long integer that encodes
information about the current state of the viewer object specified by the
theViewer parameter. Bits of the returned long integer are addressed
using these constants, which define the viewer state flags:

enum {

kQ3ViewerEmpty = 0,

kQ3ViewerHasModel = 1

};

If Q3ViewerGetState returns the value kQ3ViewerEmpty, there is no image
currently displayed by the specified viewer object. If Q3ViewerGetState
returns the value kQ3ViewerHasModel, there is an image currently displayed
by the specified viewer object. You can use this information to determine
whether Edit menu commands such as Cut, Clear, and Copy should be enabled
or disabled.

Q3ViewerGetPict 2

You can use the Q3ViewerGetPict function to get a picture representation of
the image currently displayed by a viewer object.

PicHandle Q3ViewerGetPict (TQ3ViewerObject theViewer);

theViewer A viewer object.

C H A P T E R 2

3D Viewer

2-28 3D Viewer Reference

DESCRIPTION

The Q3ViewerGetPict function returns, as its function result, a handle to a
Picture structure that contains a representation of the image currently
displayed by the viewer object specified by the theViewer parameter. You
should call DisposeHandle to dispose of the memory occupied by the picture
when you’re done using it.

Q3ViewerGetButtonRect 2

You can use the Q3ViewerGetButtonRect function to get the rectangle that
encloses a viewer button.

OSErr Q3ViewerGetButtonRect (

TQ3ViewerObject theViewer,

unsigned long button,

Rect *rect);

theViewer A viewer object.

button A button.

rect On exit, the rectangle that enclosed the specified button in the
specified viewer.

DESCRIPTION

The Q3ViewerGetButtonRect function returns, in the rect parameter, the
rectangle that encloses the button specified by the button parameter in the
viewer object specified by the theViewer parameter. You can use these
constants to specify the button whose rectangle you want returned:

kQ3ViewerButtonCamera

kQ3ViewerButtonTruck

kQ3ViewerButtonOrbit

kQ3ViewerButtonZoom

kQ3ViewerButtonDolly

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-29

Q3ViewerGetCurrentButton 2

You can use the Q3ViewerGetCurrentButton function to get the active button
of a viewer.

unsigned long Q3ViewerGetCurrentButton (

TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetCurrentButton function returns, as its function result, the
active button of the viewer object specified by the theViewer parameter.
Q3ViewerGetCurrentButton returns one of these constants:

kQ3ViewerButtonCamera

kQ3ViewerButtonTruck

kQ3ViewerButtonOrbit

kQ3ViewerButtonZoom

kQ3ViewerButtonDolly

Q3ViewerSetCurrentButton 2

You can use the Q3ViewerSetCurrentButton function to set the active button
of a viewer pane.

OSErr Q3ViewerSetCurrentButton (

TQ3ViewerObject theViewer,

unsigned long button);

theViewer A viewer object.

button A button.

C H A P T E R 2

3D Viewer

2-30 3D Viewer Reference

DESCRIPTION

The Q3ViewerSetCurrentButton function sets the active button of the viewer
object specified by the theViewer parameter to the button specified by the
button parameter. You can use these constants to specify a button:

kQ3ViewerButtonCamera

kQ3ViewerButtonTruck

kQ3ViewerButtonOrbit

kQ3ViewerButtonZoom

kQ3ViewerButtonDolly

Q3ViewerGetDimension 2

You can use the Q3ViewerGetDimension function to get the current dimensions
of the model space in a viewer’s view hints object.

OSErr Q3ViewerGetDimension (

TQ3ViewerObject theViewer,

unsigned long *width,

unsigned long *height);

theViewer A viewer object.

width On exit, the width of the pane of the specified viewer.

height On exit, the height of the pane of the specified viewer.

DESCRIPTION

The Q3ViewerGetDimension function returns, in the width and height
parameters, the current width and height of the model space in the view hints
object associated with the viewer object specified by the theViewer parameter.
If there is no such view hints object, Q3ViewerGetDimension returns the width
and height of the viewer pane.

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-31

Handling Edit Commands 2

The 3D Viewer provides routines that you can use to handle editing commands
that apply to a viewer object.

Q3ViewerCut 2

You can use the Q3ViewerCut function to handle the Cut editing command
when applied to data selected in a viewer object.

OSErr Q3ViewerCut (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerCut function cuts the data currently selected in the viewer object
specified by the theViewer parameter. The cut data is placed on the Clipboard.
You should call Q3ViewerCut when the user chooses the Cut command in your
application’s Edit menu (or types the appropriate keyboard equivalent) and the
selected data is inside a viewer pane.

Q3ViewerCopy 2

You can use the Q3ViewerCopy function to handle the Copy editing command
when applied to data selected in a viewer object.

OSErr Q3ViewerCopy (TQ3ViewerObject theViewer);

theViewer A viewer object.

C H A P T E R 2

3D Viewer

2-32 3D Viewer Reference

DESCRIPTION

The Q3ViewerCopy function copies the data currently selected in the viewer
object specified by the theViewer parameter. The data is copied onto the
Clipboard. You should call Q3ViewerCopy when the user chooses the Copy
command in your application’s Edit menu (or types the appropriate keyboard
equivalent) and the selected data is inside a viewer pane.

Q3ViewerPaste 2

You can use the Q3ViewerPaste function to handle the Paste editing command
when applied to data previously cut or copied from a viewer object.

OSErr Q3ViewerPaste (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerPaste function pastes 3D data from the Clipboard into the
viewer object specified by the theViewer parameter. You should call
Q3ViewerPaste when the user chooses the Paste command in your
application’s Edit menu (or types the appropriate keyboard equivalent) and
the data on the Clipboard was placed there by a previous call to Q3ViewerCut
or Q3ViewerCopy.

SEE ALSO

To determine whether the data on the Clipboard is 3D data or not, you can use
the Q3ViewerGetState function (page 2-27).

C H A P T E R 2

3D Viewer

3D Viewer Reference 2-33

Q3ViewerClear 2

You can use the Q3ViewerClear function to handle the Clear editing command
when applied to data selected in a viewer object.

OSErr Q3ViewerClear (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerClear function clears the data currently selected in the viewer
object specified by the theViewer parameter. No data is copied onto the
Clipboard. You should call Q3ViewerClear when the user chooses the Clear
command in your application’s Edit menu (or types the appropriate keyboard
equivalent) and the selected data is inside a viewer pane.

C H A P T E R 2

3D Viewer

2-34 Summary of the 3D Viewer

Summary of the 3D Viewer 2

C Summary 2

Constants 2

Gestalt Selector and Response Values

enum {

gestaltQuickDraw3DViewer = 'q3vc',

gestaltQ3ViewerNotAvailable = 0,

gestaltQ3ViewerAvailable = 1

}

Viewer Flags

enum {

kQ3ViewerShowBadge = 1<<0,

kQ3ViewerActive = 1<<1,

kQ3ViewerControllerVisible = 1<<2,

kQ3ViewerDrawFrame = 1<<3,

kQ3ViewerDraggingOff = 1<<4,

kQ3ViewerButtonCamera = 1<<5,

kQ3ViewerButtonTruck = 1<<6,

kQ3ViewerButtonOrbit = 1<<7,

kQ3ViewerButtonZoom = 1<<8,

kQ3ViewerButtonDolly = 1<<9,

kQ3ViewerDefault =

(kQ3ViewerActive |

 kQ3ViewerControllerVisible |

C H A P T E R 2

3D Viewer

Summary of the 3D Viewer 2-35

 kQ3ViewerButtonCamera |

 kQ3ViewerButtonTruck |

 kQ3ViewerButtonOrbit)

};

Viewer State Flags

enum {

kQ3ViewerEmpty = 0,

kQ3ViewerHasModel = 1

};

Data Types 2

typedef void *TQ3ViewerObject;

3D Viewer Routines 2

Creating and Configuring Viewers

TQ3ViewerObject Q3ViewerNew (CGrafPtr port,

Rect *rect,

unsigned long flags);

OSErr Q3ViewerDispose (TQ3ViewerObject theViewer);

OSErr Q3ViewerUseFile (TQ3ViewerObject theViewer, long refNum);

OSErr Q3ViewerUseData (TQ3ViewerObject theViewer,

void *data,

long size);

OSErr Q3ViewerDraw (TQ3ViewerObject theViewer);

TQ3ViewObject Q3ViewerGetView (TQ3ViewerObject theViewer);

OSErr Q3ViewerRestoreView (TQ3ViewerObject theViewer);

unsigned long Q3ViewerGetFlags(TQ3ViewerObject theViewer);

C H A P T E R 2

3D Viewer

2-36 Summary of the 3D Viewer

OSErr Q3ViewerSetFlags (TQ3ViewerObject theViewer,

unsigned long flags);

OSErr Q3ViewerGetBounds (TQ3ViewerObject theViewer, Rect *bounds);

OSErr Q3ViewerSetBounds (TQ3ViewerObject theViewer, Rect *bounds);

CGrafPtr Q3ViewerGetPort (TQ3ViewerObject theViewer);

OSErr Q3ViewerSetPort (TQ3ViewerObject theViewer, CGrafPtr port);

TQ3GroupObject Q3ViewerGetGroup (

TQ3ViewerObject theViewer);

OSErr Q3ViewerUseGroup (TQ3ViewerObject theViewer,

TQ3GroupObject group);

OSErr Q3ViewerGetBackgroundColor (

TQ3ViewerObject theViewer,

TQ3ColorARGB *color);

OSErr Q3ViewerSetBackgroundColor (

TQ3ViewerObject theViewer,

TQ3ColorARGB *color);

Updating Viewer Data

OSErr Q3ViewerWriteFile (TQ3ViewerObject theViewer, long refNum);

unsigned long Q3ViewerWriteData (

TQ3ViewerObject theViewer, void **data);

Handling Viewer Events

Boolean Q3ViewerEvent (TQ3ViewerObject theViewer, EventRecord *evt);

Boolean Q3ViewerAdjustCursor (TQ3ViewerObject theViewer, Point *pt);

Getting Viewer Information

unsigned long Q3ViewerGetState(TQ3ViewerObject theViewer);

PicHandle Q3ViewerGetPict (TQ3ViewerObject theViewer);

C H A P T E R 2

3D Viewer

Summary of the 3D Viewer 2-37

OSErr Q3ViewerGetButtonRect (TQ3ViewerObject theViewer,

unsigned long button,

Rect *rect);

unsigned long Q3ViewerGetCurrentButton (

TQ3ViewerObject theViewer);

OSErr Q3ViewerSetCurrentButton(TQ3ViewerObject theViewer,

unsigned long button);

OSErr Q3ViewerGetDimension (TQ3ViewerObject theViewer,

unsigned long *width,

unsigned long *height);

Handling Edit Commands

OSErr Q3ViewerCut (TQ3ViewerObject theViewer);

OSErr Q3ViewerCopy (TQ3ViewerObject theViewer);

OSErr Q3ViewerPaste (TQ3ViewerObject theViewer);

OSErr Q3ViewerClear (TQ3ViewerObject theViewer);

C H A P T E R 3

Contents

3-1

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 QuickDraw 3D Objects

About QuickDraw 3D Objects 3-3
The QuickDraw 3D Class Hierarchy 3-4

QuickDraw 3D Objects 3-5
QuickDraw 3D Object Subclasses 3-6
Shared Object Subclasses 3-7
Set Object Subclasses 3-9
Shape Object Subclasses 3-9
Group Object Subclasses 3-10
Shader Object Subclasses 3-11

Reference Counts 3-11
Using QuickDraw 3D Objects 3-14

Determining the Type of a QuickDraw 3D Object 3-14
Defining an Object Metahandler 3-15
Defining Custom Elements 3-17

QuickDraw 3D Objects Reference 3-18
QuickDraw 3D Objects Routines 3-18

Managing Objects Classes 3-18
Managing Objects 3-19
Determining Object Types 3-22
Managing Shared Objects 3-24
Registering Custom Elements 3-25

Application-Defined Routines 3-28

This document was created with FrameMaker 4.0.4

C H A P T E R 3

3-2

Contents

Summary of QuickDraw 3D Objects 3-34
C Summary 3-34

Constants 3-34
Data Types 3-36
QuickDraw 3D Objects Routines 3-38
Application-Defined Routines 3-39

C H A P T E R 3

About QuickDraw 3D Objects

3-3

QuickDraw 3D Objects 3

This chapter describes QuickDraw 3D objects, which occupy the root level of
the QuickDraw 3D class hierarchy. It also describes shared objects and the basic
functions you can use to manage QuickDraw 3D objects and shared objects and
to define custom objects.

You should read this chapter for a basic understanding of the QuickDraw 3D
class hierarchy. You should also read this chapter if you want to learn how to
define custom objects, such as custom attributes.

This chapter begins by describing the QuickDraw 3D class hierarchy. The
section “Using QuickDraw 3D Objects,” beginning on page 3-14 provides
source code examples illustrating how to determine the type of an object and
how to define an object metahandler. The section “QuickDraw 3D Objects
Reference,” beginning on page 3-18 describes the most basic routines
associated with the QuickDraw 3D class hierarchy. These routines allow you to
manage objects and shared objects.

About QuickDraw 3D Objects 3

QuickDraw 3D is

object oriented

 in the sense that many of QuickDraw 3D’s
capabilities (introduced in the previous sections) are accessed by creating and
manipulating QuickDraw 3D objects. A

QuickDraw 3D object

 is an instance of
a

QuickDraw 3D class,

 which defines a data structure and a behavior for
objects in the class. The behavior of a QuickDraw 3D object is determined
by the set of

methods

 associated with the object’s class. In other words, a
QuickDraw 3D object is a set of data defining the specific characteristics of
the object and a set of methods defining the behaviors of the object.

Note

Currently, only C language interfaces are available for
creating and manipulating QuickDraw 3D objects.

◆

In keeping with QuickDraw 3D’s object orientation, QuickDraw 3D objects are

opaque

 (or

private

): the structure of the object’s data and the implementation
of the object’s methods are not publicly defined. QuickDraw 3D provides
routines that you can use to modify some of an object’s private data or to have
an object act upon itself using a class method.

This document was created with FrameMaker 4.0.4

C H A P T E R 3

QuickDraw 3D Objects

3-4

About QuickDraw 3D Objects

The QuickDraw 3D Class Hierarchy 3

All QuickDraw 3D classes are arranged in the

QuickDraw 3D class hierarchy,

a hierarchical structure that provides for inheritance and overriding of class
data and methods. Any particular class in the QuickDraw 3D class hierarchy
can be a parent class, a child class, or both. A

parent class

 is a class that is
immediately above some other class in the class hierarchy. A

child class

 is a
class that has a parent. A child class that has no children is a

leaf class.

Figure 3-1 illustrates the top levels of the QuickDraw 3D class hierarchy.

Figure 3-1

The top levels of the QuickDraw 3D class hierarchy

Object

Shared object

View object

Controller state object

Draw context object

File object

Geometry parts object

Reference object

Renderer object

Set object

Shape object

Storage object

String object

Texture object

Tracker object

Attribute

Window-point pick objects

Window-rectangle pick objects

Element object

Pick object

Attribute set

Geometry object

Group object

Camera object

Light object

Style object

Transform object

Shader object

Unknown object

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects

3-5

Note

Figure 3-1 does not show the entire
QuickDraw 3D class hierarchy.

◆

A child class can either inherit or override the data and methods of its parent
class. By default, a child class

inherits

 data and methods from its parent (that
is, the data and methods of the parent also apply to the child). Occasionally, the
child class

overrides

 the data or methods of its parent (that is, it defines data or
methods to replace those of the parent class).

The following sections briefly describe the classes and subclasses of the
QuickDraw 3D class hierarchy. You can find complete information on these
classes in the remainder of this book.

QuickDraw 3D Objects 3

At the very top of the QuickDraw 3D class hierarchy is the common root of all
QuickDraw 3D objects, the class

TQ3Object

.

typedef struct TQ3ObjectPrivate *TQ3Object;

The

TQ3Object

 class provides methods for all its members, including dispose,
duplicate, draw, and file I/O methods. For example, you dispose of any
QuickDraw 3D object by calling the function

Q3Object_Dispose

. Similarly,
you can duplicate any QuickDraw 3D object by calling

Q3Object_Duplicate

.
It’s important to understand that the methods defined at the root level of the
QuickDraw 3D class hierarchy may be applied to any object in the class
hierarchy, regardless of how far removed from the root level it may be. For
instance, if the variable

mySpotLight

 contains a reference to a spot light, then
the code

Q3Object_Dispose(mySpotLight)

 disposes of that light.

Note

Actually, using

Q3Object_Dispose

 to dispose of a spot
light simply reduces the light’s

reference count

 by 1. (This is
because a light is a type of shared object.) The light is not
disposed of until its reference count falls to 0. See
“Reference Counts” on page 3-11 for complete details on
reference counts.

◆

C H A P T E R 3

QuickDraw 3D Objects

3-6

About QuickDraw 3D Objects

The methods defined for all QuickDraw 3D objects begin with the prefix

Q3Object

. Here are the root level methods defined for all objects:

Q3Object_Dispose

Q3Object_Duplicate

Q3Object_Submit

Q3Object_IsDrawable

Q3Object_GetType

Q3Object_GetLeafType

Q3Object_IsType

You’ll use the

Q3Object_GetType

,

Q3Object_GetLeafType

, and

Q3Object_IsType

 functions to determine the type or leaf type of an object.
See “Determining the Type of a QuickDraw 3D Object” on page 3-14 for
further information about object types and leaf types.

You’ll use the

Q3Object_Submit

 function to submit a QuickDraw 3D object for
various operations. To

submit

 an object is to make an object eligible for
rendering, picking, writing, or bounding box or sphere calculation. Submission
is always done in a loop, known as a

submitting loop.

 For example, you
submit an object for rendering by calling the

Q3Object_Submit

 function inside
of a submitting loop. See “Rendering a Model” on page 1-31 for complete
information on submitting loops.

QuickDraw 3D Object Subclasses 3

There are four subclasses of the

TQ3Object

 class: shared objects, element
objects, view objects, and pick objects.

typedef TQ3Object TQ3ElementObject;

typedef TQ3Object TQ3PickObject;

typedef TQ3Object TQ3SharedObject;

typedef TQ3Object TQ3ViewObject;

An

element object

 (or, more briefly, an

element

) is any QuickDraw 3D
object that can be part of a set. Elements are not shared and hence have no
reference count; they are always removed from memory whenever they are
disposed of. Element objects are stored in sets (objects of type

TQ3SetObject

),
which generally store such information as colors, positions, or application-
defined data.

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects

3-7

A

pick object

 (or, more briefly, a

pick

) is a QuickDraw 3D object that is used to
specify and return information related to picking (that is, selecting objects in a
model that are close to a specified geometric object). In general, you’ll use pick
objects to retrieve data about objects selected by the user in a view.

A

shared object

 is a QuickDraw 3D object that may be referenced by many
objects or the application at the same time. For example, a particular renderer
can be associated with several views. Similarly, a single pixmap can be used as
a texture for several different objects in a model. The

TQ3SharedObject

 class
overrides the dispose method of the

TQ3Object

 class by using a

reference
count

 to keep track of the number of times an object is being shared. When a
shared object is referred to by some other object (for example, when a renderer
is associated with a view), the reference count is incremented, and whenever a
shared object is disposed of, the reference count is decremented. A shared
object is not removed from memory until its reference count falls to 0.

Note

For more information on reference counts,
see “Reference Counts” on page 3-11.

◆

A

view object

 (or more briefly, a

view

) is a type of QuickDraw 3D object used
to collect state information that controls the appearance and position of objects
at the time of rendering. A view binds together geometric objects in a model
and other drawable QuickDraw 3D objects to produce a coherent image. A
view is essentially a collection of a single camera, a (possibly empty) group of
lights, a draw context, a renderer, styles, and attributes.

Shared Object Subclasses 3

There are many subclasses of the

TQ3SharedObject

 class.

typedef TQ3SharedObject TQ3ControllerStateObject;

typedef TQ3SharedObject TQ3DrawContextObject;

typedef TQ3SharedObject TQ3FileObject;

typedef TQ3SharedObject TQ3ReferenceObject;

typedef TQ3SharedObject TQ3RendererObject;

typedef TQ3SharedObject TQ3SetObject;

typedef TQ3SharedObject TQ3ShapeObject;

typedef TQ3SharedObject TQ3ShapePartObject;

typedef TQ3SharedObject TQ3StorageObject;

typedef TQ3SharedObject TQ3StringObject;

C H A P T E R 3

QuickDraw 3D Objects

3-8

About QuickDraw 3D Objects

typedef TQ3SharedObject TQ3TextureObject;

typedef TQ3SharedObject TQ3TrackerObject;

typedef TQ3SharedObject TQ3ViewHintsObject;

Controller state objects and tracker objects are used to support user interaction
with the objects in a model. See the chapter “QuickDraw 3D Pointing Device
Manager” for complete information about these types of objects.

A

draw context object

 (or more briefly, a

draw context

) is a QuickDraw 3D
object that maintains information specific to a particular window system or
drawing destination.

A

file object

 (or, more briefly, a

file

) is used to access disk- or memory-based
data stored in a container. A file object serves as the interface between the
metafile and the storage object.

A

reference object

 contains a reference to an object in a file object. Currently,
however, there are no functions provided by QuickDraw 3D that you can use to
create or manipulate reference objects.

A

renderer object

 (or, more briefly, a

renderer

) is used to render a model—that
is, to create an image from a view and a model. A renderer controls various
aspects of the model and the resulting image, such as the parts of objects that
are drawn (for example, only the edges or filled faces).

A

set object

 (or, more briefly, a

set

) is a collection of zero or more elements,
each of which has both an element type and some associated element data. Sets
may contain only one element of a given element type.

A

shape object

 (or, more briefly, a

shape

) is a type of QuickDraw 3D object
that affects what or how a renderer renders an object in a view. For example,
a light is a shape object because it affects the illumination of the objects in a
model. See “Shape Object Subclasses” on page 3-9 for a description of the
available shapes.

A

shape part object

 (or, more briefly, a

shape part

) is a distinguishable part of a
shape. For example, a mesh (which is a geometric object and hence a shape
object) can be distinguished into faces, edges, and vertices. When a user selects
some part of a mesh, you can call shape part routines to determine what part of
the mesh was selected. See the chapter “Pick Objects” for more information
about shape parts and mesh parts.

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects

3-9

A

storage object

 represents any piece of storage in a computer (for example, a
file on disk, an area of memory, or some data on the Clipboard).

A

string object

 (or, more briefly, a

string

) is a QuickDraw 3D object that
contains a sequence of characters. Strings can be referenced multiple times to
maintain common descriptive information.

A

view hints object

 (or, more briefly, a

view hint

) is a QuickDraw 3D object in
a metafile that gives hints about how to render a scene. You can use that
information to configure a view object, or you can choose to ignore it.

Set Object Subclasses 3

There is one subclass of the

TQ3SetObject

 class, the attribute set.

typedef TQ3SetObject TQ3AttributeSet;

Shape Object Subclasses 3

There are numerous subclasses of the

TQ3ShapeObject

 class.

typedef TQ3ShapeObject TQ3CameraObject;

typedef TQ3ShapeObject TQ3GeometryObject;

typedef TQ3ShapeObject TQ3GroupObject;

typedef TQ3ShapeObject TQ3LightObject;

typedef TQ3ShapeObject TQ3ShaderObject;

typedef TQ3ShapeObject TQ3StyleObject;

typedef TQ3ShapeObject TQ3TransformObject;

typedef TQ3ShapeObject TQ3UnknownObject;

A

camera object

 (or, more briefly, a

camera) is used to define a point of view,
a range of visible objects, and a method of projection for generating a
two-dimensional image of those objects from a three-dimensional model.

A geometric object is a type of QuickDraw 3D object that describes a particular
kind of drawable shape, such as a triangle or a mesh. QuickDraw 3D defines
many types of primitive geometric objects. See the chapter “Geometric Objects”
for a complete description of the primitive geometric objects.

C H A P T E R 3

QuickDraw 3D Objects

3-10 About QuickDraw 3D Objects

A group object (or, more briefly, a group) is a type of QuickDraw 3D object
that you can use to collect objects together into lists or hierarchical models.

A light object (or, more briefly, a light) is a type of QuickDraw 3D object that
you can use to provide illumination to the surfaces in a scene.

Shader objects are used in the QuickDraw 3D shading architecture to provide
shading in a model. See the chapter “Shader Objects” for information about
these types of objects.

A style object (or more briefly, a style) is a type of QuickDraw 3D object that
determines some of the basic characteristics of the renderer used to render the
curves and surfaces in a scene.

A transform object (or, more briefly, a transform) is an object that you can use
to modify or transform the appearance or behavior of a QuickDraw 3D object.
You can use transforms to alter the coordinate system containing geometric
shapes, thereby permitting objects to be repositioned and reoriented in space.

An unknown object is created when QuickDraw 3D encounters data it doesn’t
recognize while reading objects from a metafile. (This might happen, for
instance, if you application reads a metafile created by another application that
has defined a custom attribute type.) You cannot create an unknown object
explicitly, but QuickDraw 3D provides routines that you can use to look at the
contents of an unknown object.

Group Object Subclasses 3

There is only one subclass of the TQ3GroupObject class: the display
group object.

typedef TQ3GroupObject TQ3DisplayGroupObject;

A display group is a group of objects that are drawable.

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects 3-11

Shader Object Subclasses 3

There are several subclasses of the TQ3ShaderObject class.

typedef TQ3ShapeObject TQ3SurfaceShaderObject;

typedef TQ3ShapeObject TQ3IlluminationShaderObject;

Surface shader objects and illumination shader objects are used in the
QuickDraw 3D shading architecture to provide shading in a model. See the
chapter “Shader Objects” for information about these types of objects.

Reference Counts 3

As mentioned earlier (in “QuickDraw 3D Object Subclasses” on page 3-6), a
shared object is a QuickDraw 3D object that can be shared by two or more
other QuickDraw 3D objects. QuickDraw 3D maintains an internal reference
count for each shared object to keep track of the number of times an object is
being shared. Certain operations on the object increase the reference count, and
other operations decrease it. For example, when you first create a spot light
(by calling Q3SpotLight_New), its reference count is set to 1. If you later share
that light (for example, by adding it to a group object), the reference count of
the light is increased to indicate the additional link to the light. Figure 3-2 on
page 3-12 illustrates a series of operations involving a spot light and a group.

C H A P T E R 3

QuickDraw 3D Objects

3-12

About QuickDraw 3D Objects

Figure 3-2

Incrementing and decrementing reference counts

Application Application

ApplicationApplication

Application

1)	 Create new light

Q3SpotLight_New

2)	 Create new group

Group
referenceCount = 1

Group
referenceCount = 1

3)	 Add spot light to group

Group
referenceCount = 1

Q3Object_Dispose

Group
referenceCount = 0

Spot light
referenceCount = 0
Q3Object_Dispose

Spot light
referenceCount = 1

Spot light
referenceCount = 1

Q3Object_Dispose

Q3Group_AddObject

Spot light
referenceCount = 1

Q3LightGroup_New

5)	 When finished with group, dispose of it

4)	 Dispose of application’s reference to light

Spot light
referenceCount = 2

This document was created with FrameMaker 4.0.4

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects 3-13

In step 1, an application creates a new spot light by calling Q3SpotLight_New.
As indicated above, the reference count of the new spot light is set to 1. Then,
in step 2, the application creates a new light group. A light group is a shared
object and hence also has a reference count, which is set to 1 upon its creation.
In step 3, the application adds the spot light to the light group by calling
Q3Group_AddObject. The reference count of the spot light is therefore
increased to 2, because both the application and the light group possess
references to the spot light. Note that the reference count of the group remains
at 1.

In general, when you create a light and add it to a group, you can dispose of
your application’s reference to the light by calling Q3Object_Dispose. When
this is done, in step 4, the reference count of the light is decremented to 1. The
only remaining reference to the light is maintained by the group, not by the
application. Finally, when you have finished using the light, you can dispose of
the group object by calling Q3Object_Dispose once again (step 5). When that
happens, the objects in the group are disposed of and the group itself is
disposed of. The reference counts of both the light and the group fall to 0, in
which case they are both removed from memory.

If the application had not explicitly disposed of the spot light (as happened in
step 4), the reference count of the light would have remained at 2 until the
group was disposed of (step 5), at which time it would have decreased to 1.
The application could then call Q3Object_Dispose to decrease the reference
count to 0, thereby disposing of the light object. In effect, _New and _Dispose
calls define the scope of an object inside your application. You cannot operate
on the object until you’ve created it using a _New call, and you cannot in
general operate on an object after you’ve disposed of it by calling
Q3Object_Dispose.

Certain operations increase the reference counts of shared objects, including

■ creating a new shared object (the reference count is set to 1)

■ getting a reference to a shared object

■ adding a shared object to a group

■ setting the shared object located at a certain position in a group

Naturally, the inverse operations decrease the reference counts of shared
objects, including

■ disposing of a shared object

■ removing a shared object from a group

C H A P T E R 3

QuickDraw 3D Objects

3-14 Using QuickDraw 3D Objects

■ disposing of a group that contains a shared object

■ replacing a shared object in any object (for example, a group or a view) with
another shared object

If you do not directly or indirectly balance every operation that increments an
object’s reference count with an operation that decrements the reference count,
you risk creating memory leaks. See the Listing 1-6 on page 1-25 for examples
of how to balance an object’s reference count.

You need to directly dispose only of an object reference that your application
receives when it creates a QuickDraw 3D object. Any other reference to the
object must be indirectly disposed of. For example, suppose that you create a
translate transform object and then add it to a group twice, as follows:

myTransform = Q3TranslateTransform_New(&myVector3D);

Q3Group_AddObject(myGroup, myTransform);

Q3Group_AddObject(myGroup, myTransform);

In this example, the reference count is incremented each time you call
Q3Group_AddObject. However, you should dispose of the transform object
only once, because the transform’s reference count is decremented twice
when you dispose of the group.

Using QuickDraw 3D Objects 3

This section describes the most basic ways of using QuickDraw 3D objects. In
particular, it provides source code examples that show how you can

■ determine the type of a QuickDraw 3D object

■ define a simple object metahandler to support a custom attribute type

Determining the Type of a QuickDraw 3D Object 3

Every class in the QuickDraw 3D class hierarchy has a unique type identifier
associated with it. For example, the triangle class has the type identifier
kQ3GeometryTypeTriangle. For objects you create, of course, you’ll generally
know the type of the object. In some instances, however, you might need to
determine an object’s type, so that you know what methods apply to the object.

C H A P T E R 3

QuickDraw 3D Objects

Using QuickDraw 3D Objects 3-15

For example, when you read an object from a file, you don’t usually know what
kind of object you’ve read.

The QuickDraw 3D class hierarchy supports _GetType methods at all levels of
the hierarchy. At the root level, the function Q3Object_GetType returns a
constant of the form kQ3ObjectTypeSubClass, where SubClass is replaced by the
appropriate subclass identifier.

For example, suppose you’ve read an object (which happens to be a triangle)
from a file and you want to determine what kind of object it is. You can call the
Q3Object_GetType function, which returns the value kQ3ObjectTypeShared.
To determine what kind of shared object it is, you can call the
Q3Shared_GetType function, which in this case returns the value
kQ3SharedTypeShape. To determine what kind of shape object it is, you can
call the Q3Shape_GetType function, which in this case returns the value
kQ3ShapeTypeGeometry. Finally, you can determine what kind of geometric
object it is by calling Q3Geometry_GetType; in this case, Q3Geometry_GetType
returns the value kQ3GeometryTypeTriangle.

Instead of descending the class hierarchy in this way, you can also determine
the leaf type of an object by calling the Q3Object_GetLeafType function. (An
object’s leaf type is the identifier of a leaf class.) In this example, calling
Q3Object_GetLeafType returns the constant kQ3GeometryTypeTriangle.

You can also use the Q3Object_IsType function to determine if an object is of a
particular type.

Defining an Object Metahandler 3

QuickDraw 3D allows you to define object types in addition to those it
provides itself. For example, you can add a custom type of attribute so that
you can attach custom data to objects or parts of objects in a model.

To define a custom object type, you first define the structure of the data
associated with your custom object type. Then you must write an object
metahandler to define a set of object-handling methods. QuickDraw 3D calls
those methods at certain times to handle operations on your custom object. For
example, when someone calls Q3Object_Submit to draw an object of your
custom type, QuickDraw 3D must call your object’s drawing method.

Your object metahandler is an application-defined function that returns the
addresses of the methods associated with the custom object type.

C H A P T E R 3

QuickDraw 3D Objects

3-16 Using QuickDraw 3D Objects

QuickDraw 3D supports a large number of object methods. All custom objects
should support this method:

kQ3MethodTypeObjectUnregister

Note
See “Application-Defined Routines,” beginning on
page 3-28 for more information on defining custom object
methods. ◆

Custom objects that are to be read from and written to files should support
these I/O methods:

kQ3MethodTypeObjectTraverse

kQ3MethodTypeObjectWrite

kQ3MethodTypeObjectReadData

Note
See the chapter “File Objects” for more information on
defining custom I/O methods. ◆

Custom attribute types should support these methods:

kQ3MethodTypeAttributeCopyInherit

kQ3MethodTypeAttributeInherit

Note
See the chapter “Attribute Objects” for more information
on defining custom attribute types. ◆

Custom element types should support these methods:

kQ3MethodTypeElementCopyAdd

kQ3MethodTypeElementCopyReplace

kQ3MethodTypeElementCopyGet

kQ3MethodTypeElementCopyDuplicate

kQ3MethodTypeElementDelete

Note
See “Defining Custom Elements,” beginning on page 3-17
for more information on defining custom element types. ◆

C H A P T E R 3

QuickDraw 3D Objects

Using QuickDraw 3D Objects 3-17

Listing 3-1 defines a simple attribute metahandler.

Listing 3-1 Reporting custom object methods

TQ3FunctionPointer MyObjectMetaHandler (TQ3MethodType methodType)

{

switch (methodType) {

case kQ3MethodTypeObjectUnregister:

return (TQ3FunctionPointer) MyObject_Unregister;

default:

return (NULL);

}

}

As you can see, the MyObjectMetaHandler metahandler simply returns the
appropriate function address, or NULL if the metahandler does not implement a
particular method type.

Defining Custom Elements 3

You can define custom element types if you’d like to support types of attributes
other than those provided by QuickDraw 3D. You define custom attributes as
custom elements because attributes are almost always contained in an attribute
set, of type TQ3AttributeSet. More generally, you can define custom element
types that can be included in a set of type TQ3SetObject.

To define a custom element type, you need to define and register (using your
element metahandler) custom element methods. Currently, QuickDraw 3D
supports five element methods, corresponding to these constants:

kQ3MethodTypeElementCopyAdd

kQ3MethodTypeElementCopyReplace

kQ3MethodTypeElementCopyGet

kQ3MethodTypeElementCopyDuplicate

kQ3MethodTypeElementDelete

The four copy methods are called to add a new element of your custom type
to a set, to replace an existing element of your custom type, to get the

C H A P T E R 3

QuickDraw 3D Objects

3-18 QuickDraw 3D Objects Reference

data associated with an element of your custom type, and to duplicate the data
associated with an element of your custom type. Note that the data you
maintain internally for a custom element type can differ from the data you
return to an application when it calls Q3Set_Get or Q3AttributeSet_Get.

See “Application-Defined Routines,” beginning on page 3-28 for complete
details of the methods you need to define to support a custom element type.

QuickDraw 3D Objects Reference 3

This section describes the routines provided by QuickDraw 3D for managing
objects and shared objects. This section also describes the methods your
application can define to allow QuickDraw 3D to work with custom objects.

QuickDraw 3D Objects Routines 3

This section describes the routines you can use with QuickDraw 3D objects in
general and with shared objects.

Managing Objects Classes 3

QuickDraw 3D provides a routine that you can use to unregister custom
object classes.

Q3ObjectClass_Unregister 3

You can use the Q3ObjectClass_Unregister function to remove an
application-defined object class.

TQ3Status Q3ObjectClass_Unregister (TQ3ObjectClass objectClass);

objectClass An object class.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 3-19

DESCRIPTION

The Q3ObjectClass_Unregister unregisters the custom object class
specified by the objectClass parameter. For example, you can call
Q3ObjectClass_Unregister to unregister a custom attribute type you
registered by calling the function Q3AttributeClass_Register.

You should dispose of all instances of the custom object class you want to
unregister before calling Q3ObjectClass_Unregister.

Managing Objects 3

QuickDraw 3D provides several routines that you can use to operate on any
QuickDraw 3D object. The top level of the QuickDraw 3D class hierarchy
(TQ3Object) supports dispose, duplicate, draw, and file I/O methods.

Q3Object_Dispose 3

You can use the Q3Object_Dispose function to dispose of a QuickDraw 3D
object.

TQ3Status Q3Object_Dispose (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_Dispose function disposes of the QuickDraw 3D object
specified by the object parameter. If the specified object is not a shared object,
QuickDraw 3D disposes of any memory occupied by that object. If the
specified object is a shared object, QuickDraw 3D reduces by 1 the reference
count associated with that object. When the reference count is reduced to 0,
Q3Object_Dispose disposes of the memory occupied by the object.

In general, you need to call Q3Object_Dispose for any objects returned
by a Get call (for example, Q3View_GetDrawContext). Failure to call
Q3Object_Dispose on such objects will result in a memory leak.

ERRORS

kQ3ErrorInvalidObject

C H A P T E R 3

QuickDraw 3D Objects

3-20 QuickDraw 3D Objects Reference

Q3Object_Duplicate 3

You can use the Q3Object_Duplicate function to duplicate a QuickDraw 3D
object.

TQ3Object Q3Object_Duplicate (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_Duplicate function returns, as its function result, a
QuickDraw 3D object that is an exact duplicate of the QuickDraw 3D object
specified by the object parameter. If the new object is a shared object, its
reference count is set to 1.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorOutOfMemory
kQ3ErrorUnimplemented

Q3Object_Submit 3

You can use the Q3Object_Submit function to submit a QuickDraw 3D object
for drawing, picking, bounding, or writing.

TQ3Status Q3Object_Submit (TQ3Object object, TQ3ViewObject view);

object A QuickDraw 3D object.

view A view.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 3-21

DESCRIPTION

The Q3Object_Submit function submits the QuickDraw 3D object specified by
the object parameter for drawing, picking, bounding, or writing in the view
specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorOutOfMemory
kQ3ErrorUnimplemented

Q3Object_IsDrawable 3

You can use the Q3Object_IsDrawable function to determine whether a
QuickDraw 3D object is drawable.

TQ3Boolean Q3Object_IsDrawable (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_IsDrawable function returns, as its function result, a Boolean
value that indicates whether the QuickDraw 3D object specified by the object
parameter is drawable (kQ3True) or not (kQ3False).

C H A P T E R 3

QuickDraw 3D Objects

3-22 QuickDraw 3D Objects Reference

Q3Object_IsWritable 3

You can use the Q3Object_IsWritable function to determine whether a
QuickDraw 3D object is writable.

TQ3Boolean Q3Object_IsWritable (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_IsWritable function returns, as its function result, a Boolean
value that indicates whether the QuickDraw 3D object specified by the object
parameter can be written to a file object (kQ3True) or not (kQ3False).

Determining Object Types 3

QuickDraw 3D provides routines that you can use to determine the type of
a QuickDraw 3D object.

Q3Object_GetLeafType 3

You can use the Q3Object_GetLeafType function to get the leaf type of a
QuickDraw 3D object.

TQ3ObjectType Q3Object_GetLeafType (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_GetLeafType function returns, as its function result, the leaf
type identifier of the QuickDraw 3D object specified in the object parameter.
You should call this function only when the specified object is a leaf object (for
example, when you’ve read the object in from a file). If the leaf type cannot be
determined or is invalid, Q3Object_GetLeafType returns the value
kQ3ObjectTypeInvalid.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 3-23

Q3Object_GetType 3

You can use the Q3Object_GetType function to get the type of a core
QuickDraw 3D object.

TQ3ObjectType Q3Object_GetType (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_GetType function returns, as its function result, the type
identifier of the QuickDraw 3D object specified by the object parameter. If
successful, Q3Object_GetType returns one of these constants:

kQ3ObjectTypeElement

kQ3ObjectTypePick

kQ3ObjectTypeShared

kQ3ObjectTypeView

If the type cannot be determined or is invalid, Q3Object_GetType returns the
value kQ3ObjectTypeInvalid.

Q3Object_IsType 3

You can use the Q3Object_IsType function to determine whether a
QuickDraw 3D object is of a specific type.

TQ3Boolean Q3Object_IsType (

TQ3Object object,

TQ3ObjectType type);

object A QuickDraw 3D object.

type A type identifier.

C H A P T E R 3

QuickDraw 3D Objects

3-24 QuickDraw 3D Objects Reference

DESCRIPTION

The Q3Object_IsType function returns a Boolean value that indicates whether
the QuickDraw 3D object specified by the object parameter is of the type
specified by the type parameter (kQ3True) or is of some other type (kQ3False).
You can pass any valid QuickDraw 3D type identifier in the type parameter
(not just those that are returned by the Q3Object_GetType function). For
example, you can use Q3Object_IsType like this:

if (Q3Object_IsType(myObject, kQ3ShapeTypeGeometry))

return MyDoGeometry(object);

Managing Shared Objects 3

QuickDraw 3D provides routines that you can use to get a reference to a shared
object or to get the type of a shared object.

Q3Shared_GetReference 3

You can use the Q3Shared_GetReference function to get a reference to a
shared object.

TQ3SharedObject Q3Shared_GetReference (

TQ3SharedObject sharedObject);

sharedObject A shared object.

DESCRIPTION

The Q3Shared_GetReference function returns, as its function result, a
reference to the shared object specified by the sharedObject parameter. You
can use this function to prevent QuickDraw 3D from deleting an object twice.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 3-25

Q3Shared_GetType 3

You can use the Q3Shared_GetType function to get the type of a shared object.

TQ3ObjectType Q3Shared_GetType (TQ3SharedObject sharedObject);

sharedObject A shared object.

DESCRIPTION

The Q3Shared_GetType function returns, as its function result, the type
identifier of the shared object specified by the sharedObject parameter. If
successful, Q3Shared_GetType returns one of these constants:

kQ3SharedTypeControllerState

kQ3SharedTypeDrawContext

kQ3SharedTypeFile

kQ3SharedTypeReference

kQ3SharedTypeRenderer

kQ3SharedTypeSet

kQ3SharedTypeShape

kQ3SharedTypeShapePart

kQ3SharedTypeStorage

kQ3SharedTypeString

kQ3SharedTypeTexture

kQ3SharedTypeTracker

kQ3SharedTypeViewHints

If the type cannot be determined or is invalid, Q3Shared_GetType returns the
value kQ3ObjectTypeInvalid.

Registering Custom Elements 3

You can add a custom element type by calling the Q3ElementClass_Register
function. If necessary, you get the size of an application-defined element type
by calling the Q3ElementType_GetElementSize function.

C H A P T E R 3

QuickDraw 3D Objects

3-26 QuickDraw 3D Objects Reference

Q3ElementClass_Register 3

You can use the Q3ElementClass_Register function to register an
application-defined element class.

TQ3ObjectClass Q3ElementClass_Register (

TQ3ElementType elementType,

char *name,

unsigned long sizeOfElement,

TQ3MetaHandler metaHandler);

elementType An element type.

name A pointer to a null-terminated string containing the name of the
element’s creator and the name of the type of element being
registered.

sizeOfElement

The size of the data associated with the specified custom
element type.

metaHandler A pointer to an application-defined metahandler that
QuickDraw 3D calls to handle the new custom element type.

DESCRIPTION

The Q3ElementClass_Register function returns, as its function result, an
object class reference for a new custom element type having a type specified by
the elementType parameter and a name specified by the name parameter. The
metaHandler parameter is a pointer to the metahandler for your custom
element type. See “Defining an Object Metahandler,” beginning on page 3-15
for information on writing a metahandler. If Q3ElementClass_Register
cannot create a new element type, it returns the value NULL.

The name parameter should be a pointer to null-terminated C string that
contains your (or your company’s) name and the name of the type of element
you are defining. Use the colon character (:) to delimit fields within this string.
The string should not contain any spaces or punctuation other than the colon
character, and it cannot end with a colon. Here are some examples of valid
creator names:

“MyCompany:SurfDraw:Wavelength”

“MyCompany:SurfWorks:VRModule:WaterTemperature”

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 3-27

The sizeOfElement parameter specifies the fixed size of the data associated
with your custom element type. If you wish to associate dynamically sized data
with your element type, put a pointer to a dynamically sized block of data
into the set and have your handler’s copy method duplicate the data. (In this
case, you would set the sizeOfElement parameter to sizeof(Ptr).) You also
need to have your handler’s dispose method deallocate any dynamically
sized blocks.

SEE ALSO

See page 3-29 for information on writing copy and dispose methods for a
custom element type.

Q3ElementType_GetElementSize 3

You can use the Q3ElementType_GetElementSize function to get the size of an
application-defined element type.

TQ3Status Q3ElementType_GetElementSize (

TQ3ElementType elementType,

unsigned long *sizeOfElement);

elementType An element type.

sizeOfElement

On exit, the number of bytes occupied by an element of the
specified element object class.

DESCRIPTION

The Q3ElementType_GetElementSize function returns, in the sizeOfElement
parameter, the number of bytes occupied by an element of the type specified by
the elementType parameter.

C H A P T E R 3

QuickDraw 3D Objects

3-28 QuickDraw 3D Objects Reference

Application-Defined Routines 3

This section describes the methods you can implement to handle a custom
object type. Your custom methods are reported to QuickDraw 3D by your
metahandler. This section also describes the methods you can implement to
handle custom element types. Your custom element methods are also reported
to QuickDraw 3D by your metahandler.

Note
For information about defining custom object methods
associated with reading and writing file data, see the
chapter “File Objects.” ◆

TQ3MetaHandler 3

You can define an object metahandler to specify methods for custom object
types or custom element types.

typedef TQ3FunctionPointer (*TQ3MetaHandler) (

TQ3MethodType methodType);

methodType A method type.

DESCRIPTION

Your TQ3MetaHandler function should return a function pointer (a value of
type TQ3FunctionPointer) to the custom method whose type is specified
by the methodType parameter. If you do not define a method of the specified
type, your metahandler should return the value NULL.

In general, your metahandler should contain a switch statement that branches
on the methodType parameter. QuickDraw 3D calls your metahandler
repeatedly to build a method table when you first pass it to a QuickDraw 3D
routine. Once QuickDraw 3D has finished building the method table, your
metahandler is never called again. (When any one of your custom methods is
called, you can be certain that your metahandler will not be called again.)

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 3-29

SEE ALSO

See “Defining an Object Metahandler,” beginning on page 3-15 for a sample
metahandler.

TQ3ObjectUnregisterMethod 3

You can define a method to unregister your custom object class.

typedef TQ3Status (*TQ3ObjectUnregisterMethod) (

TQ3ObjectClass objectClass);

objectClass An object class.

DESCRIPTION

Your TQ3ObjectUnregisterMethod function should perform whatever
operations are necessary to unregister the object class specified by the
objectClass parameter. If you have local data associated with that object
class, you should define an unregistration method. You must not call the
Q3ObjectClass_Unregister function within this method.

RESULT CODES

Your TQ3ObjectUnregisterMethod function should return kQ3Success if it is
successful and kQ3Failure otherwise.

TQ3ElementCopyAddMethod 3

You can define a method to copy the data of your custom element type when
an element of that type is added element to a set.

typedef TQ3Status (*TQ3ElementCopyAddMethod) (

const void *fromAPIElement,

void *toInternalElement);

C H A P T E R 3

QuickDraw 3D Objects

3-30 QuickDraw 3D Objects Reference

fromAPIElement

A pointer to the element data associated with an element
having your custom element type.

toInternalElement

On entry, a pointer to an uninitialized block of memory large
enough to contain the element data associated with an element
having your custom element type.

DESCRIPTION

Your TQ3ElementCopyAddMethod function should copy the element data
pointed to by the fromAPIElement parameter into the location pointed to by
the toInternalElement parameter. This method is called whenever the
Q3Set_Add or Q3AttributeSet_Add function is used to add an element of your
custom type to a set. The fromAPIElement parameter contains the same data
pointer that was passed to Q3Set_Add or Q3AttributeSet_Add.

RESULT CODES

Your TQ3ElementCopyAddMethod function should return kQ3Success if it is
successful and kQ3Failure otherwise.

TQ3ElementCopyDuplicateMethod 3

You can define a method to copy the data of your custom element type when
an element of that type is in a set being duplicated.

typedef TQ3Status (*TQ3ElementCopyDuplicateMethod) (

const void *fromInternalElement,

void *toInternalElement);

fromInternalElement

A pointer to the element data associated with an element
having your custom element type.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 3-31

toInternalElement

On entry, a pointer to an empty, zeroed block of memory large
enough to contain the element data associated with an element
having your custom element type.

DESCRIPTION

Your TQ3ElementCopyDuplicateMethod function should copy the element
data pointed to by the fromInternalElement parameter into the location
pointed to by the toInternalElement parameter. This method is called
whenever the Q3Object_Duplicate function is used to duplicate a set or an
attribute set that contains an element of your custom type.

RESULT CODES

Your TQ3ElementCopyDuplicateMethod function should return kQ3Success if
it is successful and kQ3Failure otherwise.

TQ3ElementCopyGetMethod 3

You can define a method to copy the data of your custom element types when
that data is being retrieved from a set.

typedef TQ3Status (*TQ3ElementCopyGetMethod) (

const void *fromInternalElement,

void *toAPIElement);

fromInternalElement

A pointer to the element data associated with an element
having your custom element type.

toAPIElement

On entry, a pointer to an empty, zeroed block of memory large
enough to contain the element data associated with an element
having your custom element type.

C H A P T E R 3

QuickDraw 3D Objects

3-32 QuickDraw 3D Objects Reference

DESCRIPTION

Your TQ3ElementCopyGetMethod function should copy the element data
pointed to by the fromInternalElement parameter into the location pointed
to by the toAPIElement parameter. This method is called whenever the
Q3Set_Get or Q3AttributeSet_Get function is used to get the data of an
element of your custom type in a set. The toAPIElement parameter contains
the same data pointer that was passed to Q3Set_Get or Q3AttributeSet_Get.

RESULT CODES

Your TQ3ElementCopyGetMethod function should return kQ3Success if it is
successful and kQ3Failure otherwise.

TQ3ElementCopyReplaceMethod 3

You can define a method to copy the data of your custom element type when
an element of that type is being replaced by another element of that type.

typedef TQ3Status (*TQ3ElementCopyReplaceMethod) (

const void *fromAPIElement,

void *ontoInternalElement);

fromAPIElement

A pointer to the element data associated with an element
having your custom element type.

ontoInternalElement

On entry, a pointer to an empty, zeroed block of memory large
enough to contain the element data associated with an element
having your custom element type.

DESCRIPTION

Your TQ3ElementCopyReplaceMethod function should copy the element data
pointed to by the fromAPIElement parameter into the location pointed to by
the toInternalElement parameter. This method is called whenever the
Q3Set_Add or Q3AttributeSet_Add function is used to replace an element of
your custom type in a set. The fromAPIElement parameter contains the same

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 3-33

data pointer that was passed to Q3Set_Add or Q3AttributeSet_Add. The
ontoInternalElement parameter is a pre-existing block initialized by your
TQ3ElementCopyAddMethod or TQ3ElementCopyDuplicateMethod method.

RESULT CODES

Your TQ3ElementCopyReplaceMethod function should return kQ3Success if it
is successful and kQ3Failure otherwise.

TQ3ElementDeleteMethod 3

You can define a method to delete (that is, dispose of) your custom
element types.

typedef TQ3Status (*TQ3ElementDeleteMethod) (

void *internalElement);

internalElement

A pointer to the element data associated with an element
having your custom element type.

DESCRIPTION

Your TQ3ElementDeleteMethod function should perform whatever operations
are necessary to dispose of the element data specified by the internalElement
parameter.

RESULT CODES

Your TQ3ElementDeleteMethod function should return kQ3Success if it is
successful and kQ3Failure otherwise.

C H A P T E R 3

QuickDraw 3D Objects

3-34 Summary of QuickDraw 3D Objects

Summary of QuickDraw 3D Objects 3

C Summary 3

Constants 3

System-Wide Macros

#define Q3_FOUR_CHARACTER_CONSTANT(a,b,c,d) ((const unsigned long) \

 ((const unsigned long) (a) << 24) \

| ((const unsigned long) (b) << 16) \

| ((const unsigned long) (c) << 8) \

| ((const unsigned long) (d)))

#define Q3_OBJECT_TYPE(a,b,c,d) \

((TQ3ObjectType) Q3_FOUR_CHARACTER_CONSTANT(a,b,c,d))

#define Q3_METHOD_TYPE(a,b,c,d) \

((TQ3MethodType) Q3_FOUR_CHARACTER_CONSTANT(a,b,c,d))

Core Object Types

#define kQ3ObjectTypeElement Q3_OBJECT_TYPE('e','l','m','n')

#define kQ3ObjectTypePick Q3_OBJECT_TYPE('p','i','c','k')

#define kQ3ObjectTypeShared Q3_OBJECT_TYPE('s','h','r','d')

#define kQ3ObjectTypeView Q3_OBJECT_TYPE('v','i','e','w')

#define kQ3ObjectTypeInvalid 0

C H A P T E R 3

QuickDraw 3D Objects

Summary of QuickDraw 3D Objects 3-35

Shared Types

#define kQ3SharedTypeControllerState Q3_OBJECT_TYPE('c','t','s','t')

#define kQ3SharedTypeDrawContext Q3_OBJECT_TYPE('d','c','t','x')

#define kQ3SharedTypeFile Q3_OBJECT_TYPE('f','i','l','e')

#define kQ3SharedTypeReference Q3_OBJECT_TYPE('r','f','r','n')

#define kQ3SharedTypeRenderer Q3_OBJECT_TYPE('r','d','d','r')

#define kQ3SharedTypeSet Q3_OBJECT_TYPE('s','e','t',' ')

#define kQ3SharedTypeShape Q3_OBJECT_TYPE('s','h','a','p')

#define kQ3SharedTypeShapePart Q3_OBJECT_TYPE('s','p','r','t')

#define kQ3SharedTypeStorage Q3_OBJECT_TYPE('s','t','r','g')

#define kQ3SharedTypeString Q3_OBJECT_TYPE('s','t','r','n')

#define kQ3SharedTypeTexture Q3_OBJECT_TYPE('t','x','t','r')

#define kQ3SharedTypeTracker Q3_OBJECT_TYPE('t','r','k','r')

#define kQ3SharedTypeViewHints Q3_OBJECT_TYPE('v','w','h','n')

Shape Types

#define kQ3ShapeTypeCamera Q3_OBJECT_TYPE('c','m','r','a')

#define kQ3ShapeTypeGeometry Q3_OBJECT_TYPE('g','m','t','r')

#define kQ3ShapeTypeGroup Q3_OBJECT_TYPE('g','r','u','p')

#define kQ3ShapeTypeLight Q3_OBJECT_TYPE('l','g','h','t')

#define kQ3ShapeTypeShader Q3_OBJECT_TYPE('s','h','d','r')

#define kQ3ShapeTypeStyle Q3_OBJECT_TYPE('s','t','y','l')

#define kQ3ShapeTypeTransform Q3_OBJECT_TYPE('x','f','r','m')

#define kQ3ShapeTypeUnknown Q3_OBJECT_TYPE('u','n','k','n')

Element Types

#define kQ3ElementTypeAttribute Q3_OBJECT_TYPE('e','a','t','t')

#define kQ3ElementTypeNone 0

#define kQ3ElementTypeUnknown 32

Set Types

#define kQ3SetTypeAttribute Q3_OBJECT_TYPE('a','t','t','r')

C H A P T E R 3

QuickDraw 3D Objects

3-36 Summary of QuickDraw 3D Objects

String Types

#define kQ3StringTypeCString Q3_OBJECT_TYPE('s','t','r','c')

Method Types

#define kQ3MethodTypeObjectFileVersion Q3_METHOD_TYPE('v','e','r','s')

#define kQ3MethodTypeObjectReadData Q3_METHOD_TYPE('r','d','d','t')

#define kQ3MethodTypeObjectTraverse Q3_METHOD_TYPE('t','r','v','s')

#define kQ3MethodTypeObjectUnregister Q3_METHOD_TYPE('u','n','r','g')

#define kQ3MethodTypeObjectWrite Q3_METHOD_TYPE('w','r','i','t')

#define kQ3MethodTypeElementCopyAdd Q3_METHOD_TYPE('e','c','p','a')

#define kQ3MethodTypeElementCopyDuplicate Q3_METHOD_TYPE('e','c','p','d')

#define kQ3MethodTypeElementCopyGet Q3_METHOD_TYPE('e','c','p','g')

#define kQ3MethodTypeElementCopyReplace Q3_METHOD_TYPE('e','c','p','r')

#define kQ3MethodTypeElementDelete Q3_METHOD_TYPE('e','d','e','l')

Data Types 3

Objects

typedef long TQ3ObjectType;

typedef struct TQ3ObjectPrivate *TQ3Object;

typedef TQ3Object TQ3ElementObject;

typedef TQ3Object TQ3PickObject;

typedef TQ3Object TQ3SharedObject;

typedef TQ3Object TQ3ViewObject;

Shared Objects

typedef TQ3SharedObject TQ3ControllerStateObject;

typedef TQ3SharedObject TQ3DrawContextObject;

typedef TQ3SharedObject TQ3FileObject;

typedef TQ3SharedObject TQ3ReferenceObject;

C H A P T E R 3

QuickDraw 3D Objects

Summary of QuickDraw 3D Objects 3-37

typedef TQ3SharedObject TQ3RendererObject;

typedef TQ3SharedObject TQ3SetObject;

typedef TQ3SharedObject TQ3ShapeObject;

typedef TQ3SharedObject TQ3ShapePartObject;

typedef TQ3SharedObject TQ3StorageObject;

typedef TQ3SharedObject TQ3StringObject;

typedef TQ3SharedObject TQ3TextureObject;

typedef TQ3SharedObject TQ3TrackerObject;

typedef TQ3SharedObject TQ3ViewHintsObject;

Sets

typedef TQ3SetObject TQ3AttributeSet;

typedef long TQ3ElementType;

Shapes

typedef TQ3ShapeObject TQ3CameraObject;

typedef TQ3ShapeObject TQ3GeometryObject;

typedef TQ3ShapeObject TQ3GroupObject;

typedef TQ3ShapeObject TQ3LightObject;

typedef TQ3ShapeObject TQ3ShaderObject;

typedef TQ3ShapeObject TQ3StyleObject;

typedef TQ3ShapeObject TQ3TransformObject;

typedef TQ3ShapeObject TQ3UnknownObject;

Groups

typedef TQ3GroupObject TQ3DisplayGroupObject;

Shaders

typedef TQ3ShaderObject TQ3SurfaceShaderObject;

typedef TQ3ShaderObject TQ3IlluminationShaderObject;

C H A P T E R 3

QuickDraw 3D Objects

3-38 Summary of QuickDraw 3D Objects

Other Basic Types

typedef struct TQ3GroupPositionPrivate *TQ3GroupPosition;

typedef struct TQ3ObjectClassPrivate *TQ3ObjectClass;

typedef unsigned long TQ3MethodType;

typedef void (*TQ3FunctionPointer)(void);

QuickDraw 3D Objects Routines 3

Managing Objects Classes

TQ3Status Q3ObjectClass_Unregister (

TQ3ObjectClass objectClass);

Managing Objects

TQ3Status Q3Object_Dispose (TQ3Object object);

TQ3Object Q3Object_Duplicate (TQ3Object object);

TQ3Object Q3Object_Submit (TQ3Object object, TQ3ViewObject view);

TQ3Boolean Q3Object_IsDrawable(TQ3Object object);

TQ3Boolean Q3Object_IsWritable(TQ3Object object);

Determining Object Types

TQ3ObjectType Q3Object_GetLeafType (

TQ3Object object);

TQ3ObjectType Q3Object_GetType(TQ3Object object);

TQ3Boolean Q3Object_IsType (TQ3Object object, TQ3ObjectType type);

C H A P T E R 3

QuickDraw 3D Objects

Summary of QuickDraw 3D Objects 3-39

Managing Shared Objects

TQ3SharedObject Q3Shared_GetReference (

TQ3SharedObject sharedObject);

TQ3ObjectType Q3Shared_GetType (

TQ3SharedObject sharedObject);

Registering Custom Elements

TQ3ObjectClass Q3ElementClass_Register (

TQ3ElementType elementType,

char *name,

unsigned long sizeOfElement,

TQ3MetaHandler metaHandler);

TQ3Status Q3ElementType_GetElementSize (

TQ3ElementType elementType,

unsigned long *sizeOfElement);

Application-Defined Routines 3

Method Metahandler

typedef TQ3FunctionPointer (*TQ3MetaHandler) (

TQ3MethodType methodType);

Object Methods

typedef TQ3Status (*TQ3ObjectUnregisterMethod) (

TQ3ObjectClass objectClass);

Set Methods

typedef TQ3Status (*TQ3ElementCopyAddMethod) (

const void *fromAPIElement,

void *toInternalElement);

C H A P T E R 3

QuickDraw 3D Objects

3-40 Summary of QuickDraw 3D Objects

typedef TQ3Status (*TQ3ElementCopyDuplicateMethod) (

const void *fromInternalElement,

void *toInternalElement);

typedef TQ3Status (*TQ3ElementCopyGetMethod) (

const void *fromInternalElement,

void *toAPIElement);

typedef TQ3Status (*TQ3ElementCopyReplaceMethod) (

const void *fromAPIElement,

void *ontoInternalElement);

typedef TQ3Status (*TQ3ElementDeleteMethod) (

void *internalElement);

C H A P T E R 4

Contents

4-1

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 Geometric Objects

About Geometric Objects 4-3
Attributes of Geometric Objects 4-5
Meshes 4-6
NURB Curves and Patches 4-10
Surface Parameterizations 4-13

Using Geometric Objects 4-17
Creating and Deleting Geometric Objects 4-17
Creating a Mesh 4-19
Traversing a Mesh 4-21

Geometric Objects Reference 4-23
Data Structures 4-23

Points 4-24
Rational Points 4-25
Polar and Spherical Points 4-26
Vectors 4-28
Quaternions 4-28
Rays 4-29
Parametric Points 4-30
Tangents 4-30
Vertices 4-31
Matrices 4-31
Bitmaps and Pixel Maps 4-32
Areas and Plane Equations 4-36
Point Objects 4-37
Lines 4-37
Polylines 4-38
Triangles 4-40

This document was created with FrameMaker 4.0.4

C H A P T E R 4

4-2

Contents

Simple Polygons 4-41
General Polygons 4-42
Boxes 4-45
Trigrids 4-47
Meshes 4-49
NURB Curves 4-50
NURB Patches 4-51
Markers 4-55

Geometric Objects Routines 4-56
Managing Geometric Objects 4-56
Creating and Editing Points 4-59
Creating and Editing Lines 4-63
Creating and Editing Polylines 4-68
Creating and Editing Triangles 4-76
Creating and Editing Simple Polygons 4-81
Creating and Editing General Polygons 4-87
Creating and Editing Boxes 4-95
Creating and Editing Trigrids 4-103
Creating and Editing Meshes 4-110
Traversing Mesh Components, Vertices, Faces, and Edges 4-140
Creating and Editing NURB Curves 4-160
Creating and Editing NURB Patches 4-166
Creating and Editing Markers 4-173
Managing Bitmaps 4-180

Summary of Geometric Objects 4-182
C Summary 4-182

Constants 4-182
Data Types 4-183
Geometric Objects Routines 4-191

Errors, Warnings, and Notices 4-213

C H A P T E R 4

About Geometric Objects

4-3

Geometric Objects 4

This chapter describes the QuickDraw 3D geometric objects and the functions
you can use to manipulate them. Geometric objects form the basis of any
three-dimensional model, so you need to know how to define (and perhaps
also create and dispose of) geometric objects to render any image.
QuickDraw 3D provides a rich set of geometric primitive objects, which you
can group, copy, illuminate, texture, or otherwise modify as desired.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects.” earlier in
this book.

This chapter begins by describing the QuickDraw 3D geometric primitives.
Then it shows how to create and manipulate instances of those primitives. The
section “Geometric Objects Reference,” beginning on page 4-23 provides a
complete description of the geometric primitives and the routines you can use
to create and manipulate them.

This chapter also provides definitions of the fundamental mathematical objects
(points, vectors, matrices, quaternions, and so forth) that are used in defining
QuickDraw 3D geometric objects. For routines that you can use to manipulate
those basic mathematical objects, see the chapter “QuickDraw 3D
Mathematical Utilities.” For routines that you can use to group geometric
primitive objects into groups or collections, see the chapter “Group Objects”
later in this book.

About Geometric Objects 4

A

geometric object

 (or a

geometry

) is an instance of the

TQ3GeometryObject

class. As you’ve seen, the

TQ3GeometryObject

 class is a subclass of the

TQ3ShapeObject

, which is itself a subclass of the

TQ3SharedObject

 class. As a
result, a geometric object is associated with a reference count, which is
incremented or decremented whenever you create or dispose of an instance of
that type of object.

This document was created with FrameMaker 4.0.4

C H A P T E R 4

Geometric Objects

4-4

About Geometric Objects

Currently, QuickDraw 3D provides many types of primitive geometric objects.
A geometric object has one of these types:

kQ3GeometryTypeBox

kQ3GeometryTypeGeneralPolygon

kQ3GeometryTypeLine

kQ3GeometryTypeMarker

kQ3GeometryTypeMesh

kQ3GeometryTypeNURBCurve

kQ3GeometryTypeNURBPatch

kQ3GeometryTypePoint

kQ3GeometryTypePolygon

kQ3GeometryTypePolyLine

kQ3GeometryTypeTriangle

kQ3GeometryTypeTriGrid

These objects are described in detail later in this chapter, beginning on
page 4-23. In most cases, the definitions of these objects are simple and
obvious. For instance, a triangle is just a closed plane figure defined by three
points, or vertices, in space. A simple polygon (object type

kQ3GeometryTypePolygon

) is a closed plane figure defined by a list of vertices.
Only three of these types of geometric objects—meshes, NURB curves, and
NURB patches—need special discussion. See “Meshes,” beginning on page 4-6
for a description of meshes and “NURB Curves and Patches,” beginning on
page 4-10 for a description of NURB curves and patches.

Note

You can determine a geometric object’s type by
calling the

Q3Geometry_GetType

 function, described
later in this chapter.

◆

QuickDraw 3D geometric objects are opaque. This means that you can edit the
data associated with an object only by calling accessor functions provided by
QuickDraw 3D. For instance, once you’ve created a triangle, you can alter
its shape or position only indirectly, for example by calling the functions

Q3Triangle_GetVertexPosition

 and

Q3Triangle_SetVertexPosition

.

C H A P T E R 4

Geometric Objects

About Geometric Objects

4-5

Attributes of Geometric Objects 4

Every QuickDraw 3D geometric object can contain one or more optional sets of
attributes, which define characteristics of all or part of the object, such as its
color or other material properties. For example, QuickDraw 3D defines the data
associated with a triangle like this:

typedef struct TQ3TriangleData {

TQ3Vertex3D vertices[3];

TQ3AttributeSet triangleAttributeSet;

} TQ3TriangleData;

As you can see, the triangle data consists of three vertices that define the
triangle’s position, together with a set of attributes that specify characteristics
of the planar area enclosed by the lines connecting those vertices. A set of
attributes is simply a collection of attributes, each of which consists of an
attribute type and its associated data. Some common attribute types are diffuse
color, specular color, surface normal vector, transparency, and so forth. You can,
if you wish, define your own custom types of attributes and include them in
attribute sets like any other kind of attribute.

Note

See the chapter “Attribute Objects” for complete
information on the types of attributes defined by
QuickDraw 3D and on defining custom attribute types.
That chapter also shows how to create attribute sets.

◆

You can associate a set of attributes with most parts of a geometric object. As
you’ve seen, you can associate a set of attributes with the face of a triangle. You
can also associate a set of attributes with one or more of the triangle’s vertices.
Similarly, a box can have a set of attributes that apply to the entire box as well
as an attributes set for each of the six faces of the box. In this way, you can
assign different colors to each of the box faces. Accordingly, QuickDraw 3D
defines the data associated with a box like this:

typedef struct TQ3BoxData {

TQ3Point3D origin;

TQ3Vector3D orientation;

TQ3Vector3D majorAxis;

TQ3Vector3D minorAxis;

C H A P T E R 4

Geometric Objects

4-6

About Geometric Objects

TQ3AttributeSet *faceAttributeSet;

TQ3AttributeSet boxAttributeSet;

} TQ3BoxData;

The

boxAttributeSet

 field is a set of attributes that apply to the entire box,
and the

faceAttributeSet

 field is a pointer to an array of attribute sets that
apply to the six faces of the box.

Meshes 4

A

mesh

 is a collection of vertices, faces, and edges that represent a topological
polyhedron (that is, a solid figure composed of polygonal faces). The polyhedra
represented by QuickDraw 3D meshes do not need to be closed, so that the
meshes may have boundaries. Figure 4-1 illustrates a mesh.

Figure 4-1

A mesh

A

mesh face

 is a polygonal figure that forms part of the surface of the mesh.
QuickDraw 3D does not require mesh faces to be planar, but you can obtain
unexpected results when rendering nonplanar mesh faces with a filled style.
In addition, a mesh face can contain holes, as shown in Figure 4-2.

Mesh edge

Mesh face Mesh vertex

Mesh corner

C H A P T E R 4

Geometric Objects

About Geometric Objects

4-7

Figure 4-2

A mesh face with a hole

A mesh face is defined by a list of

mesh vertices.

 The ordering of the vertices is
unimportant; you can list the vertices of a mesh face in either clockwise or
counterclockwise order. QuickDraw 3D internally attempts to maintain a
consistent ordering of the vertices of all the faces of a mesh.

Because of their potential complexity, QuickDraw 3D treats meshes differently
than it treats all other basic geometric objects. You create a basic geometric
object by filling in a data structure that completely specifies that object
(for example, a structure of type

TQ3TriangleData

) and then by passing
that structure to the appropriate object-creating routine (for example,

Q3Triangle_New

). To create a mesh, however, you first create a new

empty

mesh (by calling

Q3Mesh_New

), and then you explicitly add vertices and faces to
the mesh (by calling

Q3Mesh_VertexNew

 and

Q3Mesh_FaceNew

).

Note

Although you can manipulate an edge in a mesh (for
instance, assign an attribute set to it), you cannot explicitly
add an edge to a mesh. Mesh edges are implicitly created
or destroyed when the faces containing them are created
or destroyed.

◆

Because you can dynamically add or remove faces and vertices in a mesh, a
mesh is

always

 a retained object (that is, QuickDraw 3D maintains the mesh

C H A P T E R 4

Geometric Objects

4-8

About Geometric Objects

data internally) and never an immediate object. As a result, QuickDraw 3D
does not supply routines to submit or write meshes in immediate mode.
QuickDraw 3D builds an internal data structure that records the topology of a
mesh (that is, the edge connections between all the faces and vertices in the
mesh). For large models, this might require a large amount of memory. If your
application does not need to use the topological information maintained by
QuickDraw 3D (which you access by calling mesh iterator functions), you
might want to use a trigrid (or a number of triangles, or a number of simple or
general polygons) to represent a large number of interconnected polygons.

Note

See “Traversing Mesh Components, Vertices, Faces, and
Edges,” beginning on page 4-140, for information on the
mesh iterator functions.

◆

As you’ve seen, a face of a mesh can contain one or more holes. A hole is
defined by a

contour,

 which is just a list of vertices. You create a contour in a
mesh face by creating a face that contains the vertices in the contour (by calling

Q3Mesh_FaceNew

) and then by converting the face into a contour (by calling

Q3Mesh_FaceToContour

). For optimal results, the face that contains the contour
(called the

container face

) and the contour itself should be coplanar. In
addition, the contour should lie entirely within the container face.

Note

See “Creating a Mesh,” beginning on page 4-19
for sample code that creates a mesh.

◆

The geometric structure of a mesh is completely defined by its faces, vertices,
edges, and contours. For purposes of shading and picking, QuickDraw 3D
defines several other parts of a mesh: corners, mesh parts, and components.
A

mesh corner

 (or a

corner

) is specified by a mesh face together with one of its
vertices. (A face with five vertices therefore has five corners.) You can associate
a set of attributes with each corner. The attributes in a corner override any
existing attributes of the associated vertex. For example, you can use corners to
achieve special shading effects, such as hard edges when applying a smooth
shading to a mesh. When a face is being shaded smoothly, the normals used to
determine the amount of shading are the normals of the face’s vertices. Because
a vertex and its normal may be associated with several faces, the light intensity
computed by a shading algorithm is the same for all points around that vertex.
As a result, the edges between appear smooth. To get a hard edge, you can
assign different normals to the corners on opposite sides of the edge.

C H A P T E R 4

Geometric Objects

About Geometric Objects

4-9

A

mesh part object

 (or, more briefly, a

mesh part

) is a single distinguishable
part of a mesh. You can use mesh parts to handle user picking in a mesh.
When, for example, the user clicks on a mesh, you can interpret the click as a
click on the entire mesh, on a face of a mesh, on an edge of the mesh, or on a
vertex of the mesh. QuickDraw 3D signals your application that the user
clicked on a mesh part by putting a reference to that mesh part in the

shapePart

 field of a hit data structure. (Mesh parts are currently the only types
of shape part objects.) You can then call QuickDraw 3D routines to get the
mesh face, edge, or vertex that corresponds to the selected mesh part. See the
chapter “Pick Objects” for complete details about mesh parts.

A

mesh component

 (or a

component

) is a collection of connected vertices.
(Two vertices are considered to be

connected

 if an unbroken path of edges
exists linking one vertex to the other.) For each mesh, QuickDraw 3D maintains
information about the components in the mesh and updates that information
whenever a face or vertex is added to or removed from a mesh. You can use
QuickDraw 3D routines to iterate through the components in a mesh, and you
can call

Q3MeshPart_GetComponent

 to get the component in a mesh that was
selected during picking. Mesh components cannot have attributes.

Mesh components are transient; that is, they are created and destroyed
dynamically as the topology of the mesh changes. Whenever you change the
topology (for example, by adding or deleting a vertex or face), QuickDraw 3D
needs to update its internal list of mesh components. You can turn off this
updating by calling the

Q3Mesh_DelayUpdates

 function, and you can resume
this updating by calling the

Q3Mesh_ResumeUpdates

 function. For performance
reasons, it’s useful to delay updates while adding or deleting a large number of
vertices or faces.

Note, however, that you cannot rely on some mesh functions to return accurate
results if you call them while mesh updating is delayed. For instance, the

Q3Mesh_GetNumComponents

 function is not guaranteed to return accurate
results if mesh updating is delayed.

Note also that a vertex, edge, or face might be shifted from one component to
another during a change in the topology of the mesh. To be safe, you should
bracket all changes to the mesh topology by calls to

Q3Mesh_DelayUpdates

 and

Q3Mesh_ResumeUpdates

, and you should not assume that mesh component
functions will return reliable results until after you’ve called

Q3Mesh_ResumeUpdates

.

C H A P T E R 4

Geometric Objects

4-10

About Geometric Objects

Note

You can duplicate a mesh by calling

Q3Object_Duplicate

.
The duplicate mesh, however, might not preserve
the ordering of components, faces, or vertices of the
original mesh.

◆

NURB Curves and Patches 4

QuickDraw 3D supports curves and surfaces that can be defined using

nonuniform rational B-splines (NURBs),

a class of equations defined by
nonuniform parametric ratios of B-spline polynomials. A three-dimensional
curve represented by a NURB equation is a

NURB curve,

 and a three-
dimensional surface represented by a NURB equation is a

NURB patch.

NURBs can be used to define very complex curves and surfaces, as well as
some common geometric objects (for instance, the conic sections). NURB
curves and patches are especially useful in 3D imaging because they are
invariant under scale, rotate, translation, and perspective transformations
of their control points. Figure 4-3 shows a sample NURB curve.

Figure 4-3

A NURB curve

C H A P T E R 4

Geometric Objects

About Geometric Objects

4-11

A

parametric curve

 is any curve whose points are represented by one or more
functions of a single parameter (usually denoted by the letter

t

 or

u

). The
Cartesian coordinates (

x

,

y

) of a two-dimensional parametric curve can be
represented generally by these two equations:

The Cartesian coordinates (

x

,

y

,

z

) of a three-dimensional parametric curve can
be represented generally by these three equations:

For compactness, the two- or three-dimensional point is usually represented as
a vector. A two-dimensional point has this vector:

For example, a circle can be defined parametrically by a pair of equations:

Alternatively, a circle can be defined parametrically by this vector equation:

x x u()=

y y u()=

x x u()=

y y u()=

z z u()=

P u() x u() y u()[]=

x r ucos=

y r usin=

P u() r ucos r usin[]=

C H A P T E R 4

Geometric Objects

4-12 About Geometric Objects

A B-spline polynomial is a parametric equation of this form:

where

In these equations, the xi are elements of an array of real numbers, known as
the knot vector, where each element is greater than or equal to the previous
(that is, they are nondecreasing). The Bi are, algebraically, the coefficients of the
polynomial representing the curve. Geometrically, they are the (x, y) positions
(in a two-dimensional curve) of control points, which (together with the knot
vector) define the shape of the particular curve of which they are a part. The
control points and the knots define the curve’s shape in this way: a position of
a point on the curve at some parametric value u is a weighted combination of
the positions of a subset of all the control points; the “weighting” is determined
by the relative values of the knot vector.

Finally, a NURB curve is a curve defined by ratios of B-spline polynomials,
where the values assigned to the parameter can be nonuniform. A NURB patch
is a surface defined by ratios of B-spline surfaces, which are three-dimensional
analogs of B-spline curves. A B-spline surface is a surface defined by a
parametric equation of this form:

P u() BiNi k, u()
i 1=

n 1+

∑=

Ni 1, u()
1 if xi u xi 1+<≤

0 otherwise

=

Ni k, u()
u xi–() Ni k 1–, u()

xi k 1–+ xi–

xi k+ u–() Ni 1+ k 1–, u()

xi k+ xi 1+–
---+=

Q u v,()

wi j, B
i j,

j 1=

m 1+

∑
i 1=

n 1+

∑ Ni k, u()M j l, v()

wi j,
j 1=

m 1+

∑
i 1=

n 1+

∑ Ni k, u()M j l, v()

--=

C H A P T E R 4

Geometric Objects

About Geometric Objects 4-13

where

and

In these equations, the factors Bi,j are, algebraically, the coefficients of the
polynomial representing the surface. Geometrically, they are the (x, y, z)
coordinates of the control points that define the surface. The factors wi,j are the
weights of those control points. The factors xi and yj are elements of arrays of
real numbers, again called knot vectors. These vectors must be non-decreasing.

Surface Parameterizations 4

For some modeling operations—in particular, applying a texture to the surface
of an object—QuickDraw 3D needs to perform a mapping between the texture
and the surface. This mapping is usually specified using a pair of uv parametric
spaces, one defined over the texture and one defined over the surface of the
object. A uv parametric space is also called a parameterization. A uv parametric
space applied to the surface of an object is a surface parameterization.

A texture is typically specified as a pixmap, that is, as a rectangular array
of pixels. In that case, the texture has a simple uv parameterization (shown
in Figure 4-4) that allows QuickDraw 3D to select pixels in the pixmap by
varying u and v in the range 0 to 1. Figure 4-4 on page 4-14 shows the pixmap,

Ni 1, u()
1 if xi u xi 1+<≤

0 otherwise

=

Ni k, u()
u xi–() Ni k 1–, u()

xi k 1–+ xi–

xi k+ u–() Ni 1+ k 1–, u()

xi k+ xi 1+–
---+=

M j 1, v()
1 if y j v y j 1+<≤

0 otherwise

=

M j k, v()
v y j–() M j l 1–, v()

y j l 1–+ y j–
--

y j l+ v–() M j 1 l 1–,+ v()

y j l+ y j 1+–
--+=

C H A P T E R 4

Geometric Objects

4-14

About Geometric Objects

with its origin in the upper-left corner; it also shows the standard pixmap
parameterization, which maps the unit box from 0.0 to 1.0 along the

u

 and

v

 axes.

Figure 4-4

The standard

uv

 parameterization for a pixmap

In addition to this texture parameterization, QuickDraw 3D uses another
parameterization that picks out points on the surface of the object. For
texture mapping, the most useful

standard surface parameterization

 is
any parameterization that results in the entire texture being mapped to
the entire surface exactly once. QuickDraw 3D defines a standard surface

(0.0,0.0) (1.0,0.0)

(0.0,1.0)
Vertex

v

u

(0,0)

Height

Width

Pixmap integer coordinates

Resulting texture mapping

Parameterization in
floating point u,v coordinates

This document was created with FrameMaker 4.0.4

C H A P T E R 4

Geometric Objects

About Geometric Objects 4-15

parameterization for most of the primitive QuickDraw 3D geometric objects.
In some cases, an object’s standard surface parameterization is obtained from
the object’s natural surface parameterization (that is, a parameterization that
defines the surface). For example, a NURB patch is naturally parameterized by
its u and v knot vectors.

In other cases, however, there is no natural surface parameterization for an
object, and QuickDraw 3D must define an arbitrary standard surface
parameterization for it. For example, for a box, which has no natural surface
parameterization, QuickDraw 3D uses the standard surface parameterization
shown in Figure 4-5.

Figure 4-5 The standard surface parameterization of a box

Orientation

origin
majorAxis

(0,1)

(0,0)

(1,1)

(1,0)

Top

(0,1)

(0,0)

(1,1)

(1,0)

Left

(0,1)

(0,0)

(1,1)

(1,0)

Front

(0,1)

(0,0)

(1,1)

(1,0)

Right

(0,1)

(0,0)

(1,1)

(1,0)

Back

(1,0)

(1,1)

(0,0)

(0,1)

Bottom

C H A P T E R 4

Geometric Objects

4-16

About Geometric Objects

Figure 4-6 shows the result of mapping the texture shown in Figure 4-4 onto
the front face of a box.

Figure 4-6

A texture mapped onto a box

Some objects have neither a natural surface parameterization nor a standard
surface parameterization supplied by QuickDraw 3D. For example, the faces of
a mesh have neither type of parameterization. To apply a texture to such an
object, you need to define your own

custom surface parameterization.

 You do
this by adding attributes of type

kQ3AttributeTypeSurfaceUV

 to the vertices
of the object. See Listing 4-3 on page 4-19 for details.

It’s possible to modify the mapping used in applying a texture to a surface, by
changing the surface’s

uv

 shading transform. (For example, you can rotate the
texture any desired amount by installing the appropriate transformation
matrix.) See the chapter “Shader Objects” for information on setting the

uv

transform used by a surface shader.

BOX!

BOX!
BOX!

This document was created with FrameMaker 4.0.4

C H A P T E R 4

Geometric Objects

Using Geometric Objects 4-17

Note
To override an object’s standard surface parameterization,
or to define a custom surface parameterization for an
object that has no standard surface parameterization, you
need to manipulate the surface uv attributes of the object.
See the chapter “Attribute Objects” for details. ◆

The standard surface parameterizations of the QuickDraw 3D geometric
objects are given in the section “Geometric Objects Reference.”

Using Geometric Objects 4

QuickDraw 3D provides routines that you can use to create and edit geometric
objects, get and set attributes for those objects, and perform other geometric
operations. This section illustrates how to create and delete some geometric
objects and how to traverse the parts of a mesh.

Creating and Deleting Geometric Objects 4

As you saw briefly in the chapter “Introduction to QuickDraw 3D,”
QuickDraw 3D supports both immediate and retained modes of defining and
rendering a model. Which mode you employ in any particular instance
depends on the needs of your application. As suggested earlier, if much of the
model remains unchanged from frame to frame, you should use retained mode
imaging to create and draw the model. If, however, many parts of the model do
change from frame to frame, you should use immediate mode imaging,
creating and rendering a model on a shape-by-shape basis.

Listing 4-1 illustrates how to create a retained box.

Listing 4-1 Creating a retained box

TQ3GeometryObject myBox;

TQ3BoxData myBoxData;

Q3Point3D_Set(&myBoxData.origin, 1.0, 1.0, 1.0);

Q3Vector3D_Set(&myBoxData.orientation, 0, 2.0, 0);

C H A P T E R 4

Geometric Objects

4-18 Using Geometric Objects

Q3Vector3D_Set(&myBoxData.minorAxis, 2.0, 0, 0);

Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2.0);

myBox = Q3Box_New(&myBoxData);

Once the code in Listing 4-1 has been executed, the variable myBox contains a
reference to the new box. You can then reuse or dispose of the myBoxData
structure, because all subsequent operations on the retained box are performed
using myBox. For example, to submit the box for drawing, picking, bounding,
or writing, you can execute the following line of code inside a rendering,
picking, bounding, or writing loop:

myStatus = Q3Object_Submit(myBox);

To dispose of the retained box, you can call the Q3Object_Dispose function,
as follows:

myStatus = Q3Object_Dispose(myBox);

Listing 4-2 illustrates how to create an immediate box.

Listing 4-2 Creating an immediate box

TQ3BoxData myBoxData;

Q3Point3D_Set(&myBoxData.origin, 1.0, 1.0, 1.0);

Q3Vector3D_Set(&myBoxData.orientation, 0, 2.0, 0);

Q3Vector3D_Set(&myBoxData.minorAxis, 2.0, 0, 0);

Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2.0);

As you can see, you do not have to call any QuickDraw 3D routine to create an
immediate box; instead, you simply define the box data in a structure of type
TQ3BoxData. To draw an immediate box, you call the Q3Box_Submit function
(inside a rendering loop), as follows:

myStatus = Q3Box_Submit(myBox);

Because you didn’t create any retained entity, you do not need to dispose of the
immediate box.

C H A P T E R 4

Geometric Objects

Using Geometric Objects 4-19

Creating a Mesh 4

As you saw earlier (in “Meshes,” beginning on page 4-6), you create a mesh
by calling Q3Mesh_New to create a new empty mesh and then by calling
Q3Mesh_VertexNew and Q3Mesh_FaceNew to explicitly add vertices and faces
to the mesh. Listing 4-3 illustrates how to create a simple mesh using these
functions. It also shows how to attach a custom surface parameterization to
a mesh face, so that a texture can be mapped onto the face.

Listing 4-3 Creating a simple mesh

TQ3GroupObject MyBuildMesh (void)

{

TQ3ColorRGB myMeshColor;

TQ3GroupObject myModel;

static TQ3Vertex3D vertices[9] = {

{ { -0.5, 0.5, 0.0 }, NULL },

{ { -0.5, -0.5, 0.0 }, NULL },

{ { 0.0, -0.5, 0.3 }, NULL },

{ { 0.5, -0.5, 0.0 }, NULL },

{ { 0.5, 0.5, 0.0 }, NULL },

{ { 0.0, 0.5, 0.3 }, NULL },

{ { -0.4, 0.2, 0.0 }, NULL },

{ { 0.0, 0.0, 0.0 }, NULL },

{ { -0.4, -0.2, 0.0 }, NULL }};

static TQ3Param2D verticesUV[9] = {

{0.0, 1.0}, {0.0, 0.0}, {0.5, 0.0}, {1.0, 0.0},

{1.0, 1.0}, {0.5, 1.0}, {0.1, 0.8}, {0.5, 0.5},

{0.1, 0.4}};

TQ3MeshVertex myMeshVertices[9];

TQ3GeometryObject myMesh;

TQ3MeshFace myMeshFace;

TQ3AttributeSet myFaceAttrs;

unsigned long i;

C H A P T E R 4

Geometric Objects

4-20 Using Geometric Objects

myMesh = Q3Mesh_New(); /*create new empty mesh*/

Q3Mesh_DelayUpdates(myMesh); /*turn off mesh updating*/

/*Add vertices and surface parameterization to mesh.*/

for (i = 0; i < 9; i++)

{

TQ3AttributeSet myVertAttrs;

myMeshVertices[i] = Q3Mesh_VertexNew(myMesh, &vertices[i]);

myVertAttrs = Q3AttributeSet_New();

Q3AttributeSet_Add

(myVertAttrs, kQ3AttributeTypeSurfaceUV, &verticesUV[i]);

Q3Mesh_SetVertexAttributeSet(myMesh, myMeshVertices[i], myVertAttrs);

Q3Object_Dispose(myVertAttrs);

}

myFaceAttrs = Q3AttributeSet_New();

myMeshColor.r = 0.3;

myMeshColor.g = 0.9;

myMeshColor.b = 0.5;

Q3AttributeSet_Add

(myFaceAttrs, kQ3AttributeTypeDiffuseColor, &myMeshColor);

myMeshFace = Q3Mesh_FaceNew(myMesh, 6, myMeshVertices, myFaceAttrs);

Q3Mesh_FaceToContour(myMesh, myMeshFace,

Q3Mesh_FaceNew(myMesh, 3, &myMeshVertices[6], NULL));

Q3Mesh_ResumeUpdates(myMesh);

myModel = Q3OrderedDisplayGroup_New();

Q3Group_AddObject(myModel, myMesh);

Q3Object_Dispose(myFaceAttrs);

Q3Object_Dispose(myMesh);

return (myModel);

}

C H A P T E R 4

Geometric Objects

Using Geometric Objects 4-21

The new mesh created by MyBuildMesh is a retained object. Note that you need
to call Q3Mesh_New before you call Q3Mesh_VertexNew and Q3Mesh_FaceNew.
Also, the call to Q3Mesh_FaceToContour destroys any attributes associated
with the mesh face that is turned into a contour.

Traversing a Mesh 4

QuickDraw 3D supplies a large number of functions that you can use to
traverse a mesh by iterating through the various distinguishable parts of the
mesh (that is, through the faces, vertices, edges, contours, or components in the
mesh). For example, you can operate on each face of a mesh by calling the
Q3Mesh_FirstMeshFace function to get the first face in the mesh and then by
calling Q3Mesh_NextMeshFace to get each successive face in the mesh. When
you call Q3Mesh_FirstMeshFace, you specify a mesh and a mesh iterator
structure, which QuickDraw 3D fills in with information about its current
position while traversing a mesh. You must pass that same mesh iterator
structure to Q3Mesh_NextMeshFace when you get successive faces in the mesh.
Listing 4-4 illustrates how to use these routines to operate on all faces in a mesh.

Listing 4-4 Iterating through all faces in a mesh

TQ3Status MySetMeshFacesDiffuseColor (TQ3GeometryObject myMesh,

TQ3ColorRGB color)

{

TQ3MeshFace myFace;

TQ3MeshIterator myIter;

TQ3Status myErr;

TQ3AttributeSet mySet;

for (myFace = Q3Mesh_FirstMeshFace(myMesh, &myIter);

 myFace;

 myFace = Q3Mesh_NextMeshFace(&myIter)) {

/*Get the current attribute set of the current face.*/

myErr = Q3Mesh_GetFaceAttributeSet(myMesh, myFace, &mySet);

if (myErr == kQ3Failure) return (kQ3Failure);

C H A P T E R 4

Geometric Objects

4-22 Using Geometric Objects

/*Add the color attribute to the face attribute set.*/

myErr = Q3AttributeSet_Add((TQ3AttributeSet)mySet,

kQ3AttributeTypeDiffuseColor, &color);

if (myErr == kQ3Failure) return (kQ3Failure);

/*Set the attribute set of the current face.*/

myErr = Q3Mesh_SetFaceAttributeSet(myMesh, myFace, mySet);

if (myErr == kQ3Failure) return (kQ3Failure);

}

return (kQ3Success);

}

QuickDraw 3D also supplies a number of C language macros that you can use
to simplify your source code. For example, you can use the
Q3ForEachMeshFace macro, defined like this:

#define Q3ForEachMeshFace(m,f,i) \

for ((f) = Q3Mesh_FirstMeshFace((m),(i)); \

(f); \

(f) = Q3Mesh_NextMeshFace((i)))

Listing 4-5 shows how to use two of these macros to attach a corner to each
vertex or each face of a mesh.

Listing 4-5 Attaching corners to all vertices in all faces of a mesh

TQ3Status MyAddCornersToMesh (TQ3GeometryObject myMesh,

TQ3AttributeSet mySet)

{

TQ3MeshFace myFace;

TQ3MeshVertex myVertex;

TQ3MeshIterator myIter1;

TQ3MeshIterator myIter2;

TQ3Status myErr;

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-23

Q3ForEachMeshFace(myMesh, myFace, &myIter1) {

Q3ForEachFaceVertex(myFace, myVertex, &myIter2) {

myErr = Q3Mesh_SetCornerAttributeSet

(myMesh, myFace, myVertex, mySet);

if (myErr == kQ3Failure) return (kQ3Failure);

}

}

return (kQ3Success);

}

Geometric Objects Reference 4

This section describes the data structures provided by QuickDraw 3D that
define the QuickDraw 3D geometric objects. It also describes the routines you
can use to create and manipulate those objects.

Data Structures 4

This section describes the data structures that define the QuickDraw 3D
geometric objects. QuickDraw 3D defines the following primitive objects:

■ points

■ lines

■ polylines

■ triangles

■ simple and general polygons

■ boxes

■ trigrids

■ meshes

■ NURB curves

■ NURB patches

■ markers

C H A P T E R 4

Geometric Objects

4-24 Geometric Objects Reference

Each of these QuickDraw 3D geometric objects has a set of attributes associated
with it. The set of attributes specifies information about the appearance of the
objects (for example, its color and transparency). You can edit an object’s
attributes by calling the functions Q3Geometry_GetAttributeSet and
Q3Geometry_SetAttributeSet.

Note
Don’t confuse a QuickDraw 3D geometric object (which
contains attribute information) with some corresponding
standard geometric object (which doesn’t contain attribute
information). For example, the TQ3Point3D data type
defines the standard three-dimensional Cartesian point.
The associated QuickDraw 3D geometric object is defined
by the TQ3PointData data type. For simplicity, the
QuickDraw 3D types are usually referred to by their usual
geometric names. When it is necessary to distinguish
QuickDraw 3D types from standard mathematical types,
the QuickDraw 3D type will be referred to as an object. For
example, the TQ3Point3D data type defines a point and the
TQ3PointData data type defines a point object. ◆

Points 4

QuickDraw 3D defines two- and three-dimensional points in the usual way, as
pairs and triples of floating-point numbers. You’ll use the TQ3Point3D data
type throughout the QuickDraw 3D application programming interfaces. You’ll
use the TQ3Point2D data type for defining two-dimensional points.

typedef struct TQ3Point2D {

float x;

float y;

} TQ3Point2D;

typedef struct TQ3Point3D {

float x;

float y;

float z;

} TQ3Point3D;

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-25

Field descriptions
x The x coordinate (abscissa) of a point.
y The y coordinate (ordinate) of a point.
z The z coordinate of a point.

Rational Points 4

QuickDraw 3D defines three- and four-dimensional rational points as pairs and
triples of floating-point numbers, together with a floating-point weight. You’ll
use the TQ3RationalPoint4D data type for defining control points of rational
surfaces and solids. The TQ3RationalPoint4D data type represents
homogeneous points in four-dimensional space. To get the equivalent
three-dimensional point, divide the point’s x, y, and z components by the
w component.

typedef struct TQ3RationalPoint3D {

float x;

float y;

float w;

} TQ3RationalPoint3D;

typedef struct TQ3RationalPoint4D {

float x;

float y;

float z;

float w;

} TQ3RationalPoint4D;

Field descriptions
x The x coordinate (abscissa) of a rational point.
y The y coordinate (ordinate) of a rational point.
z The z coordinate of a rational point.
w The weight of a rational point.

C H A P T E R 4

Geometric Objects

4-26 Geometric Objects Reference

Polar and Spherical Points 4

QuickDraw 3D defines polar and spherical points in the usual way. A polar
point is a point in a plane described using polar coordinates. As illustrated in
Figure 4-7, a polar point is uniquely determined by a distance r along a ray (the
radius vector) that forms a given angle θ with a polar axis. Polar points are
defined by the TQ3PolarPoint data type.

Note
Given a fixed polar origin and polar axis, a polar point can
be described by infinitely many polar coordinates. For
example, the polar point (5, π) is the same as the polar
point (5, 3π). ◆

Figure 4-7 A planar point described with polar coordinates

typedef struct TQ3PolarPoint {

float r;

float theta;

} TQ3PolarPoint;

Field descriptions
r The distance along the radius vector from the polar origin

to the polar point.
theta The angle, in radians, between the polar axis and the

radius vector.

Pole

r Radius vector

Polar axis

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-27

A spherical point is a point in space described using spherical coordinates. As
illustrated in Figure 4-8, a spherical point is uniquely determined by a distance
ρ along a ray (the radius vector) that forms a given angle θ with the x axis and
another given angle φ with the z axis. Spherical points are defined by the
TQ3SphericalPoint data type.

Figure 4-8 A spatial point described with spherical coordinates

typedef struct TQ3SphericalPoint {

float rho;

float theta;

float phi;

} TQ3SphericalPoint;

Field descriptions
rho The distance along the radius vector from the polar origin

to the spherical point.
theta The angle, in radians, between the x axis and the projection

of the radius vector onto the xy plane.
phi The angle, in radians, between the z axis and the

radius vector.

z

x

yPole

Radius
vector

C H A P T E R 4

Geometric Objects

4-28 Geometric Objects Reference

Vectors 4

QuickDraw 3D defines two- and three-dimensional vectors in the usual way, as
pairs and triples of floating-point numbers. Vectors are defined by data types
distinct from those that define points primarily for conceptual clarity and for
enforcing the correct usage of vectors in mathematical routines. Vectors are
defined by the TQ3Vector2D and TQ3Vector3D data types.

typedef struct TQ3Vector2D {

float x;

float y;

} TQ3Vector2D;

typedef struct TQ3Vector3D {

float x;

float y;

float z;

} TQ3Vector3D;

Field descriptions
x The x scalar component of a vector.
y The y scalar component of a vector.
z The z scalar component of a vector.

Quaternions 4

QuickDraw 3D defines quaternions as quadruples of floating-point numbers. A
quaternion is defined by the TQ3Quaternion data type.

Note
For a description of quaternions and their use in
computer graphics, see the article by Hart, Francis,
and Kaufman listed in the Bibliography and the
articles cited in that article. ◆

typedef struct TQ3Quaternion {

float w;

float x;

float y;

float z;

} TQ3Quaternion;

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-29

Field descriptions
w The w component of a quaternion.
x The x component of a quaternion.
y The y component of a quaternion.
z The z component of a quaternion.

Rays 4

QuickDraw 3D defines a ray as a point of origin and a direction. A ray is
defined by the TQ3Ray3D data type. Figure 4-9 shows a ray.

Figure 4-9 A ray

typedef struct TQ3Ray3D {

TQ3Point3D origin;

TQ3Vector3D direction;

} TQ3Ray3D;

Field descriptions
origin The origin of the ray.
direction The direction of the ray.

origin

C H A P T E R 4

Geometric Objects

4-30 Geometric Objects Reference

Parametric Points 4

QuickDraw 3D defines the TQ3Param2D and TQ3Param3D data structures to
represent two- and three-dimensional parametric points.

typedef struct TQ3Param2D {

float u;

float v;

} TQ3Param2D;

typedef struct TQ3Param3D {

float u;

float v;

float w;

} TQ3Param3D;

Field descriptions
u The u component of a parametric point.
v The v component of a parametric point.
w The w component of a parametric point.

Note
The u, v, and w components are sometimes represented by
the letters s, t, and u, respectively. This book always uses u,
v, and w. ◆

Tangents 4

QuickDraw 3D defines the TQ3Tangent2D and TQ3Tangent3D data structures to
represent two- and three-dimensional parametric surface tangents. A surface
tangent indicates the directions of changing u, v, and w parameters on a surface.

typedef struct TQ3Tangent2D {

TQ3Vector3D uTangent;

TQ3Vector3D vTangent;

} TQ3Tangent2D;

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-31

typedef struct TQ3Tangent3D {

TQ3Vector3D uTangent;

TQ3Vector3D vTangent;

TQ3Vector3D wTangent;

} TQ3Tangent3D;

Field descriptions
uTangent The tangent in the u direction.
vTangent The tangent in the v direction.
wTangent The tangent in the w direction.

Vertices 4

A vertex is a dimensionless position in three-dimensional space at which two
or more lines (for instance, edges) intersect, with an optional set of vertex
attributes. Vertices are defined by the TQ3Vertex3D data type.

typedef struct TQ3Vertex3D {

TQ3Point3D point;

TQ3AttributeSet attributeSet;

} TQ3Vertex3D;

Field descriptions
point A three-dimensional point.
attributeSet A set of attributes for the vertex. The value in this field is

NULL if no vertex attributes are defined.

Matrices 4

QuickDraw 3D defines 3-by-3 and 4-by-4 matrices as structures containing
two-dimensional arrays of floating-point numbers as the single field in the
structure. This convention allows for easy structure copying and for passing
matrix parameters either by value or by reference. In a C language
two-dimensional array, the second index varies fastest; accordingly, you can

C H A P T E R 4

Geometric Objects

4-32 Geometric Objects Reference

think of the first index as representing the matrix row and the second index as
representing the matrix column. For example, consider the 3-by-3 matrix A
defined like this:

Here, A[0][0] is the matrix element a, and A[2][1] is the matrix element h.

Matrices are defined by the TQ3Matrix3x3 and TQ3Matrix4x4 data types.

Note
Remember that arrays in C are indexed starting with 0. ◆

typedef struct TQ3Matrix3x3 {

float value[3][3];

} TQ3Matrix3x3;

typedef struct TQ3Matrix4x4 {

float value[4][4];

} TQ3Matrix4x4;

Field descriptions
value An array of floating-point values that define the matrix.

Bitmaps and Pixel Maps 4

QuickDraw 3D defines bitmaps and pixmaps to specify the images used to
define markers, textures, and other objects. A bitmap is a two-dimensional
array of values, each of which represents the state of one pixel. A bitmap is
defined by the TQ3Bitmap data type.

typedef struct TQ3Bitmap {

unsigned char *image;

unsigned long width;

unsigned long height;

unsigned long rowBytes;

TQ3Endian bitOrder;

} TQ3Bitmap;

A
a b c

d e f

g h i

=

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-33

Field descriptions
image The address of a two-dimensional block of memory that

contains the bitmap image. The size, in bytes, of this block
must be exactly the product of the values in the height
and rowBytes fields.

width The width, in bits, of the bitmap.
height The height of the bitmap.
rowBytes The distance, in bytes, from the beginning of one row of

the image data to the beginning of the next row of the
image data. Each new row in the image begins at an
unsigned character that follows (but not necessarily
immediately follows) the last unsigned character of the
previous row. The minimum value of this field is the size
of the image (as returned, for example, by the
Q3Bitmap_GetImageSize function) divided by the value of
the height field.

bitOrder The order in which the bits in a byte are addressed. This
field must contain one of these constants:

typedef enum TQ3Endian {

kQ3EndianBig,

kQ3EndianLittle

} TQ3Endian;

The constant kQ3EndianBig indicates that the bits are
addressed in a big-endian manner. The constant
kQ3EndianLittle indicates that the bits are addressed in a
little-endian manner.

A pixel map (or, more briefly, a pixmap) is a two-dimensional array of values,
each of which represents the color of one pixel. A pixmap is defined by the
TQ3Pixmap data type.

typedef struct TQ3Pixmap {

void *image;

unsigned long width;

unsigned long height;

unsigned long rowBytes;

unsigned long pixelSize;

TQ3PixelType pixelType;

C H A P T E R 4

Geometric Objects

4-34 Geometric Objects Reference

TQ3Endian bitOrder;

TQ3Endian byteOrder;

} TQ3Pixmap;

Field descriptions
image The address of a two-dimensional block of memory that

contains the pixmap image. The size, in bytes, of this block
must be exactly the product of the values in the height
and rowBytes fields.

width The width, in pixels, of the pixmap.
height The height, in pixels, of the pixmap.
rowBytes The distance, in bytes, from the beginning of one row of

the image data to the beginning of the next row of the
image data. The minimum value of this field depends on
the values of the width and pixelSize fields. You can use
the following C language macro to determine a value for
this field:

#define Pixmap_GetRowBytes(width, pixelSize) \

((pixelSize) < 8) \

? (((width) / (8 / (pixelSize))) + \

((width) % (8 / (pixelSize)) > 0)) \

: (width * ((pixelSize) / 8))

pixelSize The size, in bits, of a pixel.
pixelType The type of a pixel. This field must contain one of these

constants (which must match the size specified in the
pixelSize field):

typedef enum TQ3PixelType {

kQ3PixelTypeRGB32 /*32 bits per pixel*/

} TQ3PixelType;

bitOrder The order in which the bits in a byte are addressed. This
field must contain one of these constants:

typedef enum TQ3Endian {

kQ3EndianBig,

kQ3EndianLittle

} TQ3Endian;

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-35

The constant kQ3EndianBig indicates that the bits are
addressed in a big-endian manner. The constant
kQ3EndianLittle indicates that the bits are addressed in
a little-endian manner.

byteOrder The order in which the bytes in a word are addressed. This
field must contain kQ3EndianBig or kQ3EndianLittle.

A storage pixel map (or, more briefly, a storage pixmap) is a pixmap whose
data is contained in a storage object. A storage pixmap is defined by the
TQ3StoragePixmap data type.

typedef struct TQ3StoragePixmap {

TQ3StorageObject image;

unsigned long width;

unsigned long height;

unsigned long rowBytes;

unsigned long pixelSize;

TQ3PixelType pixelType;

TQ3Endian bitOrder;

TQ3Endian byteOrder;

} TQ3StoragePixmap;

Field descriptions
image A storage object that contains the pixmap image. The size,

in bytes, of this file must be exactly the product of the
values in the height and rowBytes fields.

width The width, in pixels, of the pixmap.
height The height, in pixels, of the pixmap.
rowBytes The distance, in bytes, from the beginning of one row of

the image data to the beginning of the next row of the
image data. The minimum value of this field depends on
the values of the width and pixelSize fields. You can use
the following C language macro to determine a value for
this field:

#define Pixmap_GetRowBytes(width, pixelSize) \

((pixelSize) < 8) \

? (((width) / (8 / (pixelSize))) + \

((width) % (8 / (pixelSize)) > 0)) \

: (width * ((pixelSize) / 8))

C H A P T E R 4

Geometric Objects

4-36 Geometric Objects Reference

pixelSize The size, in bits, of a pixel.
pixelType The type of a pixel. This field must contain one of these

constants (which must match the size specified in the
pixelSize field):

typedef enum TQ3PixelType {

kQ3PixelTypeRGB32 /*32 bits per pixel*/

} TQ3PixelType;

bitOrder The order in which the bits in a byte are addressed. This
field must contain one of these constants:

typedef enum TQ3Endian {

kQ3EndianBig,

kQ3EndianLittle

} TQ3Endian;

The constant kQ3EndianBig indicates that the bits are
addressed in a big-endian manner. The constant
kQ3EndianLittle indicates that the bits are addressed in
a little-endian manner.

byteOrder The order in which the bytes in a word are addressed. This
field must contain kQ3EndianBig or kQ3EndianLittle.

Areas and Plane Equations 4

A two-dimensional area is defined by the TQ3Area data type.

typedef struct TQ3Area {

TQ3Point2D min;

TQ3Point2D max;

} TQ3Area;

Field descriptions
min A two-dimensional point.
max A two-dimensional point.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-37

A plane equation is defined by the TQ3PlaneEquation data type.

typedef struct TQ3PlaneEquation {

TQ3Vector3D normal;

float constant;

} TQ3PlaneEquation;

Field descriptions
normal The vector that is normal (perpendicular) to the plane.
constant The plane constant. A plane constant is the value d in the

plane equation ax+by+cz+d = 0. The coefficients a, b, and c
are the x, y, and z components of the normal vector.

Point Objects 4

A point object is simply a dimensionless position in three-dimensional space,
with an optional set of attributes. A point object is defined by the
TQ3PointData data type. See “Creating and Editing Points,” beginning on
page 4-59 for a description of the routines you can use to create and edit
point objects.

typedef struct TQ3PointData {

TQ3Point3D point;

TQ3AttributeSet pointAttributeSet;

} TQ3PointData;

Field descriptions
point A three-dimensional point.
pointAttributeSet

A set of attributes for the point. The value in this field is
NULL if no point attributes are defined.

Lines 4

A line is a straight segment in three-dimensional space defined by its two
endpoints, with an optional set of attributes. (In addition, each vertex can have
a set of attributes.) A line is defined by the TQ3LineData data type. See
“Creating and Editing Lines,” beginning on page 4-63 for a description of the
routines you can use to create and edit lines. Figure 4-10 on page 4-38 shows
a line.

C H A P T E R 4

Geometric Objects

4-38 Geometric Objects Reference

Figure 4-10 A line

typedef struct TQ3LineData {

TQ3Vertex3D vertices[2];

TQ3AttributeSet lineAttributeSet;

} TQ3LineData;

Field descriptions
vertices An array of two vertices.
lineAttributeSet

A set of attributes for the line. The value in this field is
NULL if no line attributes are defined.

Polylines 4

A polyline is a collection of n lines defined by the n+1 points that define the
endpoints of each line segment. The entire polyline can have a set of attributes,
and each line segment in the polyline also can have a set of attributes. (In
addition, each vertex can have a set of attributes.) A polyline is defined by the
TQ3PolyLineData data type. See “Creating and Editing Polylines,” beginning
on page 4-68 for a description of the routines you can use to create and edit
polylines. Figure 4-11 on page 4-39 shows a polyline.

IMPORTANT

A polyline is not closed. The last point should not be
connected to the first. ▲

vertices[1].point

vertices[0].point

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-39

Figure 4-11 A polyline

typedef struct TQ3PolyLineData {

unsigned long numVertices;

TQ3Vertex3D *vertices;

TQ3AttributeSet *segmentAttributeSet;

TQ3AttributeSet polyLineAttributeSet;

} TQ3PolyLineData;

Field descriptions
numVertices The number of vertices in the polyline. The value of this

field must be at least 2.
vertices A pointer to an array of vertices which define the polyline.
segmentAttributeSet

A pointer to an array of segment attribute sets. If no
segments in the polyline are to have attributes, this field
should contain the value NULL. If any of the segments have
attributes, this field should contain a pointer to an array
(containing numVertices – 1 elements) of attributes sets;
the array element for segments with no attributes should
be set to NULL.

polyLineAttributeSet

A set of attributes for the polyline. The value in this field is
NULL if no polyline attributes are defined.

vertices[1].point

vertices[2].point

vertices[3].point

vertices[4].point
vertices[0].point

C H A P T E R 4

Geometric Objects

4-40 Geometric Objects Reference

Triangles 4

A triangle is a closed plane figure defined by the three edges that connect three
vertices. The entire triangle can have a set of attributes, and any or all of the
three vertices can also have a set of attributes. A triangle is defined by the
TQ3TriangleData data type. See “Creating and Editing Triangles,” beginning
on page 4-76 for a description of the routines you can use to create and edit
triangles. Figure 4-12 shows a triangle.

Figure 4-12 A triangle

typedef struct TQ3TriangleData {

TQ3Vertex3D vertices[3];

TQ3AttributeSet triangleAttributeSet;

} TQ3TriangleData;

Field descriptions
vertices The three vertices that define the three sides of the triangle.
triangleAttributeSet

A set of attributes for the triangle. The value in this field is
NULL if no triangle attributes are defined.

vertices[0].point vertices[1].point

vertices[2].point

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-41

Simple Polygons 4

A simple polygon is a closed plane figure defined by a list of vertices. (In other
words, a simple polygon is a polygon defined by a single contour.) The edges
of a simple polygon should not intersect themselves or you will get
unpredictable results when operating on the polygon. In addition, a simple
polygon must be convex.

The entire simple polygon can have a set of attributes, and any or all of the
vertices defining the polygon can have a set of attributes.

A simple polygon is defined by the TQ3PolygonData data type. See “Creating
and Editing Simple Polygons,” beginning on page 4-81 for a description of the
routines you can use to create and edit simple polygons. Figure 4-13 shows a
simple polygon.

Figure 4-13 A simple polygon

typedef struct TQ3PolygonData {

unsigned long numVertices;

TQ3Vertex3D *vertices;

TQ3AttributeSet polygonAttributeSet;

} TQ3PolygonData;

vertices[0].point

vertices[4].point

vertices[2].point

vertices[1].point

vertices[3].point

C H A P T E R 4

Geometric Objects

4-42 Geometric Objects Reference

Field descriptions
numVertices The number of vertices in the simple polygon. The value of

this field must be at least 3.
vertices A pointer to an array of vertices that define the simple

polygon.
polygonAttributeSet

A set of attributes for the simple polygon. The value in this
field is NULL if no polygon attributes are defined.

General Polygons 4

A general polygon is a closed plane figure defined by one or more lists of
vertices. (In other words, a general polygon is a polygon defined by one or
more contours.) Each contour may be concave or convex, and contours may be
nested. In addition, a general polygon’s contours may overlap or be disjoint.
All contours, however, must be coplanar. A general polygon can have holes
in it; if it does, the even-odd rule is used to determine which parts are inside
the polygon.

The entire general polygon can have a set of attributes, and any or all of the
vertices of any contour can have a set of attributes.

The orientation of a general polygon is determined by the order of the first
three noncolinear and noncoincident vertices in the first contour of the
general polygon and by the current orientation style of the model containing
the polygon. See the chapter “Style Objects” for more information on
orientation styles.

A general polygon is defined by the TQ3GeneralPolygonData data type. See
“Creating and Editing General Polygons,” beginning on page 4-87 for a
description of the routines you can use to create and edit general polygons.
Figure 4-14 on page 4-43 shows a general polygon.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-43

Figure 4-14 A general polygon

typedef struct TQ3GeneralPolygonData {

unsigned long numContours;

TQ3GeneralPolygonContourData *contours;

TQ3GeneralPolygonShapeHint shapeHint;

TQ3AttributeSet generalPolygonAttributeSet;

} TQ3GeneralPolygonData;

Field descriptions
numContours The number of contours in the general polygon. The value

of this field must be at least 1.
contours A pointer to an array of contours that define the general

polygon.

contour[0].vertices[2]

contour[0].vertices[3]

contour[0].vertices[4]

contour[0].vertices[5]

contour[1].vertices[2]

contour[1].vertices[1]

contour[0].vertices[6]

contour[0].vertices[7]

contour[0].vertices[0]

contour[0].vertices[1]

contour[1].vertices[0]

C H A P T E R 4

Geometric Objects

4-44 Geometric Objects Reference

shapeHint A constant that specifies the shape of the general polygon.
A general polygon’s shape hint may be used by a renderer
to optimize drawing the polygon. You can use the
following constants for shape hints:

typedef enum TQ3GeneralPolygonShapeHint {

kQ3GeneralPolygonShapeHintComplex,

kQ3GeneralPolygonShapeHintConcave,

kQ3GeneralPolygonShapeHintConvex

} TQ3GeneralPolygonShapeHint;

The constant kQ3GeneralPolygonShapeHintComplex
indicates that the general polygon consists of more than
one contour, is self-intersecting, or is not known to be
either concave or convex. For a general polygon with
exactly one contour, the constant
kQ3GeneralPolygonShapeHintConcave indicates that
the polygon is concave, and the constant
kQ3GeneralPolygonShapeHintConvex indicates that
the polygon is convex.

generalPolygonAttributeSet

A set of attributes for the general polygon. The value
in this field is NULL if no general polygon attributes
are defined.

The elements of the array of contours pointed to by the contours field are of
type TQ3GeneralPolygonContourData, defined as follows:

typedef struct TQ3GeneralPolygonContourData {

unsigned long numVertices;

TQ3Vertex3D *vertices;

} TQ3GeneralPolygonContourData;

Field descriptions
numVertices The number of vertices in the contour. The value of this

field must be at least 3.
vertices A pointer to an array of vertices that define the contour.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-45

Boxes 4

A box is a three-dimensional object defined by an origin (that is, a corner of the
box) and three vectors that define the edges of the box that meet in that corner.
A box defined by three mutually orthogonal vectors is a regular rectangular
prism. A box defined by nonorthogonal vectors is a general parallelepiped.

The entire box can have a set of attributes. In addition, you may specify an
array of attributes to be applied to each face of the box. (In this way, for
example, you can give each face of the box a different color.)

A box is defined by the TQ3BoxData data type. See “Creating and Editing
Boxes,” beginning on page 4-95 for a description of the routines you can use
to create and edit boxes. Figure 4-15 shows a box.

Figure 4-15 A box

orientation

origin

ma
jo
rA
xi
s

minorAxis

C H A P T E R 4

Geometric Objects

4-46 Geometric Objects Reference

Figure 4-16 shows the standard surface parameterization of a box.

Figure 4-16 The standard surface parameterization of a box

typedef struct TQ3BoxData {

TQ3Point3D origin;

TQ3Vector3D orientation;

TQ3Vector3D majorAxis;

TQ3Vector3D minorAxis;

TQ3AttributeSet *faceAttributeSet;

TQ3AttributeSet boxAttributeSet;

} TQ3BoxData;

Orientation

origin
majorAxis

(0,1)

(0,0)

(1,1)

(1,0)

Top

(0,1)

(0,0)

(1,1)

(1,0)

Left

(0,1)

(0,0)

(1,1)

(1,0)

Front

(0,1)

(0,0)

(1,1)

(1,0)

Right

(0,1)

(0,0)

(1,1)

(1,0)

Back

(1,0)

(1,1)

(0,0)

(0,1)

Bottom

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-47

Field descriptions
origin The origin of the box.
orientation The orientation of the box.
majorAxis The major axis of the box.
minorAxis The minor axis of the box.
faceAttributeSet

A pointer to a six-element array of face attributes. The
attributes apply to the faces of the box specified in the
following order: left, right, front, back, top, bottom.

boxAttributeSet A set of attributes for the box. The value in this field is
NULL if no box attributes are defined.

Trigrids 4

A trigrid is a rectangular grid composed of triangular facets. The triangulation
should be serpentine (that is, quadrilaterals are divided into triangles in
an alternating fashion) to reduce shading artifacts when using Gouraud or
Phong shading.

The entire trigrid can have a set of attributes. You may specify an array of
attributes that apply to each facet of the trigrid. In this way, for example, you
can give each facet of the trigrid a different color. In addition, any or all of the
vertices can have a set of attributes.

A trigrid is defined by the TQ3TriGridData data type. See “Creating and
Editing Trigrids,” beginning on page 4-103 for a description of the routines you
can use to create and edit trigrids. Figure 4-17 on page 4-48 shows a trigrid.

C H A P T E R 4

Geometric Objects

4-48 Geometric Objects Reference

Figure 4-17 A trigrid

typedef struct TQ3TriGridData {

unsigned long numRows;

unsigned long numColumns;

TQ3Vertex3D *vertices;

TQ3AttributeSet *facetAttributeSet;

TQ3AttributeSet triGridAttributeSet;

} TQ3TriGridData;

Field descriptions
numRows The number of rows of vertices.
numColumns The number of columns of vertices.
vertices A pointer to an array of vertices. The first vertex in the

array is the lower-left corner of the trigrid. The vertices are
listed in a rectangular order, first in the direction of
increasing column and then in the direction of increasing
row. The number of vertices is the product of the values in
the numRows and numColumns fields.

facetAttributeSet

A pointer to an array of facet attribute sets. If this
value is not NULL, the array should contain
2 × ((numRows – 1) × (numColumns – 1)) elements.

vertices[9]
vertices[10]

vertices[11]

vertices[7]

vertices[3]
vertices[2]

vertices[6]

vertices[0]

vertices[1]

vertices[4]

vertices[8]

6

7 8

0

1 2 3 4

10

119

5

vertices[5]

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-49

triGridAttributeSet

A set of attributes for the trigrid. The value in this field is
NULL if no trigrid attributes are defined.

Meshes 4

A mesh is a collection of vertices and faces that represent a topological
polyhedron. The polyhedron does not need to be closed (that is, a mesh may
have a boundary). The structure of a mesh is maintained privately by
QuickDraw 3D. You create a new empty mesh by calling Q3Mesh_New, and you
can add vertices and faces by calling Q3Mesh_VertexNew and Q3Mesh_FaceNew.

IMPORTANT

QuickDraw 3D supports meshes primarily for interactive
rendering of polygonal models, not for representing large
polygonal databases. A mesh is always a retained object,
never an immediate object. As a result, QuickDraw 3D
does not supply routines to draw or write meshes. ▲

A mesh can have a set of attributes attached to it; you call the
Q3Geometry_SetAttributeSet function to attach an attribute set to a
mesh. In addition, each mesh vertex, face, edge, and corner can have a
set of attributes attached to it.

There is only one public data structure defined for meshes, the mesh iterator
structure. You use the mesh iterator structure when you call any one of a large
number of mesh iterators. The mesh iterator structure is defined by the
TQ3MeshIterator data type.

typedef struct TQ3MeshIterator {

void *var1;

void *var2;

void *var3;

struct {

void *field1;

char field2[4];

} var4;

} TQ3MeshIterator;

C H A P T E R 4

Geometric Objects

4-50 Geometric Objects Reference

Field descriptions
var1 Reserved for use by Apple Computer, Inc.
var2 Reserved for use by Apple Computer, Inc.
var3 Reserved for use by Apple Computer, Inc.
var4 Reserved for use by Apple Computer, Inc.
field1 Reserved for use by Apple Computer, Inc.
field2 Reserved for use by Apple Computer, Inc.

NURB Curves 4

A nonuniform rational B-spline (NURB) curve is a three-dimensional projection
of a four-dimensional curve, with an optional set of attributes. A NURB curve
is defined by the TQ3NURBCurveData data type. See “Creating and Editing
NURB Curves,” beginning on page 4-160 for a description of the routines you
can use to create and edit NURB curves. Figure 4-18 shows a NURB curve.

Figure 4-18 A NURB curve

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-51

typedef struct TQ3NURBCurveData {

unsigned long order;

unsigned long numPoints;

TQ3RationalPoint4D *controlPoints;

float *knots;

TQ3AttributeSet curveAttributeSet;

} TQ3NURBCurveData;

Field descriptions
order The order of the NURB curve. For NURB curves defined

by ratios of cubic B-spline polynomials, the order is 4. In
general, the order of a NURB curve defined by polynomial
equations of degree n is n+1. The value in this field must
be greater than 1.

numPoints The number of control points that define the NURB curve.
The value in this field must be greater than or equal to the
order of the NURB curve.

controlPoints A pointer to an array of rational four-dimensional control
points that define the NURB curve.

knots A pointer to an array of knots that define the NURB curve.
The number of knots in a NURB curve is the sum of the
values in the order and numPoints fields. The values in
this array must be nondecreasing (but successive values
may be equal, up to a multiplicity equivalent to the order
of the curve).

curveAttributeSet

A set of attributes for the NURB curve. The value in this
field is NULL if no NURB curve attributes are defined.

NURB Patches 4

A NURB patch is a surface defined by ratios of B-spline surfaces, which are
three-dimensional analogs of B-spline curves. A NURB patch is defined by the
TQ3NURBPatchData data type. See “Creating and Editing NURB Patches,”
beginning on page 4-166 for a description of the routines you can use to create
and edit NURB patches. Figure 4-19 on page 4-52 shows a NURB patch.

C H A P T E R 4

Geometric Objects

4-52 Geometric Objects Reference

Figure 4-19 A NURB patch

typedef struct TQ3NURBPatchData {

unsigned long uOrder;

unsigned long vOrder;

unsigned long numRows;

unsigned long numColumns;

TQ3RationalPoint4D *controlPoints;

float *uKnots;

float *vKnots;

unsigned long numTrimLoops;

TQ3NURBPatchTrimLoopData *trimLoops;

TQ3AttributeSet patchAttributeSet;

} TQ3NURBPatchData;

controlPoints[10]

controlPoints[11]

controlPoints[9]

controlPoints[4]

controlPoints[0]

controlPoints[1]

controlPoints[2]

controlPoints[6]

controlPoints[5]

controlPoints[3]

controlPoints[7]

v
u

controlPoints[8]

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-53

Field descriptions
uOrder The order of the NURB patch in the u parametric direction.

For NURB patches defined by ratios of B-spline
polynomials that are cubic in u, the order is 4. In general,
the order of a NURB patch defined by polynomial
equations in which u is of degree n is n+1. The value in this
field must be greater than 1.

vOrder The order of the NURB patch in the v parametric direction.
For NURB patches defined by ratios of B-spline
polynomials that are cubic in v, the order is 4. In general,
the order of a NURB patch defined by polynomial
equations in which v is of degree n is n+1. The value in this
field must be greater than 1.

numRows The number of control points in the u parametric direction.
The value of this field must be greater than 1.

numColumns The number of control points in the v parametric direction.
The value of this field must be greater than 1.

controlPoints A pointer to an array of rational four-dimensional control
points that define the NURB patch. The first control
point in the array is the lower-left corner of the NURB
patch. The control points are listed in a rectangular order,
first in the direction of increasing u and then in the
direction of increasing v. The number of elements in this
array is the product of the values in the numRows and
numColumns fields.

uKnots A pointer to an array of knots in the u parametric direction
that define the NURB curve. The number of u knots in a
NURB curve is the sum of the values in the uOrder and
numRows fields. The values in this array must be
nondecreasing (but successive values may be equal).

vKnots A pointer to an array of knots in the v parametric direction
that define the NURB curve. The number of v knots in a
NURB curve is the sum of the values in the vOrder and
numColumns fields. The values in this array must be
nondecreasing (but successive values may be equal).

numTrimLoops The number of trim loops in the array pointed to by the
trimLoops field. Currently this field should contain the
value 0.

C H A P T E R 4

Geometric Objects

4-54 Geometric Objects Reference

trimLoops A pointer to an array of trim loop data structures that
define the loops used to trim a NURB patch. See below for
the structure of the trim loop data structure. Currently this
field should contain the value NULL.

patchAttributeSet

A set of attributes for the NURB patch. The value in this
field is NULL if no NURB patch attributes are defined.

A trim loop data structure is defined by the TQ3NURBPatchTrimLoopData
data type.

typedef struct TQ3NURBPatchTrimLoopData {

unsigned long numTrimCurves;

TQ3NURBPatchTrimCurveData *trimCurves;

} TQ3NURBPatchTrimLoopData;

Field descriptions
numTrimCurves The number of trim curves in the array pointed to by the

trimCurves field.
trimCurves A pointer to an array of trim curve data structures that

define the curves used to trim a NURB patch. See below
for the structure of the trim curve data structure.

A trim curve data structure is defined by the TQ3NURBPatchTrimCurveData
data type.

typedef struct TQ3NURBPatchTrimCurveData {

unsigned long order;

unsigned long numPoints;

TQ3RationalPoint3D *controlPoints;

float *knots;

} TQ3NURBPatchTrimCurveData;

Field descriptions
order The order of the NURB trim curve. In general, the order

of a NURB trim curve defined by polynomial equations
of degree n is n+1. The value in this field must be greater
than 1.

numPoints The number of control points that define the NURB trim
curve. The value in this field must be greater than 2.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-55

controlPoints A pointer to an array of three-dimensional rational control
points that define the NURB trim curve.

knots A pointer to an array of knots that define the NURB trim
curve. The number of knots in a NURB trim curve is the
sum of the values in the order and numPoints fields. The
values in this array must be nondecreasing (but successive
values may be equal).

Markers 4

A marker is a two-dimensional object typically used to indicate the position of
an object (or part of an object) in a window. A marker is defined by the
TQ3MarkerData data type, which contains a bitmap and a location, together
with an optional set of attributes. The bitmap specifies the image that is to be
drawn on top of a rendered scene at the specified location. The marker is
drawn perpendicular to the viewing vector, aligned with the window, with its
origin located at the specified location. A marker is always drawn with the
same size, no matter which rotations, scalings, or other transformations might
be active. Figure 4-20 shows a marker.

Figure 4-20 A marker

typedef struct TQ3MarkerData {

TQ3Point3D location;

long xOffset;

long yOffset;

TQ3Bitmap bitmap;

TQ3AttributeSet markerAttributeSet;

} TQ3MarkerData;

C H A P T E R 4

Geometric Objects

4-56 Geometric Objects Reference

Field descriptions
location The origin of the marker.
xOffset The number of pixels, in the horizontal direction, by which

to offset the upper-left corner of the marker from the origin
specified in the location field.

yOffset The number of pixels, in the vertical direction, by which to
offset the upper-left corner of the marker from the origin
specified in the location field.

bitmap A bitmap. Each bit of this bitmap corresponds to a pixel in
the rendered image.

markerAttributeSet

A set of attributes for the marker. You can use these
attributes to specify the color, transparency, or other
attributes of the bits in bitmap that are set to 1. The value
in this field is NULL if no marker attributes are defined.

Geometric Objects Routines 4

This section describes the QuickDraw 3D routines that you can use to create
and edit the geometric primitive objects.

Managing Geometric Objects 4

QuickDraw 3D provides a number of general routines for manipulating its
primitive geometric objects.

Q3Geometry_GetType 4

You can use the Q3Geometry_GetType function to get the type of a
geometric object.

TQ3ObjectType Q3Geometry_GetType (TQ3GeometryObject geometry);

geometry A geometric object.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-57

DESCRIPTION

The Q3Geometry_GetType function returns, as its function result, the type
of the geometric object specified by the geometry parameter. The types of
geometric objects currently supported by QuickDraw 3D are defined by
these constants:

kQ3GeometryTypeBox

kQ3GeometryTypeGeneralPolygon

kQ3GeometryTypeLine

kQ3GeometryTypeMarker

kQ3GeometryTypeMesh

kQ3GeometryTypeNURBCurve

kQ3GeometryTypeNURBPatch

kQ3GeometryTypePoint

kQ3GeometryTypePolygon

kQ3GeometryTypePolyLine

kQ3GeometryTypeTriangle

kQ3GeometryTypeTriGrid

If the specified geometric object is invalid or is not one of these types,
Q3Geometry_GetType returns the value kQ3ObjectTypeInvalid.

Q3Geometry_GetAttributeSet 4

You can use the Q3Geometry_GetAttributeSet function to get the attribute set
associated with an entire geometric object.

TQ3Status Q3Geometry_GetAttributeSet (

TQ3GeometryObject geometry,

TQ3AttributeSet *attributeSet);

geometry A geometric object.

attributeSet

On exit, the set of attributes of the specified geometric object.

C H A P T E R 4

Geometric Objects

4-58 Geometric Objects Reference

DESCRIPTION

The Q3Geometry_GetAttributeSet function returns, in the attributeSet
parameter, the set of attributes currently associated with the geometric object
specified by the geometry parameter. The reference count of the set is
incremented.

Q3Geometry_SetAttributeSet 4

You can use the Q3Geometry_SetAttributeSet function to set the attribute set
associated with a geometric object.

TQ3Status Q3Geometry_SetAttributeSet (

TQ3GeometryObject geometry,

TQ3AttributeSet attributeSet);

geometry A geometric object.

attributeSet

A set of attributes.

DESCRIPTION

The Q3Geometry_SetAttributeSet function sets the attribute set of the
geometric object specified by the geometry parameter to the set specified by
the attributeSet parameter.

Q3Geometry_Submit 4

You can use the Q3Geometry_Submit function to submit a retained geometric
object for drawing, picking, bounding, or writing.

TQ3Status Q3Geometry_Submit (

TQ3GeometryObject geometry,

TQ3ViewObject view);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-59

geometry A geometric object.

view A view.

DESCRIPTION

The Q3Geometry_Submit function submits the geometric object specified by the
geometry parameter for drawing, picking, bounding, or writing according to
the view characteristics specified in the view parameter. The geometric object
must have been created by a call that creates a retained object (for example,
Q3Point_New).

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Creating and Editing Points 4

QuickDraw 3D provides routines that you can use to create and manipulate
points. See “Point Objects” on page 4-37 for the definition of the point object.

Q3Point_New 4

You can use the Q3Point_New function to create a new point.

TQ3GeometryObject Q3Point_New (const TQ3PointData *pointData);

pointData A pointer to a TQ3PointData structure.

DESCRIPTION

The Q3Point_New function returns, as its function result, a new point object
having the location and attributes passed in the fields of the TQ3PointData
structure pointed to by the pointData parameter. If a new point object could
not be created, Q3Point_New returns the value NULL.

C H A P T E R 4

Geometric Objects

4-60 Geometric Objects Reference

Q3Point_Submit 4

You can use the Q3Point_Submit function to submit an immediate point for
drawing, picking, bounding, or writing.

TQ3Status Q3Point_Submit (

const TQ3PointData *pointData,

TQ3ViewObject view);

pointData A pointer to a TQ3PointData structure.

view A view.

DESCRIPTION

The Q3Point_Submit function submits for drawing, picking, bounding, or
writing the immediate point whose location and attribute set are passed in the
fields of the TQ3PointData structure pointed to by the pointData parameter.
The point is drawn, picked, bounded, or written according to the view
characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Point_GetData 4

You can use the Q3Point_GetData function to get the data that defines a point
object and its attributes.

TQ3Status Q3Point_GetData (

TQ3GeometryObject point,

TQ3PointData *pointData);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-61

point A point.

pointData On exit, a pointer to a TQ3PointData structure that contains
information about the point specified by the point parameter.

DESCRIPTION

The Q3Point_GetData function returns, through the pointData parameter,
information about the position and attribute set of the point specified by
the point parameter. QuickDraw 3D allocates memory for the TQ3PointData
structure internally; you must call Q3Point_EmptyData to dispose of
that memory.

Q3Point_SetData 4

You can use the Q3Point_SetData function to set the data that defines a point
object and its attributes.

TQ3Status Q3Point_SetData (

TQ3GeometryObject point,

const TQ3PointData *pointData);

point A point.

pointData A pointer to a TQ3PointData structure.

DESCRIPTION

The Q3Point_SetData function sets the data associated with the point
specified by the point parameter to the data specified by the pointData
parameter.

C H A P T E R 4

Geometric Objects

4-62 Geometric Objects Reference

Q3Point_EmptyData 4

You can use the Q3Point_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3Point_GetData.

TQ3Status Q3Point_EmptyData (TQ3PointData *pointData);

pointData A pointer to a TQ3PointData structure.

DESCRIPTION

The Q3Point_EmptyData function releases the memory occupied by the
TQ3PointData structure pointed to by the pointData parameter; that
memory was allocated by a previous call to Q3Point_GetData.

Q3Point_GetPosition 4

You can use the Q3Point_GetPosition function to get the position of a point.

TQ3Status Q3Point_GetPosition (

TQ3GeometryObject point,

TQ3Point3D *position);

point A point.

position On exit, the position of the specified point.

DESCRIPTION

The Q3Point_GetPosition function returns, in the position parameter, the
position of the point specified by the point parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-63

Q3Point_SetPosition 4

You can use the Q3Point_SetPosition function to set the position of a point.

TQ3Status Q3Point_SetPosition (

TQ3GeometryObject point,

const TQ3Point3D *position);

point A point.

position The desired position of the specified point.

DESCRIPTION

The Q3Point_SetPosition function sets the position of the point specified by
the point parameter to that specified in the position parameter.

Creating and Editing Lines 4

QuickDraw 3D provides routines that you can use to create and manipulate
lines. See “Lines” on page 4-37 for the definition of a line.

Q3Line_New 4

You can use the Q3Line_New function to create a new line.

TQ3GeometryObject Q3Line_New (const TQ3LineData *lineData);

lineData A pointer to a TQ3LineData structure.

DESCRIPTION

The Q3Line_New function returns, as its function result, a new line having the
endpoints and attributes specified by the lineData parameter. If a new line
could not be created, Q3Line_New returns the value NULL.

C H A P T E R 4

Geometric Objects

4-64 Geometric Objects Reference

Q3Line_Submit 4

You can use the Q3Line_Submit function to submit an immediate line for
drawing, picking, bounding, or writing.

TQ3Status Q3Line_Submit (

const TQ3LineData *lineData,

TQ3ViewObject view);

lineData A pointer to a TQ3LineData structure.

view A view.

DESCRIPTION

The Q3Line_Submit function submits for drawing, picking, bounding, or
writing the immediate line whose location and attribute set are specified by the
lineData parameter. The line is drawn, picked, bounded, or written according
to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Line_GetData 4

You can use the Q3Line_GetData function to get the data that defines a line
and its attributes.

TQ3Status Q3Line_GetData (

TQ3GeometryObject line,

TQ3LineData *lineData);

line A line.

lineData On exit, a pointer to a TQ3LineData structure that contains
information about the line specified by the line parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-65

DESCRIPTION

The Q3Line_GetData function returns, through the lineData parameter,
information about the line specified by the line parameter. QuickDraw 3D
allocates memory for the TQ3LineData structure internally; you must call
Q3Line_EmptyData to dispose of that memory.

Q3Line_SetData 4

You can use the Q3Line_SetData function to set the data that defines a line and
its attributes.

TQ3Status Q3Line_SetData (

TQ3GeometryObject line,

const TQ3LineData *lineData);

line A line.

lineData A pointer to a TQ3LineData structure.

DESCRIPTION

The Q3Line_SetData function sets the data associated with the line specified
by the line parameter to the data specified by the lineData parameter.

Q3Line_GetVertexPosition 4

You can use the Q3Line_GetVertexPosition function to get the position of a
vertex of a line.

TQ3Status Q3Line_GetVertexPosition (

TQ3GeometryObject line,

unsigned long index,

TQ3Point3D *position);

line A line.

C H A P T E R 4

Geometric Objects

4-66 Geometric Objects Reference

index An index into the vertices array of the specified line. This
parameter should have the value 0 or 1.

position On exit, the position of the specified vertex.

DESCRIPTION

The Q3Line_GetVertexPosition function returns, in the position parameter,
the position of the vertex having the index specified by the index parameter in
the vertices array of the line specified by the line parameter.

Q3Line_SetVertexPosition 4

You can use the Q3Line_SetVertexPosition function to set the position of a
vertex of a line.

TQ3Status Q3Line_SetVertexPosition (

TQ3GeometryObject line,

unsigned long index,

const TQ3Point3D *position);

line A line.

index An index into the vertices array of the specified line. This
parameter should have the value 0 or 1.

position The desired position of the specified vertex.

DESCRIPTION

The Q3Line_SetVertexPosition function sets the position of the vertex
having the index specified by the index parameter in the vertices array of
the line specified by the line parameter to that specified in the position
parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-67

Q3Line_GetVertexAttributeSet 4

You can use the Q3Line_GetVertexAttributeSet function to get the attribute
set of a vertex of a line.

TQ3Status Q3Line_GetVertexAttributeSet (

TQ3GeometryObject line,

unsigned long index,

TQ3AttributeSet *attributeSet);

line A line.

index An index into the vertices array of the specified line.
This parameter should have the value 0 or 1.

attributeSet

On exit, a pointer to a vertex attribute set for the
specified vertex.

DESCRIPTION

The Q3Line_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes for the vertex having the index specified by the
index parameter in the vertices array of the line specified by the line
parameter. The reference count of the set is incremented.

Q3Line_SetVertexAttributeSet 4

You can use the Q3Line_SetVertexAttributeSet function to set the attribute
set of a vertex of a line.

TQ3Status Q3Line_SetVertexAttributeSet (

TQ3GeometryObject line,

unsigned long index,

TQ3AttributeSet attributeSet);

line A line.

C H A P T E R 4

Geometric Objects

4-68 Geometric Objects Reference

index An index into the vertices array of the specified line. This
parameter should have the value 0 or 1.

attributeSet

The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3Line_SetVertexAttributeSet function sets the attribute set of a vertex
to the set specified in the attributeSet parameter. The vertex is identified
by the specified index into the vertices array of the line specified by the
line parameter.

Q3Line_EmptyData 4

You can use the Q3Line_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3Line_GetData.

TQ3Status Q3Line_EmptyData (TQ3LineData *lineData);

lineData A pointer to a TQ3LineData structure.

DESCRIPTION

The Q3Line_EmptyData function releases the memory occupied by the
TQ3LineData structure pointed to by the lineData parameter; that memory
was allocated by a previous call to Q3Line_GetData.

Creating and Editing Polylines 4

QuickDraw 3D provides routines that you can use to create and manipulate
polylines. See “Polylines” on page 4-38 for the definition of a polyline.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-69

Q3PolyLine_New 4

You can use the Q3PolyLine_New function to create a new polyline.

TQ3GeometryObject Q3PolyLine_New (

const TQ3PolyLineData *polyLineData);

polyLineData

A pointer to a TQ3PolyLineData structure.

DESCRIPTION

The Q3PolyLine_New function returns, as its function result, a new polyline
having the vertices and attributes specified by the polyLineData parameter. If
a new polyline could not be created, Q3PolyLine_New returns the value NULL.

Q3PolyLine_Submit 4

You can use the Q3PolyLine_Submit function to submit an immediate polyline
for drawing, picking, bounding, or writing.

TQ3Status Q3PolyLine_Submit (

const TQ3PolyLineData *polyLineData,

TQ3ViewObject view);

polyLineData

A pointer to a TQ3PolyLineData structure.

view A view.

DESCRIPTION

The Q3PolyLine_Submit function submits for drawing, picking, bounding, or
writing the immediate polyline whose shape and attribute sets are specified
by the polyLineData parameter. The polyline is drawn, picked, bounded, or
written according to the view characteristics specified in the view parameter.

C H A P T E R 4

Geometric Objects

4-70 Geometric Objects Reference

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3PolyLine_GetData 4

You can use the Q3PolyLine_GetData function to get the data that defines a
polyline and its attributes.

TQ3Status Q3PolyLine_GetData (

TQ3GeometryObject polyLine,

TQ3PolyLineData *polyLineData);

polyLine A polyline.

polyLineData

On exit, a pointer to a TQ3PolyLineData structure that contains
information about the polyline specified by the polyLine
parameter.

DESCRIPTION

The Q3PolyLine_GetData function returns, through the polyLineData
parameter, information about the polyline specified by the polyLine
parameter. QuickDraw 3D allocates memory for the TQ3PolyLineData
structure internally; you must call Q3PolyLine_EmptyData to dispose of
that memory.

Q3PolyLine_SetData 4

You can use the Q3PolyLine_SetData function to set the data that defines a
polyline and its attributes.

TQ3Status Q3PolyLine_SetData (

TQ3GeometryObject polyLine,

const TQ3PolyLineData *polyLineData);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-71

polyLine A polyline.

polyLineData

A pointer to a TQ3PolyLineData structure.

DESCRIPTION

The Q3PolyLine_SetData function sets the data associated with the polyline
specified by the polyLine parameter to the data specified by the
polyLineData parameter.

Q3PolyLine_EmptyData 4

You can use the Q3PolyLine_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3PolyLine_GetData.

TQ3Status Q3PolyLine_EmptyData (TQ3PolyLineData *polyLineData);

polyLineData

A pointer to a TQ3PolyLineData structure.

DESCRIPTION

The Q3PolyLine_EmptyData function releases the memory occupied by the
TQ3PolyLineData structure pointed to by the polyLineData parameter; that
memory was allocated by a previous call to Q3PolyLine_GetData.

C H A P T E R 4

Geometric Objects

4-72 Geometric Objects Reference

Q3PolyLine_GetVertexPosition 4

You can use the Q3PolyLine_GetVertexPosition function to get the position
of a vertex of a polyline.

TQ3Status Q3PolyLine_GetVertexPosition (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3Point3D *position);

polyLine A polyline.

index An index into the vertices array of the specified polyline. This
index should be greater than or equal to 0 and less than the
number of vertices in the array.

position On exit, the position of the specified vertex.

DESCRIPTION

The Q3PolyLine_GetVertexPosition function returns, in the position
parameter, the position of the vertex having the index specified by the
index parameter in the vertices array of the polyline specified by the
polyLine parameter.

Q3PolyLine_SetVertexPosition 4

You can use the Q3PolyLine_SetVertexPosition function to set the position
of a vertex of a polyline.

TQ3Status Q3PolyLine_SetVertexPosition (

TQ3GeometryObject polyLine,

unsigned long index,

const TQ3Point3D *position);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-73

position The desired position of the specified vertex.

DESCRIPTION

The Q3PolyLine_SetVertexPosition function sets the position of a vertex to
that specified in the position parameter. The vertex has the index specified by
the index parameter into the vertices array of the polyline specified by the
polyLine parameter.

Q3PolyLine_GetVertexAttributeSet 4

You can use the Q3PolyLine_GetVertexAttributeSet function to get the
attribute set of a vertex of a polyline.

TQ3Status Q3PolyLine_GetVertexAttributeSet (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3AttributeSet *attributeSet);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

attributeSet

On exit, a pointer to a vertex attribute set for the
specified vertex.

DESCRIPTION

The Q3PolyLine_GetVertexAttributeSet function returns, in the
attributeSet parameter, the set of attributes for the vertex having the
index specified by the index parameter in the vertices array of the
polyline specified by the polyLine parameter. The reference count of the
set is incremented.

C H A P T E R 4

Geometric Objects

4-74 Geometric Objects Reference

Q3PolyLine_SetVertexAttributeSet 4

You can use the Q3PolyLine_SetVertexAttributeSet function to set the
attribute set of a vertex of a polyline.

TQ3Status Q3PolyLine_SetVertexAttributeSet (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3AttributeSet attributeSet);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

attributeSet

The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3PolyLine_SetVertexAttributeSet function sets the attribute set of the
vertex having the index specified by the index parameter in the vertices
array of the polyline specified by the polyLine parameter to the set specified in
the attributeSet parameter.

Q3PolyLine_GetSegmentAttributeSet 4

You can use the Q3PolyLine_GetSegmentAttributeSet function to get the
attribute set of a segment of a polyline.

TQ3Status Q3PolyLine_GetSegmentAttributeSet (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3AttributeSet *attributeSet);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-75

attributeSet

On exit, a pointer to an attribute set for the specified segment.

DESCRIPTION

The Q3PolyLine_GetSegmentAttributeSet function returns, in the
attributeSet parameter, the set of attributes for a segment of a polyline. The
segment is defined by the two vertices having indices index and index+1 in
the vertices array of the polyline specified by the polyLine parameter. The
reference count of the set is incremented.

Q3PolyLine_SetSegmentAttributeSet 4

You can use the Q3PolyLine_SetSegmentAttributeSet function to set the
attribute set of a segment of a polyline.

TQ3Status Q3PolyLine_SetSegmentAttributeSet (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3AttributeSet attributeSet);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

attributeSet

The desired set of attributes for the specified segment.

DESCRIPTION

The Q3PolyLine_SetSegmentAttributeSet function sets the attribute set of a
segment of a polyline to the set specified in the attributeSet parameter. The
segment is defined by the two vertices having indices index and index+1 in
the vertices array of the polyline specified by the polyLine parameter.

C H A P T E R 4

Geometric Objects

4-76 Geometric Objects Reference

Creating and Editing Triangles 4

QuickDraw 3D provides routines that you can use to create and manipulate
triangles. See “Triangles” on page 4-40 for the definition of a triangle.

Q3Triangle_New 4

You can use the Q3Triangle_New function to create a new triangle.

TQ3GeometryObject Q3Triangle_New (

const TQ3TriangleData *triangleData);

triangleData A pointer to a TQ3TriangleData structure.

DESCRIPTION

The Q3Triangle_New function returns, as its function result, a new triangle
having the vertices and attributes specified by the triangleData parameter. If
a new triangle could not be created, Q3Triangle_New returns the value NULL.

Q3Triangle_Submit 4

You can use the Q3Triangle_Submit function to submit an immediate triangle
for drawing, picking, bounding, or writing.

TQ3Status Q3Triangle_Submit (

const TQ3TriangleData *triangleData,

TQ3ViewObject view);

triangleData

A pointer to a TQ3TriangleData structure.

view A view.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-77

DESCRIPTION

The Q3Triangle_Submit function submits for drawing, picking, bounding, or
writing the immediate triangle whose shape and attribute set are specified
by the triangleData parameter. The triangle is drawn, picked, bounded, or
written according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Triangle_GetData 4

You can use the Q3Triangle_GetData function to get the data that defines a
triangle and its attributes.

TQ3Status Q3Triangle_GetData (

TQ3GeometryObject triangle,

TQ3TriangleData *triangleData);

triangle A triangle.

triangleData

On exit, a pointer to a TQ3TriangleData structure that contains
information about the triangle specified by the triangle
parameter.

DESCRIPTION

The Q3Triangle_GetData function returns, through the triangleData
parameter, information about the triangle specified by the triangle parameter.
QuickDraw 3D allocates memory for the TQ3TriangleData structure
internally; you must call Q3Triangle_EmptyData to dispose of that memory.

C H A P T E R 4

Geometric Objects

4-78 Geometric Objects Reference

Q3Triangle_SetData 4

You can use the Q3Triangle_SetData function to set the data that defines a
triangle and its attributes.

TQ3Status Q3Triangle_SetData (

TQ3GeometryObject triangle,

const TQ3TriangleData *triangleData);

triangle A triangle.

triangleData

A pointer to a TQ3TriangleData structure.

DESCRIPTION

The Q3Triangle_SetData function sets the data associated with the triangle
specified by the triangle parameter to the data specified by the
triangleData parameter.

Q3Triangle_EmptyData 4

You can use the Q3Triangle_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3Triangle_GetData.

TQ3Status Q3Triangle_EmptyData (TQ3TriangleData *triangleData);

triangleData

A pointer to a TQ3TriangleData structure.

DESCRIPTION

The Q3Triangle_EmptyData function releases the memory occupied by the
TQ3TriangleData structure pointed to by the triangleData parameter; that
memory was allocated by a previous call to Q3Triangle_GetData.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-79

Q3Triangle_GetVertexPosition 4

You can use the Q3Triangle_GetVertexPosition function to get the position
of a vertex of a triangle.

TQ3Status Q3Triangle_GetVertexPosition (

TQ3GeometryObject triangle,

unsigned long index,

TQ3Point3D *point);

triangle A triangle.

index An index into the vertices array of the specified triangle. This
parameter should have the value 0, 1, or 2.

point On exit, the position of the specified vertex.

DESCRIPTION

The Q3Triangle_GetVertexPosition function returns, in the point
parameter, the position of the vertex having the index specified by the
index parameter in the vertices array of the triangle specified by the
triangle parameter.

Q3Triangle_SetVertexPosition 4

You can use the Q3Triangle_SetVertexPosition function to set the position
of a vertex of a triangle.

TQ3Status Q3Triangle_SetVertexPosition (

TQ3GeometryObject triangle,

unsigned long index,

const TQ3Point3D *point);

triangle A triangle.

index An index into the vertices array of the specified triangle. This
parameter should have the value 0, 1, or 2.

C H A P T E R 4

Geometric Objects

4-80 Geometric Objects Reference

point The desired position of the specified vertex.

DESCRIPTION

The Q3Triangle_SetVertexPosition function sets the position of the vertex
having the index specified by the index parameter in the vertices array of the
triangle specified by the triangle parameter to that specified in the point
parameter.

Q3Triangle_GetVertexAttributeSet 4

You can use the Q3Triangle_GetVertexAttributeSet function to get the
attribute set of a vertex of a triangle.

TQ3Status Q3Triangle_GetVertexAttributeSet (

TQ3GeometryObject triangle,

unsigned long index,

TQ3AttributeSet *attributeSet);

triangle A triangle.

index An index into the vertices array of the specified triangle.
This parameter should have the value 0, 1, or 2.

attributeSet

On exit, a pointer to a vertex attribute set for the
specified vertex.

DESCRIPTION

The Q3Triangle_GetVertexAttributeSet function returns, in the
attributeSet parameter, the set of attributes for the vertex having the
index specified by the index parameter in the vertices array of the
triangle specified by the triangle parameter. The reference count of the
set is incremented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-81

Q3Triangle_SetVertexAttributeSet 4

You can use the Q3Triangle_SetVertexAttributeSet function to set the
attribute set of a vertex of a triangle.

TQ3Status Q3Triangle_SetVertexAttributeSet (

TQ3GeometryObject triangle,

unsigned long index,

TQ3AttributeSet attributeSet);

triangle A triangle.

index An index into the vertices array of the specified triangle. This
parameter should have the value 0, 1, or 2.

attributeSet

The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3Triangle_SetVertexAttributeSet function sets the attribute set of the
vertex having the index specified by the index parameter in the vertices
array of the triangle specified by the triangle parameter to the set specified in
the attributeSet parameter.

Creating and Editing Simple Polygons 4

QuickDraw 3D provides routines that you can use to create and manipulate
simple polygons. See “Simple Polygons” on page 4-41 for the definition of
a simple polygon.

C H A P T E R 4

Geometric Objects

4-82 Geometric Objects Reference

Q3Polygon_New 4

You can use the Q3Polygon_New function to create a new simple polygon.

TQ3GeometryObject Q3Polygon_New (

const TQ3PolygonData *polygonData);

polygonData A pointer to a TQ3PolygonData structure.

DESCRIPTION

The Q3Polygon_New function returns, as its function result, a new simple
polygon having the vertices and attributes specified by the polygonData
parameter. If a new simple polygon could not be created, Q3Polygon_New
returns the value NULL.

Q3Polygon_Submit 4

You can use the Q3Polygon_Submit function to submit an immediate simple
polygon for drawing, picking, bounding, or writing.

TQ3Status Q3Polygon_Submit (

const TQ3PolygonData *polygonData,

TQ3ViewObject view);

polygonData A pointer to a TQ3PolygonData structure.

view A view.

DESCRIPTION

The Q3Polygon_Submit function submits for drawing, picking, bounding, or
writing the immediate simple polygon whose shape and attribute set are
specified by the polygonData parameter. The simple polygon is drawn, picked,
bounded, or written according to the view characteristics specified in the view
parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-83

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Polygon_GetData 4

You can use the Q3Polygon_GetData function to get the data that defines a
simple polygon and its attributes.

TQ3Status Q3Polygon_GetData (

TQ3GeometryObject polygon,

TQ3PolygonData *polygonData);

polygon A simple polygon.

polygonData On exit, a pointer to a TQ3PolygonData structure that contains
information about the simple polygon specified by the polygon
parameter.

DESCRIPTION

The Q3Polygon_GetData function returns, through the polygonData
parameter, information about the simple polygon specified by the polygon
parameter. QuickDraw 3D allocates memory for the TQ3PolygonData structure
internally; you must call Q3Polygon_EmptyData to dispose of that memory.

Q3Polygon_SetData 4

You can use the Q3Polygon_SetData function to set the data that defines a
simple polygon and its attributes.

TQ3Status Q3Polygon_SetData (

TQ3GeometryObject polygon,

const TQ3PolygonData *polygonData);

polygon A simple polygon.

C H A P T E R 4

Geometric Objects

4-84 Geometric Objects Reference

polygonData A pointer to a TQ3PolygonData structure.

DESCRIPTION

The Q3Polygon_SetData function sets the data associated with the simple
polygon specified by the polygon parameter to the data specified by the
polygonData parameter.

Q3Polygon_EmptyData 4

You can use the Q3Polygon_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3Polygon_GetData.

TQ3Status Q3Polygon_EmptyData (TQ3PolygonData *polygonData);

polygonData A pointer to a TQ3PolygonData structure.

DESCRIPTION

The Q3Polygon_EmptyData function releases the memory occupied by the
TQ3PolygonData structure pointed to by the polygonData parameter; that
memory was allocated by a previous call to Q3Polygon_GetData.

Q3Polygon_GetVertexPosition 4

You can use the Q3Polygon_GetVertexPosition function to get the position of
a vertex of a simple polygon.

TQ3Status Q3Polygon_GetVertexPosition (

TQ3GeometryObject polygon,

unsigned long index,

TQ3Point3D *point);

polygon A simple polygon.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-85

index An index into the vertices array of the specified
simple polygon.

point On exit, the position of the specified vertex.

DESCRIPTION

The Q3Polygon_GetVertexPosition function returns, in the point parameter,
the position of the vertex having the index specified by the index parameter in
the vertices array of the simple polygon specified by the polygon parameter.

Q3Polygon_SetVertexPosition 4

You can use the Q3Polygon_SetVertexPosition function to set the position of
a vertex of a simple polygon.

TQ3Status Q3Polygon_SetVertexPosition (

TQ3GeometryObject polygon,

unsigned long index,

const TQ3Point3D *point);

polygon A simple polygon.

index An index into the vertices array of the specified simple
polygon.

point The desired position of the specified vertex.

DESCRIPTION

The Q3Polygon_SetVertexPosition function sets the position of the vertex
having the index specified by the index parameter in the vertices array of the
simple polygon specified by the polygon parameter to that specified in the
point parameter.

C H A P T E R 4

Geometric Objects

4-86 Geometric Objects Reference

Q3Polygon_GetVertexAttributeSet 4

You can use the Q3Polygon_GetVertexAttributeSet function to get the
attribute set of a vertex of a simple polygon.

TQ3Status Q3Polygon_GetVertexAttributeSet (

TQ3GeometryObject polygon,

unsigned long index,

TQ3AttributeSet *attributeSet);

polygon A simple polygon.

index An index into the vertices array of the specified
simple polygon.

attributeSet

On exit, a pointer to a vertex attribute set for the
specified vertex.

DESCRIPTION

The Q3Polygon_GetVertexAttributeSet function returns, in the
attributeSet parameter, the set of attributes for the vertex having the
index specified by the index parameter in the vertices array of the
simple polygon specified by the polygon parameter. The reference count
of the set is incremented.

Q3Polygon_SetVertexAttributeSet 4

You can use the Q3Polygon_SetVertexAttributeSet function to set the
attribute set of a vertex of a simple polygon.

TQ3Status Q3Polygon_SetVertexAttributeSet (

TQ3GeometryObject polygon,

unsigned long index,

TQ3AttributeSet attributeSet);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-87

polygon A simple polygon.

index An index into the vertices array of the specified simple
polygon.

attributeSet

The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3Polygon_SetVertexAttributeSet function sets the attribute set of the
vertex having the index specified by the index parameter in the vertices
array of the simple polygon specified by the polygon parameter to the set
specified in the attributeSet parameter.

Creating and Editing General Polygons 4

QuickDraw 3D provides routines that you can use to create and manipulate
general polygons. See “General Polygons” on page 4-42 for the definition of
a general polygon.

Q3GeneralPolygon_New 4

You can use the Q3GeneralPolygon_New function to create a new
general polygon.

TQ3GeometryObject Q3GeneralPolygon_New (

const TQ3GeneralPolygonData

*generalPolygonData);

generalPolygonData

A pointer to a TQ3GeneralPolygonData structure.

DESCRIPTION

The Q3GeneralPolygon_New function returns, as its function result, a new
general polygon having the contours and attributes specified by the
generalPolygonData parameter. If a new general polygon could not be
created, Q3GeneralPolygon_New returns the value NULL.

C H A P T E R 4

Geometric Objects

4-88 Geometric Objects Reference

Q3GeneralPolygon_Submit 4

You can use the Q3GeneralPolygon_Submit function to submit an immediate
general polygon for drawing, picking, bounding, or writing.

TQ3Status Q3GeneralPolygon_Submit (

const TQ3GeneralPolygonData

*generalPolygonData,

TQ3ViewObject view);

generalPolygonData

A pointer to a TQ3GeneralPolygonData structure.

view A view.

DESCRIPTION

The Q3GeneralPolygon_Submit function submits for drawing, picking,
bounding, or writing the immediate general polygon whose shape and
attribute set are specified by the generalPolygonData parameter. The general
polygon is drawn, picked, bounded, or written according to the view
characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3GeneralPolygon_GetData 4

You can use the Q3GeneralPolygon_GetData function to get the data that
defines a general polygon and its attributes.

TQ3Status Q3GeneralPolygon_GetData (

TQ3GeometryObject generalPolygon,

TQ3GeneralPolygonData *generalPolygonData);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-89

generalPolygon

A general polygon.

generalPolygonData

On exit, a pointer to a TQ3GeneralPolygonData structure that
contains information about the general polygon specified by the
generalPolygon parameter.

DESCRIPTION

The Q3GeneralPolygon_GetData function returns, through the
generalPolygonData parameter, information about the general polygon
specified by the generalPolygon parameter. QuickDraw 3D allocates
memory for the TQ3GeneralPolygonData structure internally; you must
call Q3GeneralPolygon_EmptyData to dispose of that memory.

Q3GeneralPolygon_SetData 4

You can use the Q3GeneralPolygon_SetData function to set the data that
defines a general polygon and its attributes.

TQ3Status Q3GeneralPolygon_SetData (

TQ3GeometryObject generalPolygon,

const TQ3GeneralPolygonData

*generalPolygonData);

generalPolygon

A general polygon.

generalPolygonData

A pointer to a TQ3GeneralPolygonData structure.

DESCRIPTION

The Q3GeneralPolygon_SetData function sets the data associated with the
general polygon specified by the generalPolygon parameter to the data
specified by the generalPolygonData parameter.

C H A P T E R 4

Geometric Objects

4-90 Geometric Objects Reference

Q3GeneralPolygon_EmptyData 4

You can use the Q3GeneralPolygon_EmptyData function to release the
memory occupied by the data structure returned by a previous call to
Q3GeneralPolygon_GetData.

TQ3Status Q3GeneralPolygon_EmptyData (

TQ3GeneralPolygonData *generalPolygonData);

generalPolygonData

A pointer to a TQ3GeneralPolygonData structure.

DESCRIPTION

The Q3GeneralPolygon_EmptyData function releases the memory occupied by
the TQ3GeneralPolygonData structure pointed to by the generalPolygonData
parameter; that memory was allocated by a previous call to
Q3GeneralPolygon_GetData.

Q3GeneralPolygon_GetVertexPosition 4

You can use the Q3GeneralPolygon_GetVertexPosition function to get the
position of a vertex of a general polygon.

TQ3Status Q3GeneralPolygon_GetVertexPosition (

TQ3GeometryObject generalPolygon,

unsigned long contourIndex,

unsigned long pointIndex,

TQ3Point3D *position);

generalPolygon

A general polygon.

contourIndex

An index into the contours array of the specified general
polygon. This index should be greater than or equal to 0 and
less than the number of contours in the contours array.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-91

pointIndex An index into the vertices array of the specified contour. This
index should be greater than or equal to 0 and less than the
number of points in the vertices array.

position On exit, the position of the specified vertex.

DESCRIPTION

The Q3GeneralPolygon_GetVertexPosition function returns, in the
position parameter, the position of a vertex in the general polygon specified
by the generalPolygon parameter. The vertex has the index specified by the
pointIndex parameter in the vertices array of the contour specified by the
contourIndex parameter.

Q3GeneralPolygon_SetVertexPosition 4

You can use the Q3GeneralPolygon_SetVertexPosition function to set the
position of a vertex of a general polygon.

TQ3Status Q3GeneralPolygon_SetVertexPosition (

TQ3GeometryObject generalPolygon,

unsigned long contourIndex,

unsigned long pointIndex,

const TQ3Point3D *position);

generalPolygon

A general polygon.

contourIndex

An index into the contours array of the specified
general polygon.

pointIndex An index into the vertices array of the specified contour.

position The desired position of the specified vertex.

C H A P T E R 4

Geometric Objects

4-92 Geometric Objects Reference

DESCRIPTION

The Q3GeneralPolygon_SetVertexPosition function sets the position of a
vertex in the general polygon specified by the generalPolygon parameter.
The vertex has the index specified by the pointIndex parameter in the
vertices array of the contour specified by the contourIndex parameter to
the position specified in the position parameter.

Q3GeneralPolygon_GetVertexAttributeSet 4

You can use the Q3GeneralPolygon_GetVertexAttributeSet function to get
the attribute set of a vertex of a general polygon.

TQ3Status Q3GeneralPolygon_GetVertexAttributeSet (

TQ3GeometryObject generalPolygon,

unsigned long contourIndex,

unsigned long pointIndex,

TQ3AttributeSet *attributeSet);

generalPolygon

A general polygon.

contourIndex

An index into the contours array of the specified
general polygon.

pointIndex An index into the vertices array of the specified contour.

attributeSet

On exit, a pointer to a vertex attribute set for the
specified vertex.

DESCRIPTION

The Q3GeneralPolygon_GetVertexAttributeSet function returns, in the
attributeSet parameter, the set of attributes for the vertex having the
index specified by the pointIndex parameter in the vertices array of the
contour specified by the contourIndex parameter of the general polygon
specified by the generalPolygon parameter. The reference count of the set
is incremented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-93

Q3GeneralPolygon_SetVertexAttributeSet 4

You can use the Q3GeneralPolygon_SetVertexAttributeSet function to set
the attribute set of a vertex of a general polygon.

TQ3Status Q3GeneralPolygon_SetVertexAttributeSet (

TQ3GeometryObject generalPolygon,

unsigned long contourIndex,

unsigned long pointIndex,

TQ3AttributeSet attributeSet);

generalPolygon

A general polygon.

contourIndex

An index into the contours array of the specified general
polygon.

pointIndex An index into the vertices array of the specified contour.

attributeSet

The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3GeneralPolygon_SetVertexAttributeSet function sets the attribute
set of the vertex having the index specified by the pointIndex parameter in
the vertices array of the contour specified by the contourIndex parameter
in the general polygon specified by the generalPolygon parameter to the set
specified in the attributeSet parameter.

C H A P T E R 4

Geometric Objects

4-94 Geometric Objects Reference

Q3GeneralPolygon_GetShapeHint 4

You can use the Q3GeneralPolygon_GetShapeHint function to get the shape
hint of a general polygon.

TQ3Status Q3GeneralPolygon_GetShapeHint (

TQ3GeometryObject generalPolygon,

TQ3GeneralPolygonShapeHint *shapeHint);

generalPolygon

A general polygon.

shapeHint On exit, the shape hint of the specified general polygon.

DESCRIPTION

The Q3GeneralPolygon_GetShapeHint function returns, in the shapeHint
parameter, the shape hint of the general polygon specified by the
generalPolygon parameter. See “General Polygons” on page 4-42 for a
description of the available shape hints.

Q3GeneralPolygon_SetShapeHint 4

You can use the Q3GeneralPolygon_SetShapeHint function to set the shape
hint of a general polygon.

TQ3Status Q3GeneralPolygon_SetShapeHint (

TQ3GeometryObject generalPolygon,

TQ3GeneralPolygonShapeHint shapeHint);

generalPolygon

A general polygon.

shapeHint The desired shape hint of the specified general polygon.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-95

DESCRIPTION

The Q3GeneralPolygon_SetShapeHint function sets the shape hint of the
general polygon specified by the generalPolygon parameter to the hint
specified in the shapeHint parameter. See “General Polygons” on page 4-42 for
a description of the available shape hints.

Creating and Editing Boxes 4

QuickDraw 3D provides routines that you can use to create and manipulate
boxes. See “Boxes” on page 4-45 for the definition of a box.

Q3Box_New 4

You can use the Q3Box_New function to create a new box.

TQ3GeometryObject Q3Box_New (const TQ3BoxData *boxData);

boxData A pointer to a TQ3BoxData structure.

DESCRIPTION

The Q3Box_New function returns, as its function result, a new box having the
sides and attributes specified by the boxData parameter. If a new box could not
be created, Q3Box_New returns the value NULL.

Q3Box_Submit 4

You can use the Q3Box_Submit function to submit an immediate box for
drawing, picking, bounding, or writing.

TQ3Status Q3Box_Submit (

const TQ3BoxData *boxData,

TQ3ViewObject view);

C H A P T E R 4

Geometric Objects

4-96 Geometric Objects Reference

boxData A pointer to a TQ3BoxData structure.

view A view.

DESCRIPTION

The Q3Box_Submit function submits for drawing, picking, bounding, or
writing the immediate box whose shape and attribute set are specified by the
boxData parameter. The box is drawn, picked, bounded, or written according
to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Box_GetData 4

You can use the Q3Box_GetData function to get the data that defines a box and
its attributes.

TQ3Status Q3Box_GetData (

TQ3GeometryObject box,

TQ3BoxData *boxData);

box A box.

boxData On exit, a pointer to a TQ3BoxData structure that contains
information about the box specified by the box parameter.

DESCRIPTION

The Q3Box_GetData function returns, through the boxData parameter,
information about the box specified by the box parameter. QuickDraw 3D
allocates memory for the TQ3BoxData structure internally; you must call
Q3Box_EmptyData to dispose of that memory.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-97

Q3Box_SetData 4

You can use the Q3Box_SetData function to set the data that defines a box and
its attributes.

TQ3Status Q3Box_SetData (

TQ3GeometryObject box,

const TQ3BoxData *boxData);

box A box.

boxData A pointer to a TQ3BoxData structure.

DESCRIPTION

The Q3Box_SetData function sets the data associated with the box specified by
the box parameter to the data specified by the boxData parameter.

Q3Box_EmptyData 4

You can use the Q3Box_EmptyData function to release the memory occupied by
the data structure returned by a previous call to Q3Box_GetData.

TQ3Status Q3Box_EmptyData (TQ3BoxData *boxData);

boxData A pointer to a TQ3BoxData structure.

DESCRIPTION

The Q3Box_EmptyData function releases the memory occupied by the
TQ3BoxData structure pointed to by the boxData parameter; that memory
was allocated by a previous call to Q3Box_GetData.

C H A P T E R 4

Geometric Objects

4-98 Geometric Objects Reference

Q3Box_GetOrigin 4

You can use the Q3Box_GetOrigin function to get the origin of a box.

TQ3Status Q3Box_GetOrigin (

TQ3GeometryObject box,

TQ3Point3D *origin);

box A box.

origin On exit, the origin of the specified box.

DESCRIPTION

The Q3Box_GetOrigin function returns, in the origin parameter, the origin of
the box specified by the box parameter.

Q3Box_SetOrigin 4

You can use the Q3Box_SetOrigin function to set the origin of a box.

TQ3Status Q3Box_SetOrigin (

TQ3GeometryObject box,

const TQ3Point3D *origin);

box A box.

origin The desired origin of the specified box.

DESCRIPTION

The Q3Box_SetOrigin function sets the origin of the box specified by the box
parameter to that specified in the origin parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-99

Q3Box_GetOrientation 4

You can use the Q3Box_GetOrientation function to get the orientation of a box.

TQ3Status Q3Box_GetOrientation (

TQ3GeometryObject box,

TQ3Vector3D *orientation);

box A box.

orientation

On exit, the orientation of the specified box.

DESCRIPTION

The Q3Box_GetOrientation function returns, in the orientation parameter,
the orientation of the box specified by the box parameter.

Q3Box_SetOrientation 4

You can use the Q3Box_SetOrientation function to set the orientation of a box.

TQ3Status Q3Box_SetOrientation (

TQ3GeometryObject box,

const TQ3Vector3D *orientation);

box A box.

orientation

The desired orientation of the specified box.

DESCRIPTION

The Q3Box_SetOrientation function sets the orientation of the box specified
by the box parameter to that specified in the orientation parameter.

C H A P T E R 4

Geometric Objects

4-100 Geometric Objects Reference

Q3Box_GetMajorAxis 4

You can use the Q3Box_GetMajorAxis function to get the major axis of a box.

TQ3Status Q3Box_GetMajorAxis (

TQ3GeometryObject box,

TQ3Vector3D *majorAxis);

box A box.

majorAxis On exit, the major axis of the specified box.

DESCRIPTION

The Q3Box_GetMajorAxis function returns, in the majorAxis parameter, the
major axis of the box specified by the box parameter.

Q3Box_SetMajorAxis 4

You can use the Q3Box_SetMajorAxis function to set the major axis of a box.

TQ3Status Q3Box_SetMajorAxis (

TQ3GeometryObject box,

const TQ3Vector3D *majorAxis);

box A box.

majorAxis The desired major axis of the specified box.

DESCRIPTION

The Q3Box_SetMajorAxis function sets the major axis of the box specified by
the box parameter to that specified in the majorAxis parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-101

Q3Box_GetMinorAxis 4

You can use the Q3Box_GetMinorAxis function to get the minor axis of a box.

TQ3Status Q3Box_GetMinorAxis (

TQ3GeometryObject box,

TQ3Vector3D *minorAxis);

box A box.

minorAxis On exit, the minor axis of the specified box.

DESCRIPTION

The Q3Box_GetMinorAxis function returns, in the minorAxis parameter, the
minor axis of the box specified by the box parameter.

Q3Box_SetMinorAxis 4

You can use the Q3Box_SetMinorAxis function to set the minor axis of a box.

TQ3Status Q3Box_SetMinorAxis (

TQ3GeometryObject box,

const TQ3Vector3D *minorAxis);

box A box.

minorAxis The desired minor axis of the specified box.

DESCRIPTION

The Q3Box_SetMinorAxis function sets the minor axis of the box specified by
the box parameter to that specified in the minorAxis parameter.

C H A P T E R 4

Geometric Objects

4-102 Geometric Objects Reference

Q3Box_GetFaceAttributeSet 4

You can use the Q3Box_GetFaceAttributeSet function to get the attribute set
of a face of a box.

TQ3Status Q3Box_GetFaceAttributeSet (

TQ3GeometryObject box,

unsigned long faceIndex,

TQ3AttributeSet *faceAttributeSet);

box A box.

faceIndex An index into the array of faces for the specified box.

faceAttributeSet

On exit, a pointer to an attribute set for the specified face.

DESCRIPTION

The Q3Box_GetFaceAttributeSet function returns, in the faceAttributeSet
parameter, the set of attributes for the face having the index faceIndex
of the box specified by the box parameter. The reference count of the set
is incremented.

Q3Box_SetFaceAttributeSet 4

You can use the Q3Box_SetFaceAttributeSet function to set the attribute set
of a face of a box.

TQ3Status Q3Box_SetFaceAttributeSet (

TQ3GeometryObject box,

unsigned long faceIndex,

TQ3AttributeSet faceAttributeSet);

box A box.

faceIndex An index into the array of faces for the specified box.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-103

faceAttributeSet

The desired set of attributes for the specified face.

DESCRIPTION

The Q3Box_SetFacetAttributeSet function sets the attribute set of the face
having index faceIndex of the box specified by the box parameter to the set
specified by the faceAttributeSet parameter.

Creating and Editing Trigrids 4

QuickDraw 3D provides routines that you can use to create and manipulate
trigrids. See “Trigrids” on page 4-47 for the definition of a trigrid.

Q3TriGrid_New 4

You can use the Q3TriGrid_New function to create a new trigrid.

TQ3GeometryObject Q3TriGrid_New (

const TQ3TriGridData *triGridData);

triGridData A pointer to a TQ3TriGridData structure.

DESCRIPTION

The Q3TriGrid_New function returns, as its function result, a new trigrid
having the vertices and attributes specified by the triGridData parameter. If a
new trigrid could not be created, Q3TriGrid_New returns the value NULL.

C H A P T E R 4

Geometric Objects

4-104 Geometric Objects Reference

Q3TriGrid_Submit 4

You can use the Q3TriGrid_Submit function to submit an immediate trigrid for
drawing, picking, bounding, or writing.

TQ3Status Q3TriGrid_Submit (

const TQ3TriGridData *triGridData,

TQ3ViewObject view);

triGridData A pointer to a TQ3TriGridData structure.

view A view.

DESCRIPTION

The Q3TriGrid_Submit function submits for drawing, picking, bounding, or
writing the immediate trigrid whose shape and attribute set are specified by
the triGridData parameter. The trigrid is drawn, picked, bounded, or written
according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3TriGrid_GetData 4

You can use the Q3TriGrid_GetData function to get the data that defines a
trigrid and its attributes.

TQ3Status Q3TriGrid_GetData (

TQ3GeometryObject trigrid,

TQ3TriGridData *triGridData);

trigrid A trigrid.

triGridData On exit, a pointer to a TQ3TriGridData structure that
contains information about the trigrid specified by the
trigrid parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-105

DESCRIPTION

The Q3TriGrid_GetData function returns, through the triGridData
parameter, information about the trigrid specified by the trigrid parameter.
QuickDraw 3D allocates memory for the TQ3TriGridData structure internally;
you must call Q3TriGrid_EmptyData to dispose of that memory.

Q3TriGrid_SetData 4

You can use the Q3TriGrid_SetData function to set the data that defines a
trigrid and its attributes.

TQ3Status Q3TriGrid_SetData (

TQ3GeometryObject trigrid,

const TQ3TriGridData *triGridData);

trigrid A trigrid.

triGridData A pointer to a TQ3TriGridData structure.

DESCRIPTION

The Q3TriGrid_SetData function sets the data associated with the trigrid
specified by the trigrid parameter to the data specified by the triGridData
parameter.

Q3TriGrid_EmptyData 4

You can use the Q3TriGrid_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3TriGrid_GetData.

TQ3Status Q3TriGrid_EmptyData (TQ3TriGridData *triGridData);

triGridData A pointer to a TQ3TriGridData structure.

C H A P T E R 4

Geometric Objects

4-106 Geometric Objects Reference

DESCRIPTION

The Q3TriGrid_EmptyData function releases the memory occupied by the
TQ3TriGridData structure pointed to by the triGridData parameter; that
memory was allocated by a previous call to Q3TriGrid_GetData.

Q3TriGrid_GetVertexPosition 4

You can use the Q3TriGrid_GetVertexPosition function to get the position of
a vertex of a trigrid.

TQ3Status Q3TriGrid_GetVertexPosition (

TQ3GeometryObject triGrid,

unsigned long rowIndex,

unsigned long columnIndex,

TQ3Point3D *position);

triGrid A trigrid.

rowIndex A row index into the vertices array of the specified trigrid.

columnIndex A column index into the vertices array of the specified trigrid.

position On exit, the position of the specified vertex.

DESCRIPTION

The Q3TriGrid_GetVertexPosition function returns, in the position
parameter, the position of the vertex having row and column indices
rowIndex and columnIndex in the vertices array of the trigrid specified
by the triGrid parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-107

Q3TriGrid_SetVertexPosition 4

You can use the Q3TriGrid_SetVertexPosition function to set the position of
a vertex of a trigrid.

TQ3Status Q3TriGrid_SetVertexPosition (

TQ3GeometryObject triGrid,

unsigned long rowIndex,

unsigned long columnIndex,

const TQ3Point3D *position);

triGrid A trigrid.

rowIndex A row index into the vertices array of the specified trigrid.

columnIndex A column index into the vertices array of the specified trigrid.

position The desired position of the specified vertex.

DESCRIPTION

The Q3TriGrid_SetVertexPosition function sets the position of the vertex
having row and column indices rowIndex and columnIndex in the vertices
array of the trigrid specified by the triGrid parameter to that specified in the
position parameter.

Q3TriGrid_GetVertexAttributeSet 4

You can use the Q3TriGrid_GetVertexAttributeSet function to get the
attribute set of a vertex of a trigrid.

TQ3Status Q3TriGrid_GetVertexAttributeSet (

TQ3GeometryObject triGrid,

unsigned long rowIndex,

unsigned long columnIndex,

TQ3AttributeSet *attributeSet);

C H A P T E R 4

Geometric Objects

4-108 Geometric Objects Reference

triGrid A trigrid.

rowIndex A row index into the vertices array of the specified trigrid.

columnIndex A column index into the vertices array of the specified trigrid.

attributeSet

On exit, a pointer to a vertex attribute set for the
specified vertex.

DESCRIPTION

The Q3TriGrid_GetVertexAttributeSet function returns, in the
attributeSet parameter, the set of attributes for the vertex having row
and column indices rowIndex and columnIndex in the vertices array of
the trigrid specified by the triGrid parameter. The reference count of the
set is incremented.

Q3TriGrid_SetVertexAttributeSet 4

You can use the Q3TriGrid_SetVertexAttributeSet function to set the
attribute set of a vertex of a trigrid.

TQ3Status Q3TriGrid_SetVertexAttributeSet (

TQ3GeometryObject triGrid,

unsigned long rowIndex,

unsigned long columnIndex,

TQ3AttributeSet attributeSet);

triGrid A trigrid.

rowIndex A row index into the vertices array of the specified trigrid.

columnIndex A column index into the vertices array of the specified trigrid.

attributeSet

The desired set of attributes for the specified vertex.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-109

DESCRIPTION

The Q3TriGrid_SetVertexAttributeSet function sets the attribute set of the
vertex having row and column indices rowIndex and columnIndex in the
vertices array of the trigrid specified by the triGrid parameter to the set
specified in the attributeSet parameter.

Q3TriGrid_GetFacetAttributeSet 4

You can use the Q3TriGrid_GetFacetAttributeSet function to get the
attribute set of a facet of a trigrid.

TQ3Status Q3TriGrid_GetFacetAttributeSet (

TQ3GeometryObject triGrid,

unsigned long faceIndex,

TQ3AttributeSet *facetAttributeSet);

triGrid A trigrid.

faceIndex An index into the array of facets for the specified trigrid.

facetAttributeSet

On exit, a pointer to an attribute set for the specified facet.

DESCRIPTION

The Q3TriGrid_GetFacetAttributeSet function returns, in the
facetAttributeSet parameter, the set of attributes for the facet having
the index faceIndex of the trigrid specified by the triGrid parameter.
The reference count of the set is incremented.

C H A P T E R 4

Geometric Objects

4-110 Geometric Objects Reference

Q3TriGrid_SetFacetAttributeSet 4

You can use the Q3TriGrid_SetFacetAttributeSet function to set the
attribute set of a facet of a trigrid.

TQ3Status Q3TriGrid_SetFacetAttributeSet (

TQ3GeometryObject triGrid,

unsigned long faceIndex,

TQ3AttributeSet facetAttributeSet);

triGrid A trigrid.

faceIndex An index into the array of facets for the specified trigrid.

facetAttributeSet

The desired set of attributes for the specified facet.

DESCRIPTION

The Q3TriGrid_SetFacetAttributeSet function sets the attribute set of the
facet having index faceIndex of the trigrid specified by the triGrid parameter
to the set specified by the facetAttributeSet parameter.

Creating and Editing Meshes 4

QuickDraw 3D provides routines that you can use to create and manipulate
meshes. See “Meshes” on page 4-49 for the definition of a mesh and its
associated types.

Q3Mesh_New 4

You can use the Q3Mesh_New function to create a new mesh.

TQ3GeometryObject Q3Mesh_New (void);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-111

DESCRIPTION

The Q3Mesh_New function returns, as its function result, a new mesh. The new
mesh is empty; you need to call other QuickDraw 3D routines to add vertices
and faces to the mesh. If a new mesh could not be created, Q3Mesh_New returns
the value NULL.

Q3Mesh_VertexNew 4

You can use the Q3Mesh_VertexNew function to add a vertex to a mesh.

TQ3MeshVertex Q3Mesh_VertexNew (

TQ3GeometryObject mesh,

const TQ3Vertex3D *vertex);

mesh A mesh.

vertex A three-dimensional vertex.

DESCRIPTION

The Q3Mesh_VertexNew function adds the vertex specified by the vertex
parameter to the mesh specified by the mesh parameter. The mesh must already
exist before you call Q3Mesh_VertexNew. The new mesh vertex is returned as
the function result.

Q3Mesh_VertexDelete 4

You can use the Q3Mesh_VertexDelete function to delete a vertex from a mesh.

TQ3Status Q3Mesh_VertexDelete (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex);

mesh A mesh.

vertex A mesh vertex.

C H A P T E R 4

Geometric Objects

4-112 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_VertexDelete function deletes the mesh vertex specified by the
vertex parameter from the mesh specified by the mesh parameter. All mesh
faces that contain the vertex are also deleted.

Q3Mesh_FaceNew 4

You can use the Q3Mesh_FaceNew function to add a face to a mesh.

TQ3MeshFace Q3Mesh_FaceNew (

TQ3GeometryObject mesh,

unsigned long numVertices,

const TQ3MeshVertex *vertices,

TQ3AttributeSet attributeSet);

mesh A mesh.

numVertices The number of mesh vertices in the vertices array.

vertices A pointer to an array of mesh vertices defining the new mesh
face. These vertices can be ordered either clockwise or
counterclockwise.

attributeSet

The desired set of attributes for the new mesh face. Set this
parameter to NULL if you do no want any attributes for the
new face.

DESCRIPTION

The Q3Mesh_FaceNew function adds the face specified by the vertices
parameter to the mesh specified by the mesh parameter. The mesh must already
exist before you call Q3Mesh_FaceNew. The new mesh face is returned as the
function result.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-113

Q3Mesh_FaceDelete 4

You can use the Q3Mesh_FaceDelete function to delete a face from a mesh.

TQ3Status Q3Mesh_FaceDelete (

TQ3GeometryObject mesh,

TQ3MeshFace face);

mesh A mesh.

face A mesh face.

DESCRIPTION

The Q3Mesh_FaceDelete function deletes the mesh face specified by the face
parameter from the mesh specified by the mesh parameter. The vertices of the
face are not deleted.

Q3Mesh_DelayUpdates 4

You can use the Q3Mesh_DelayUpdates function to prevent QuickDraw 3D
from updating its internal list of mesh components.

TQ3Status Q3Mesh_DelayUpdates (TQ3GeometryObject mesh);

mesh A mesh.

DESCRIPTION

The Q3Mesh_DelayUpdates function prevents QuickDraw 3D from updating
its internal list of components and maintaining correct face orientation (that is,
vertex ordering) for the mesh specified by the mesh parameter. Updating the
list of components can consume significant amounts of time, and it might be
useful temporarily to prevent component list updating. You should later call
Q3Mesh_ResumeUpdates to resume component list updating. Generally, if you
are creating or deleting a number of vertices or faces from a mesh, it is better to
bracket the entire set of changes with calls to Q3Mesh_DelayUpdates and
Q3Mesh_ResumeUpdates.

C H A P T E R 4

Geometric Objects

4-114 Geometric Objects Reference

Q3Mesh_ResumeUpdates 4

You can use the Q3Mesh_ResumeUpdates function to have QuickDraw 3D
resume updating its internal list of mesh components.

TQ3Status Q3Mesh_ResumeUpdates (TQ3GeometryObject mesh);

mesh A mesh.

DESCRIPTION

The Q3Mesh_ResumeUpdates function instructs QuickDraw 3D to resume
updating its internal list of components and maintaining correct face
orientation for the mesh specified by the mesh parameter.

Q3Mesh_FaceToContour 4

You can use the Q3Mesh_FaceToContour function to convert a face of a mesh
into a contour. The contour is then attached to another mesh face as a hole.

TQ3MeshContour Q3Mesh_FaceToContour (

TQ3GeometryObject mesh,

TQ3MeshFace containerFace,

TQ3MeshFace face);

mesh A mesh.

containerFace

The mesh face that is to contain the new contour.

face The mesh face that is to be converted into a contour. On exit,
this face is no longer a valid object.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-115

DESCRIPTION

The Q3Mesh_FaceToContour function returns, as its function result, a new
contour created from the mesh face specified by the mesh and face parameters.
The new contour is contained in the mesh face specified by the mesh and
containerFace parameters. If a new contour could not be created,
Q3Mesh_FaceToContour returns the value NULL.

IMPORTANT

Q3Mesh_FaceToContour destroys any attributes associated
with the face specified by the face parameter. ▲

Q3Mesh_ContourToFace 4

You can use the Q3Mesh_ContourToFace function to convert a mesh contour
into a mesh face.

TQ3MeshFace Q3Mesh_ContourToFace (

TQ3GeometryObject mesh,

TQ3MeshContour contour);

mesh A mesh.

contour A mesh contour. On exit, this contour is no longer a valid object.

DESCRIPTION

The Q3Mesh_ContourToFace function returns, as its function result, a mesh
face that is the result of removing the mesh contour specified by the mesh
and contour parameters from its containing face. (You can call the
Q3Mesh_GetContourFace function to determine the face that contains a
mesh contour; see page 4-137.) If a new face could not be created,
Q3Mesh_ContourToFace returns the value NULL.

C H A P T E R 4

Geometric Objects

4-116 Geometric Objects Reference

Q3Mesh_GetNumComponents 4

You can use the Q3Mesh_GetNumComponents function to determine the number
of connected components of a mesh.

TQ3Status Q3Mesh_GetNumComponents (

TQ3GeometryObject mesh,

unsigned long *numComponents);

mesh A mesh.

numComponents

On exit, the number of connected components in the
specified mesh.

DESCRIPTION

The Q3Mesh_GetNumComponents function returns, in the numComponents
parameter, the number of connected components in the mesh specified by the
mesh parameter. A connected component is a list of vertices, each of which is
connected to all the others by some sequence of mesh edges. For example, a
mesh that contains two cubes has two components.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetNumComponents function might not accurately report the
number of connected components in a mesh if called while mesh updating is
delayed (that is, after a call to Q3Mesh_DelayUpdates but before the matching
call to Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-117

Q3Mesh_GetNumEdges 4

You can use the Q3Mesh_GetNumEdges function to determine the number of
edges of a mesh.

TQ3Status Q3Mesh_GetNumEdges (

TQ3GeometryObject mesh,

unsigned long *numEdges);

mesh A mesh.

numEdges On exit, the number of edges in the specified mesh.

DESCRIPTION

The Q3Mesh_GetNumEdges function returns, in the numEdges parameter, the
number of edges in the mesh specified by the mesh parameter.

Q3Mesh_GetNumVertices 4

You can use the Q3Mesh_GetNumVertices function to determine the number of
vertices of a mesh.

TQ3Status Q3Mesh_GetNumVertices (

TQ3GeometryObject mesh,

unsigned long *numVertices);

mesh A mesh.

numVertices On exit, the number of vertices in the specified mesh.

DESCRIPTION

The Q3Mesh_GetNumVertices function returns, in the numVertices parameter,
the number of vertices in the mesh specified by the mesh parameter.

C H A P T E R 4

Geometric Objects

4-118 Geometric Objects Reference

Q3Mesh_GetNumFaces 4

You can use the Q3Mesh_GetNumFaces function to determine the number of
faces of a mesh.

TQ3Status Q3Mesh_GetNumFaces (

TQ3GeometryObject mesh,

unsigned long *numFaces);

mesh A mesh.

numFaces On exit, the number of faces in the specified mesh.

DESCRIPTION

The Q3Mesh_GetNumFaces function returns, in the numFaces parameter, the
number of faces in the mesh specified by the mesh parameter.

Q3Mesh_GetNumCorners 4

You can use the Q3Mesh_GetNumCorners function to determine the number of
corners of a mesh that have attribute sets.

TQ3Status Q3Mesh_GetNumCorners (

TQ3GeometryObject mesh,

unsigned long *numCorners);

mesh A mesh.

numCorners On exit, the number of corners in the specified mesh that have
attribute sets.

DESCRIPTION

The Q3Mesh_GetNumCorners function returns, in the numCorners parameter,
the number of corners in the mesh specified by the mesh parameter that have
attribute sets attached to them.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-119

Q3Mesh_GetOrientable 4

You can use the Q3Mesh_GetOrientable function to determine whether the
faces of a mesh can be consistently oriented.

TQ3Status Q3Mesh_GetOrientable (

TQ3GeometryObject mesh,

TQ3Boolean *orientable);

mesh A mesh.

orientable On exit, a Boolean value that indicates whether the faces of the
specified mesh can be consistently oriented.

DESCRIPTION

The Q3Mesh_GetOrientable function returns, in the orientable parameter,
the value kQ3True if the faces of the mesh specified by the mesh parameter can
be consistently oriented; Q3Mesh_GetOrientable returns kQ3False otherwise.
For example, the faces of a tessellated Möbius strip or a Klein bottle cannot be
consistently oriented.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetOrientable function might not accurately report the
orientation state of a mesh if called while mesh updating is delayed (that
is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

4-120 Geometric Objects Reference

Q3Mesh_GetComponentNumVertices 4

You can use the Q3Mesh_GetComponentNumVertices function to determine the
number of vertices in a component of a mesh.

TQ3Status Q3Mesh_GetComponentNumVertices (

TQ3GeometryObject mesh,

TQ3MeshComponent component,

unsigned long *numVertices);

mesh A mesh.

component A mesh component.

numVertices On exit, the number of vertices in the specified mesh
component.

DESCRIPTION

The Q3Mesh_GetComponentNumVertices function returns, in the numVertices
parameter, the number of vertices in the mesh component specified by the mesh
and component parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetComponentNumVertices function might not accurately report
the number of vertices in a mesh component if called while mesh updating is
delayed (that is, after a call to Q3Mesh_DelayUpdates but before the matching
call to Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-121

Q3Mesh_GetComponentNumEdges 4

You can use the Q3Mesh_GetComponentNumEdges function to determine the
number of edges in a component of a mesh.

TQ3Status Q3Mesh_GetComponentNumEdges (

TQ3GeometryObject mesh,

TQ3MeshComponent component,

unsigned long *numEdges);

mesh A mesh.

component A mesh component.

numEdges On exit, the number of edges in the specified mesh component.

DESCRIPTION

The Q3Mesh_GetComponentNumEdges function returns, in the numEdges
parameter, the number of edges in the mesh component specified by the
mesh and component parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetComponentNumEdges function might not accurately report the
number of edges in a mesh component if called while mesh updating is
delayed (that is, after a call to Q3Mesh_DelayUpdates but before the matching
call to Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

4-122 Geometric Objects Reference

Q3Mesh_GetComponentBoundingBox 4

You can use the Q3Mesh_GetComponentBoundingBox function to determine the
bounding box of a component of a mesh.

TQ3Status Q3Mesh_GetComponentBoundingBox (

TQ3GeometryObject mesh,

TQ3MeshComponent component,

TQ3BoundingBox *boundingBox);

mesh A mesh.

component A mesh component.

boundingBox On exit, the bounding box of the specified mesh component.

DESCRIPTION

The Q3Mesh_GetComponentBoundingBox function returns, in the boundingBox
parameter, the bounding box of the mesh component specified by the mesh and
component parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetComponentBoundingBox function might not accurately report
the bounding box of a mesh component if called while mesh updating is
delayed (that is, after a call to Q3Mesh_DelayUpdates but before the matching
call to Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-123

Q3Mesh_GetComponentOrientable 4

You can use the Q3Mesh_GetComponentOrientable function to determine
whether the faces of a component of a mesh can be consistently oriented.

TQ3Status Q3Mesh_GetComponentOrientable (

TQ3GeometryObject mesh,

TQ3MeshComponent component,

TQ3Boolean *orientable);

mesh A mesh.

component A mesh component.

orientable On exit, a Boolean value that indicates whether the faces of the
specified mesh component can be consistently oriented.

DESCRIPTION

The Q3Mesh_GetComponentOrientable function returns, in the orientable
parameter, the value kQ3True if the faces of the mesh component specified
by the mesh and component parameters can be consistently oriented;
Q3Mesh_GetComponentOrientable returns kQ3False otherwise.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetComponentOrientable function might not accurately report
the orientation state of a mesh component if called while mesh updating is
delayed (that is, after a call to Q3Mesh_DelayUpdates but before the matching
call to Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

4-124 Geometric Objects Reference

Q3Mesh_GetVertexCoordinates 4

You can use the Q3Mesh_GetVertexCoordinates function to get the
coordinates of a vertex of a mesh.

TQ3Status Q3Mesh_GetVertexCoordinates (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3Point3D *coordinates);

mesh A mesh.

vertex A mesh vertex.

coordinates On exit, the coordinates of the specified mesh vertex.

DESCRIPTION

The Q3Mesh_GetVertexCoordinates function returns, in the coordinates
parameter, the coordinates of the mesh vertex specified by the mesh and
vertex parameters.

Q3Mesh_SetVertexCoordinates 4

You can use the Q3Mesh_SetVertexCoordinates function to set the
coordinates of a vertex of a mesh.

TQ3Status Q3Mesh_SetVertexCoordinates (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

const TQ3Point3D *coordinates);

mesh A mesh.

vertex A mesh vertex.

coordinates The desired coordinates of the specified mesh vertex.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-125

DESCRIPTION

The Q3Mesh_SetVertexCoordinates function sets the coordinates of the mesh
vertex specified by the mesh and vertex parameters to those specified in the
coordinates parameter.

Q3Mesh_GetVertexIndex 4

You can use the Q3Mesh_GetVertexIndex function to get the index of a
mesh vertex.

TQ3Status Q3Mesh_GetVertexIndex (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

unsigned long *index);

mesh A mesh.

vertex A mesh vertex.

index On exit, the index of the specified mesh vertex.

DESCRIPTION

The Q3Mesh_GetVertexIndex function returns, in the index parameter, the
index of the mesh vertex specified by the mesh and vertex parameters. A
vertex index is a unique integer (between 0 and the total number of vertices
in the mesh minus 1) associated with a vertex.

▲ W A R N I N G

Vertex indices are volatile and can be changed by functions
that alter the topology of a mesh (such as functions that
add or delete faces or vertices), and by writing, picking,
rendering, or duplicating a mesh, or by calling
Q3Mesh_DelayUpdates. As a result, you should rely on an
index returned by Q3Mesh_GetVertexIndex only until you
perform one of these operations. ▲

C H A P T E R 4

Geometric Objects

4-126 Geometric Objects Reference

Q3Mesh_GetVertexOnBoundary 4

You can use the Q3Mesh_GetVertexOnBoundary function to determine whether
a vertex lies on the boundary of a mesh.

TQ3Status Q3Mesh_GetVertexOnBoundary (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3Boolean *onBoundary);

mesh A mesh.

vertex A mesh vertex.

onBoundary On exit, a Boolean value that indicates whether the specified
mesh vertex lies on the boundary of the mesh.

DESCRIPTION

The Q3Mesh_GetVertexOnBoundary function returns, in the onBoundary
parameter, the value kQ3True if the mesh vertex specified by the mesh
and vertex parameters lies on the boundary of the mesh.
Q3Mesh_GetVertexOnBoundary returns kQ3False otherwise.

Q3Mesh_GetVertexComponent 4

You can use the Q3Mesh_GetVertexComponent function to get the component
of a mesh to which a vertex belongs.

TQ3Status Q3Mesh_GetVertexComponent (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3MeshComponent *component);

mesh A mesh.

vertex A mesh vertex.

component On exit, the mesh component that contains the specified
mesh vertex.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-127

DESCRIPTION

The Q3Mesh_GetVertexComponent function returns, in the component
parameter, the mesh component that contains the mesh vertex specified
by the mesh and vertex parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetVertexComponent function might not accurately report the
mesh component that contains a mesh vertex if called while mesh updating is
delayed (that is, after a call to Q3Mesh_DelayUpdates but before the matching
call to Q3Mesh_ResumeUpdates).

Q3Mesh_GetVertexAttributeSet 4

You can use the Q3Mesh_GetVertexAttributeSet function to get the attribute
set of a vertex of a mesh.

TQ3Status Q3Mesh_GetVertexAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3AttributeSet *attributeSet);

mesh A mesh.

vertex A mesh vertex.

attributeSet

On exit, a pointer to the set of attributes for the specified
mesh vertex.

DESCRIPTION

The Q3Mesh_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes currently associated with the mesh vertex
specified by the mesh and vertex parameters. The reference count of the set is
incremented.

C H A P T E R 4

Geometric Objects

4-128 Geometric Objects Reference

Q3Mesh_SetVertexAttributeSet 4

You can use the Q3Mesh_SetVertexAttributeSet function to set the attribute
set of a vertex of a mesh.

TQ3Status Q3Mesh_SetVertexAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3AttributeSet attributeSet);

mesh A mesh.

vertex A mesh vertex.

attributeSet

The desired set of attributes for the specified mesh vertex.

DESCRIPTION

The Q3Mesh_SetVertexAttributeSet function sets the attribute set of the
mesh vertex specified by the mesh and vertex parameters to the set of
attributes specified by the attributeSet parameter.

Q3Mesh_GetFaceNumVertices 4

You can use the Q3Mesh_GetFaceNumVertices function to determine the
number of vertices in a face of a mesh.

TQ3Status Q3Mesh_GetFaceNumVertices (

TQ3GeometryObject mesh,

TQ3MeshFace face,

unsigned long *numVertices);

mesh A mesh.

face A mesh face.

numVertices On exit, the number of vertices in the specified mesh face.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-129

DESCRIPTION

The Q3Mesh_GetFaceNumVertices function returns, in the numVertices
parameter, the number of vertices in the mesh face specified by the mesh and
face parameters.

Q3Mesh_GetFacePlaneEquation 4

You can use the Q3Mesh_GetFacePlaneEquation function to determine the
plane equation of a face of a mesh.

TQ3Status Q3Mesh_GetFacePlaneEquation (

TQ3GeometryObject mesh,

TQ3MeshFace face,

TQ3PlaneEquation *planeEquation);

mesh A mesh.

face A mesh face.

planeEquation

On exit, the plane equation of the plane spanned by the vertices
of the specified mesh face.

DESCRIPTION

The Q3Mesh_GetFacePlaneEquation function returns, in the planeEquation
parameter, the plane equation of the plane spanned by the vertices of the mesh
face specified by the mesh and face parameters. If the vertices of the mesh face
do not all lie in one plane, the information returned in the planeEquation
parameter is only an approximation.

C H A P T E R 4

Geometric Objects

4-130 Geometric Objects Reference

Q3Mesh_GetFaceNumContours 4

You can use the Q3Mesh_GetFaceNumContours function to determine the
number of contours in a face of a mesh.

TQ3Status Q3Mesh_GetFaceNumContours (

TQ3GeometryObject mesh,

TQ3MeshFace face,

unsigned long *numContours);

mesh A mesh.

face A mesh face.

numContours

On exit, the number of contours in the specified mesh face.

DESCRIPTION

The Q3Mesh_GetFaceNumContours function returns, in the numContours
parameter, the number of contours in the mesh face specified by the mesh
and face parameters. A mesh face always contains at least one contour,
which defines the face itself. Any additional contours in the face define
holes in the face.

Q3Mesh_GetFaceIndex 4

You can use the Q3Mesh_GetFaceIndex function to get the index of a mesh face.

TQ3Status Q3Mesh_GetFaceIndex (

TQ3GeometryObject mesh,

TQ3MeshFace face,

unsigned long *index);

mesh A mesh.

face A mesh face.

index On exit, the index of the specified mesh face.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-131

DESCRIPTION

The Q3Mesh_GetFaceIndex function returns, in the index parameter, the index
of the mesh face specified by the mesh and face parameters. A face index is a
unique integer (between 0 and the total number of faces in the mesh minus 1)
associated with a face.

▲ W A R N I N G

Face indices are volatile and can be changed by functions
that alter the topology of a mesh (such as functions that
add or delete faces or vertices), and by writing, picking,
rendering, or duplicating a mesh, or by calling
Q3Mesh_DelayUpdates. As a result, you should rely on an
index returned by Q3Mesh_GetFaceIndex only until you
perform one of these operations. ▲

Q3Mesh_GetFaceComponent 4

You can use the Q3Mesh_GetFaceComponent function to get the component of a
mesh to which a face belongs.

TQ3Status Q3Mesh_GetFaceComponent (

TQ3GeometryObject mesh,

TQ3MeshFace face,

TQ3MeshComponent *component);

mesh A mesh.

face A mesh face.

component On exit, the mesh component that contains the specified
mesh face.

DESCRIPTION

The Q3Mesh_GetFaceComponent function returns, in the component parameter,
the mesh component that contains the mesh face specified by the mesh and
face parameters.

C H A P T E R 4

Geometric Objects

4-132 Geometric Objects Reference

SPECIAL CONSIDERATIONS

The Q3Mesh_GetFaceComponent function might not accurately report the mesh
component that contains a mesh face if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_GetFaceAttributeSet 4

You can use the Q3Mesh_GetFaceAttributeSet function to get the attribute set
of a face of a mesh.

TQ3Status Q3Mesh_GetFaceAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshFace face,

TQ3AttributeSet *attributeSet);

mesh A mesh.

face A mesh face.

attributeSet

On exit, a pointer to the set of attributes for the specified
mesh face.

DESCRIPTION

The Q3Mesh_GetFaceAttributeSet function returns, in the attributeSet
parameter, the set of attributes currently associated with the mesh face
specified by the mesh and face parameters. The reference count of the set
is incremented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-133

Q3Mesh_SetFaceAttributeSet 4

You can use the Q3Mesh_SetFaceAttributeSet function to set the attribute set
of a face of a mesh.

TQ3Status Q3Mesh_SetFaceAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshFace face,

TQ3AttributeSet attributeSet);

mesh A mesh.

face A mesh face.

attributeSet

The desired set of attributes for the specified mesh face.

DESCRIPTION

The Q3Mesh_SetFaceAttributeSet function sets the attribute set of the mesh
face specified by the mesh and face parameters to the set of attributes specified
by the attributeSet parameter.

Q3Mesh_GetEdgeVertices 4

You can use the Q3Mesh_GetEdgeVertices function to get the vertices of a
mesh edge.

TQ3Status Q3Mesh_GetEdgeVertices (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3MeshVertex *vertex1,

TQ3MeshVertex *vertex2);

mesh A mesh.

edge A mesh edge.

C H A P T E R 4

Geometric Objects

4-134 Geometric Objects Reference

vertex1 On exit, the first vertex of the specified mesh edge.

vertex2 On exit, the second vertex of the specified mesh edge.

DESCRIPTION

The Q3Mesh_GetEdgeVertices function returns, in the vertex1 and vertex2
parameters, the two vertices of the mesh edge specified by the mesh and
edge parameters.

Q3Mesh_GetEdgeFaces 4

You can use the Q3Mesh_GetEdgeFaces function to get the faces that share a
mesh edge.

TQ3Status Q3Mesh_GetEdgeFaces (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3MeshFace *face1,

TQ3MeshFace *face2);

mesh A mesh.

edge A mesh edge.

face1 On exit, the first mesh face that shares the specified mesh edge.

face2 On exit, the second mesh face that shares the specified
mesh edge.

DESCRIPTION

The Q3Mesh_GetEdgeFaces function returns, in the face1 and face2
parameters, the two mesh faces that shares the mesh edge specified by the
mesh and edge parameters. If the edge lies on the boundary of the mesh,
either face1 or face2 is NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-135

Q3Mesh_GetEdgeOnBoundary 4

You can use the Q3Mesh_GetEdgeOnBoundary function to determine whether a
mesh edge lies on the boundary of the mesh.

TQ3Status Q3Mesh_GetEdgeOnBoundary (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3Boolean *onBoundary);

mesh A mesh.

edge A mesh edge.

onBoundary On exit, a Boolean value that indicates whether the specified
mesh edge lies on the boundary of the mesh.

DESCRIPTION

The Q3Mesh_GetEdgeOnBoundary function returns, in the onBoundary
parameter, the value kQ3True if the mesh edge specified by the mesh and edge
parameters lies on the boundary of the mesh. Q3Mesh_GetEdgeOnBoundary
returns kQ3False otherwise.

Q3Mesh_GetEdgeComponent 4

You can use the Q3Mesh_GetEdgeComponent function to get the component of a
mesh to which an edge belongs.

TQ3Status Q3Mesh_GetEdgeComponent (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3MeshComponent *component);

mesh A mesh.

edge A mesh edge.

component On exit, the mesh component that contains the specified
mesh edge.

C H A P T E R 4

Geometric Objects

4-136 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_GetEdgeComponent function returns, in the component parameter,
the mesh component that contains the mesh edge specified by the mesh and
edge parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetEdgeComponent function might not accurately report the mesh
component that contains a mesh edge if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_GetEdgeAttributeSet 4

You can use the Q3Mesh_GetEdgeAttributeSet function to get the attribute set
of an edge of a mesh.

TQ3Status Q3Mesh_GetEdgeAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3AttributeSet *attributeSet);

mesh A mesh.

edge A mesh edge.

attributeSet

On exit, a pointer to the set of attributes for the specified
mesh edge.

DESCRIPTION

The Q3Mesh_GetEdgeAttributeSet function returns, in the attributeSet
parameter, the set of attributes currently associated with the mesh edge
specified by the mesh and edge parameters. The reference count of the set is
incremented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-137

Q3Mesh_SetEdgeAttributeSet 4

You can use the Q3Mesh_SetEdgeAttributeSet function to set the attribute set
of an edge of a mesh.

TQ3Status Q3Mesh_SetEdgeAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3AttributeSet attributeSet);

mesh A mesh.

edge A mesh edge.

attributeSet

The desired set of attributes for the specified mesh edge.

DESCRIPTION

The Q3Mesh_SetEdgeAttributeSet function sets the attribute set of the mesh
edge specified by the mesh and edge parameters to the set of attributes
specified by the attributeSet parameter.

Q3Mesh_GetContourFace 4

You can use the Q3Mesh_GetContourFace function to get the mesh face that
contains a mesh contour.

TQ3Status Q3Mesh_GetContourFace (

TQ3GeometryObject mesh,

TQ3MeshContour contour,

TQ3MeshFace *face);

mesh A mesh.

contour A mesh contour.

face On exit, the mesh face that contains the specified contour.

C H A P T E R 4

Geometric Objects

4-138 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_GetContourFace function returns, in the face parameter, the
mesh face that contains the mesh contour specified by the mesh and contour
parameters.

Q3Mesh_GetContourNumVertices 4

You can use the Q3Mesh_GetContourNumVertices function to get the number
of vertices that define a contour.

TQ3Status Q3Mesh_GetContourNumVertices (

TQ3GeometryObject mesh,

TQ3MeshContour contour,

unsigned long *numVertices);

mesh A mesh.

contour A mesh contour.

numVertices

On exit, the number of vertices in the specified mesh contour.

DESCRIPTION

The Q3Mesh_GetContourNumVertices function returns, in the numVertices
parameter, the number of vertices that compose the mesh contour specified by
the mesh and contour parameters.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-139

Q3Mesh_GetCornerAttributeSet 4

You can use the Q3Mesh_GetCornerAttributeSet function to get the attribute
set of a mesh corner.

TQ3Status Q3Mesh_GetCornerAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3MeshFace face,

TQ3AttributeSet *attributeSet);

mesh A mesh.

vertex A mesh vertex.

face A mesh face. This face must contain the specified vertex in one
of its contours.

attributeSet

On exit, the set of attributes for the corner defined by the
specified mesh vertex and face.

DESCRIPTION

The Q3Mesh_GetCornerAttributeSet function returns, in the attributeSet
parameter, the set of attributes of the corner defined by the vertex and face
parameters in the mesh specified by the mesh parameter. The corner attributes
override any attributes associated with the vertex alone. The reference count of
the set is incremented.

C H A P T E R 4

Geometric Objects

4-140 Geometric Objects Reference

Q3Mesh_SetCornerAttributeSet 4

You can use the Q3Mesh_SetCornerAttributeSet function to set the attribute
set of a mesh corner.

TQ3Status Q3Mesh_SetCornerAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3MeshFace face,

TQ3AttributeSet attributeSet);

mesh A mesh.

vertex A mesh vertex.

face A mesh face. This face must contain the specified vertex in one
of its contours.

attributeSet

The desired set of attributes for the corner defined by the
specified mesh vertex and face.

DESCRIPTION

The Q3Mesh_SetCornerAttributeSet function sets the attribute set of the
corner defined by the vertex and face parameters in the mesh specified by the
mesh parameter to the set of attributes specified by the attributeSet
parameter. The corner attributes override any attributes associated with the
vertex alone.

Traversing Mesh Components, Vertices, Faces, and Edges 4

QuickDraw 3D provides a large number of functions that you can use to iterate
through the components, vertices, faces, or edges of a mesh. For example, you
can call the Q3Mesh_FirstMeshComponent function to get the first component
in a mesh; then you can call the Q3Mesh_NextMeshComponent function to get
any subsequent mesh components.

For even simpler mesh traversal, QuickDraw 3D defines a large number of
macros modeled on the standard C language for statement. For example,
the Q3ForEachMeshComponent macro uses the Q3Mesh_FirstMeshComponent

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-141

function and the Q3Mesh_NextMeshComponent function to iterate through all
the components of a mesh.

IMPORTANT

Adding or deleting vertices or faces within the scope of
these iterators might produce unpredictable results. ▲

#define Q3ForEachMeshComponent(m,c,i) \

for ((c) = Q3Mesh_FirstMeshComponent((m),(i)); \

(c); \

(c) = Q3Mesh_NextMeshComponent((i)))

#define Q3ForEachComponentVertex(c,v,i) \

for ((v) = Q3Mesh_FirstComponentVertex((c),(i)); \

(v); \

(v) = Q3Mesh_NextComponentVertex((i)))

#define Q3ForEachComponentEdge(c,e,i) \

for ((e) = Q3Mesh_FirstComponentEdge((c),(i)); \

(e); \

(e) = Q3Mesh_NextComponentEdge((i)))

#define Q3ForEachMeshVertex(m,v,i) \

for ((v) = Q3Mesh_FirstMeshVertex((m),(i)); \

(v); \

(v) = Q3Mesh_NextMeshVertex((i)))

#define Q3ForEachMeshFace(m,f,i) \

for ((f) = Q3Mesh_FirstMeshFace((m),(i)); \

(f); \

(f) = Q3Mesh_NextMeshFace((i)))

#define Q3ForEachMeshEdge(m,e,i) \

for ((e) = Q3Mesh_FirstMeshEdge((m),(i)); \

(e); \

(e) = Q3Mesh_NextMeshEdge((i)))

C H A P T E R 4

Geometric Objects

4-142 Geometric Objects Reference

#define Q3ForEachVertexEdge(v,e,i) \

for ((e) = Q3Mesh_FirstVertexEdge((v),(i)); \

(e); \

(e) = Q3Mesh_NextVertexEdge((i)))

#define Q3ForEachVertexVertex(v,n,i) \

for ((n) = Q3Mesh_FirstVertexVertex((v),(i)); \

(n); \

(n) = Q3Mesh_NextVertexVertex((i)))

#define Q3ForEachVertexFace(v,f,i) \

for ((f) = Q3Mesh_FirstVertexFace((v),(i)); \

(f); \

(f) = Q3Mesh_NextVertexFace((i)))

#define Q3ForEachFaceEdge(f,e,i) \

for ((e) = Q3Mesh_FirstFaceEdge((f),(i)); \

(e); \

(e) = Q3Mesh_NextFaceEdge((i)))

#define Q3ForEachFaceVertex(f,v,i) \

for ((v) = Q3Mesh_FirstFaceVertex((f),(i)); \

(v); \

(v) = Q3Mesh_NextFaceVertex((i)))

#define Q3ForEachFaceFace(f,n,i) \

for ((n) = Q3Mesh_FirstFaceFace((f),(i)); \

(n); \

(n) = Q3Mesh_NextFaceFace((i)))

#define Q3ForEachFaceContour(f,h,i) \

for ((h) = Q3Mesh_FirstFaceContour((f),(i)); \

(h); \

(h) = Q3Mesh_NextFaceContour((i)))

#define Q3ForEachContourEdge(h,e,i) \

for ((e) = Q3Mesh_FirstContourEdge((h),(i)); \

(e); \

(e) = Q3Mesh_NextContourEdge((i)))

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-143

#define Q3ForEachContourVertex(h,v,i) \

for ((v) = Q3Mesh_FirstContourVertex((h),(i)); \

(v); \

(v) = Q3Mesh_NextContourVertex((i)))

#define Q3ForEachContourFace(h,f,i) \

for ((f) = Q3Mesh_FirstContourFace((h),(i)); \

(f); \

(f) = Q3Mesh_NextContourFace((i)))

Q3Mesh_FirstMeshComponent 4

You can use the Q3Mesh_FirstMeshComponent function to get the first
component of a mesh.

TQ3MeshComponent Q3Mesh_FirstMeshComponent (

TQ3GeometryObject mesh,

TQ3MeshIterator *iterator);

mesh A mesh.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstMeshComponent function returns, as its function result, the
first mesh component in the mesh specified by the mesh parameter. The
iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstMeshComponent fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextMeshComponent function.

SPECIAL CONSIDERATIONS

The Q3Mesh_FirstMeshComponent function might not accurately report the
first mesh component in a mesh if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call
to Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

4-144 Geometric Objects Reference

Q3Mesh_NextMeshComponent 4

You can use the Q3Mesh_NextMeshComponent function to get the next
component in a mesh.

TQ3MeshComponent Q3Mesh_NextMeshComponent (

TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextMeshComponent function returns, as its function result,
the next mesh component in the iteration specified by the iterator
parameter, which must have been filled in by a previous call to
Q3Mesh_FirstMeshComponent or Q3Mesh_NextMeshComponent. If there are
no more mesh components, this function returns NULL.

SPECIAL CONSIDERATIONS

The Q3Mesh_NextMeshComponent function might not accurately report the next
mesh component in a mesh if called while mesh updating is delayed (that is,
after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_FirstComponentVertex 4

You can use the Q3Mesh_FirstComponentVertex function to get the first vertex
in a mesh component.

TQ3MeshVertex Q3Mesh_FirstComponentVertex (

TQ3MeshComponent component,

TQ3MeshIterator *iterator);

component A mesh component.

iterator A pointer to a mesh iterator structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-145

DESCRIPTION

The Q3Mesh_FirstComponentVertex function returns, as its function result,
the first vertex in the mesh component specified by the component parameter.
The iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstComponentVertex fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextComponentVertex function.

SPECIAL CONSIDERATIONS

The Q3Mesh_FirstComponentVertex function might not accurately report the
first vertex in a mesh component if called while mesh updating is delayed (that
is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_NextComponentVertex 4

You can use the Q3Mesh_NextComponentVertex function to get the next vertex
in a mesh component.

TQ3MeshVertex Q3Mesh_NextComponentVertex (

TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextComponentVertex function returns, as its function result, the
next vertex in the iteration specified by the iterator parameter, which must
have been filled in by a previous call to Q3Mesh_FirstComponentVertex or
Q3Mesh_NextComponentVertex. If there are no more vertices, this function
returns NULL.

SPECIAL CONSIDERATIONS

The Q3Mesh_NextComponentVertex function might not accurately report the
next vertex in a mesh component if called while mesh updating is delayed (that
is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

4-146 Geometric Objects Reference

Q3Mesh_FirstComponentEdge 4

You can use the Q3Mesh_FirstComponentEdge function to get the first edge in
a mesh component.

TQ3MeshEdge Q3Mesh_FirstComponentEdge (

TQ3MeshComponent component,

TQ3MeshIterator *iterator);

component A mesh component.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstComponentEdge function returns, as its function result,
the first edge in the mesh component specified by the component parameter.
The iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstComponentEdge fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextComponentEdge function.

SPECIAL CONSIDERATIONS

The Q3Mesh_FirstComponentEdge function might not accurately report the
first edge in a mesh component if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call
to Q3Mesh_ResumeUpdates).

Q3Mesh_NextComponentEdge 4

You can use the Q3Mesh_NextComponentEdge function to get the next edge in a
mesh component.

TQ3MeshEdge Q3Mesh_NextComponentEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-147

DESCRIPTION

The Q3Mesh_NextComponentEdge function returns, as its function result, the
next edge in the iteration specified by the iterator parameter, which must
have been filled in by a previous call to Q3Mesh_FirstComponentEdge or
Q3Mesh_NextComponentEdge. If there are no more edges, this function
returns NULL.

SPECIAL CONSIDERATIONS

The Q3Mesh_NextComponentEdge function might not accurately report the next
edge in a mesh component if called while mesh updating is delayed (that is,
after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_FirstMeshVertex 4

You can use the Q3Mesh_FirstMeshVertex function to get the first vertex in
a mesh.

TQ3MeshVertex Q3Mesh_FirstMeshVertex (

TQ3GeometryObject mesh,

TQ3MeshIterator *iterator);

mesh A mesh.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstMeshVertex function returns, as its function result, the first
vertex in the mesh specified by the mesh parameter. The iterator parameter is
a pointer to a mesh iterator structure that Q3Mesh_FirstMeshVertex fills in
before returning. You should pass the address of that structure to the
Q3Mesh_NextMeshVertex function.

C H A P T E R 4

Geometric Objects

4-148 Geometric Objects Reference

Q3Mesh_NextMeshVertex 4

You can use the Q3Mesh_NextMeshVertex function to get the next vertex in
a mesh.

TQ3MeshVertex Q3Mesh_NextMeshVertex (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextMeshVertex function returns, as its function result, the
next vertex in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstMeshVertex
or Q3Mesh_NextMeshVertex. If there are no more vertices, this function
returns NULL.

Q3Mesh_FirstMeshFace 4

You can use the Q3Mesh_FirstMeshFace function to get the first face in a mesh.

TQ3MeshFace Q3Mesh_FirstMeshFace (

TQ3GeometryObject mesh,

TQ3MeshIterator *iterator);

mesh A mesh.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstMeshFace function returns, as its function result, the first
face in the mesh specified by the mesh parameter. The iterator parameter is a
pointer to a mesh iterator structure that Q3Mesh_FirstMeshFace fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextMeshFace function.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-149

Q3Mesh_NextMeshFace 4

You can use the Q3Mesh_NextMeshFace function to get the next face in a mesh.

TQ3MeshFace Q3Mesh_NextMeshFace (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextMeshFace function returns, as its function result, the
next face in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstMeshFace
or Q3Mesh_NextMeshFace. If there are no more faces, this function
returns NULL.

Q3Mesh_FirstMeshEdge 4

You can use the Q3Mesh_FirstMeshEdge function to get the first edge in a mesh.

TQ3MeshEdge Q3Mesh_FirstMeshEdge (

TQ3GeometryObject mesh,

TQ3MeshIterator *iterator);

mesh A mesh.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstMeshEdge function returns, as its function result, the first
edge in the mesh specified by the mesh parameter. The iterator parameter is a
pointer to a mesh iterator structure that Q3Mesh_FirstMeshEdge fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextMeshEdge function.

C H A P T E R 4

Geometric Objects

4-150 Geometric Objects Reference

Q3Mesh_NextMeshEdge 4

You can use the Q3Mesh_NextMeshEdge function to get the next edge in a mesh.

TQ3MeshEdge Q3Mesh_NextMeshEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextMeshEdge function returns, as its function result, the
next edge in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstMeshEdge
or Q3Mesh_NextMeshEdge. If there are no more edges, this function
returns NULL.

Q3Mesh_FirstVertexEdge 4

You can use the Q3Mesh_FirstVertexEdge function to get the first edge
around a vertex.

TQ3MeshEdge Q3Mesh_FirstVertexEdge (

TQ3MeshVertex vertex,

TQ3MeshIterator *iterator);

vertex A mesh vertex.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstVertexEdge function returns, as its function result,
the first edge around the vertex specified by the vertex parameter, in a
counterclockwise ordering. The iterator parameter is a pointer to a mesh
iterator structure that Q3Mesh_FirstVertexEdge fills in before returning.
You should pass the address of that structure to the Q3Mesh_NextVertexEdge
function.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-151

Q3Mesh_NextVertexEdge 4

You can use the Q3Mesh_NextVertexEdge function to get the next edge around
a vertex, in a counterclockwise order.

TQ3MeshEdge Q3Mesh_NextVertexEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextVertexEdge function returns, as its function result, the next
edge counterclockwise in the iteration specified by the iterator parameter,
which must have been filled in by a previous call to Q3Mesh_FirstVertexEdge
or Q3Mesh_NextVertexEdge. If there are no more edges, this function
returns NULL.

Q3Mesh_FirstVertexVertex 4

You can use the Q3Mesh_FirstVertexVertex function to get the first vertex
connected to a vertex by an edge.

TQ3MeshVertex Q3Mesh_FirstVertexVertex (

TQ3MeshVertex vertex,

TQ3MeshIterator *iterator);

vertex A mesh vertex.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstVertexVertex function returns, as its function result, the
first vertex neighboring the vertex specified by the vertex parameter. The
iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstVertexVertex fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextVertexVertex function.

C H A P T E R 4

Geometric Objects

4-152 Geometric Objects Reference

Q3Mesh_NextVertexVertex 4

You can use the Q3Mesh_NextVertexVertex function to get the next vertex
connected to a vertex by an edge, in a counterclockwise order.

TQ3MeshVertex Q3Mesh_NextVertexVertex (TQ3MeshIterator

*iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextVertexVertex function returns, as its function result, the
next vertex counterclockwise in the iteration specified by the iterator
parameter, which must have been filled in by a previous call to
Q3Mesh_FirstVertexVertex or Q3Mesh_NextVertexVertex. If there are no
more vertices, this function returns NULL.

Q3Mesh_FirstVertexFace 4

You can use the Q3Mesh_FirstVertexFace function to get the first face around
a vertex.

TQ3MeshFace Q3Mesh_FirstVertexFace (

TQ3MeshVertex vertex,

TQ3MeshIterator *iterator);

vertex A mesh vertex.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstVertexFace function returns, as its function result, the
first face around the vertex specified by the vertex parameter. The
iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstVertexFace fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextVertexVertex function.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-153

Q3Mesh_NextVertexFace 4

You can use the Q3Mesh_NextVertexFace function to get the next face around
a vertex, in a counterclockwise order.

TQ3MeshFace Q3Mesh_NextVertexFace (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextVertexFace function returns, as its function result, the next
face counterclockwise in the iteration specified by the iterator parameter,
which must have been filled in by a previous call to Q3Mesh_FirstVertexFace
or Q3Mesh_NextVertexFace. If there are no more faces, this function
returns NULL.

Q3Mesh_FirstFaceEdge 4

You can use the Q3Mesh_FirstFaceEdge function to get the first edge of a
mesh face.

TQ3MeshEdge Q3Mesh_FirstFaceEdge (

TQ3MeshFace face,

TQ3MeshIterator *iterator);

face A mesh face.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstFaceEdge function returns, as its function result, the first
edge of the face specified by the face parameter. The iterator parameter is a
pointer to a mesh iterator structure that Q3Mesh_FirstFaceEdge fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextFaceEdge function.

C H A P T E R 4

Geometric Objects

4-154 Geometric Objects Reference

Q3Mesh_NextFaceEdge 4

You can use the Q3Mesh_NextFaceEdge function to get the next edge of a mesh
face, in a counterclockwise order.

TQ3MeshEdge Q3Mesh_NextFaceEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextFaceEdge function returns, as its function result, the next
edge counterclockwise in the iteration specified by the iterator parameter,
which must have been filled in by a previous call to Q3Mesh_FirstFaceEdge or
Q3Mesh_NextFaceEdge. If there are no more edges, this function returns NULL.
This function iterates over all the contours in the face.

Q3Mesh_FirstFaceVertex 4

You can use the Q3Mesh_FirstFaceVertex function to get the first vertex of a
mesh face.

TQ3MeshVertex Q3Mesh_FirstFaceVertex (

TQ3MeshFace face,

TQ3MeshIterator *iterator);

face A mesh face.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstFaceVertex function returns, as its function result, the first
vertex of the face specified by the face parameter. The iterator parameter is a
pointer to a mesh iterator structure that Q3Mesh_FirstFaceVertex fills in
before returning. You should pass the address of that structure to the
Q3Mesh_NextFaceVertex function.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-155

Q3Mesh_NextFaceVertex 4

You can use the Q3Mesh_NextFaceVertex function to get the next vertex of a
mesh face, in a counterclockwise order.

TQ3MeshVertex Q3Mesh_NextFaceVertex (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextFaceVertex function returns, as its function result, the next
vertex counterclockwise in the iteration specified by the iterator parameter,
which must have been filled in by a previous call to Q3Mesh_FirstFaceVertex
or Q3Mesh_NextFaceVertex. If there are no more vertices, this function returns
NULL. This function iterates over all the contours in the face.

Q3Mesh_FirstFaceFace 4

You can use the Q3Mesh_FirstFaceFace function to get the first face
surrounding a mesh face.

TQ3MeshFace Q3Mesh_FirstFaceFace (

TQ3MeshFace face,

TQ3MeshIterator *iterator);

face A mesh face.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstFaceFace function returns, as its function result, the first
face surrounding the face specified by the face parameter. The iterator
parameter is a pointer to a mesh iterator structure that Q3Mesh_FirstFaceFace
fills in before returning. You should pass the address of that structure to the
Q3Mesh_NextFaceFace function.

C H A P T E R 4

Geometric Objects

4-156 Geometric Objects Reference

Q3Mesh_NextFaceFace 4

You can use the Q3Mesh_NextFaceFace function to get the next face
surrounding a mesh face, in a counterclockwise order.

TQ3MeshFace Q3Mesh_NextFaceFace (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextFaceFace function returns, as its function result, the next face
counterclockwise in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstFaceFace or
Q3Mesh_NextFaceFace. If there are no more faces, this function returns NULL.

Q3Mesh_FirstFaceContour 4

You can use the Q3Mesh_FirstFaceContour function to get the first contour of
a mesh face.

TQ3MeshContour Q3Mesh_FirstFaceContour (

TQ3MeshFace face,

TQ3MeshIterator *iterator);

face A mesh face.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstFaceContour function returns, as its function result, the first
contour of the face specified by the face parameter. The iterator parameter is
a pointer to a mesh iterator structure that Q3Mesh_FirstFaceContour fills in
before returning. You should pass the address of that structure to the
Q3Mesh_NextFaceContour function.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-157

Q3Mesh_NextFaceContour 4

You can use the Q3Mesh_NextFaceContour function to get the next contour of a
mesh face.

TQ3MeshContour Q3Mesh_NextFaceContour (

TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextFaceContour function returns, as its function result, the
next contour in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstFaceContour
or Q3Mesh_NextFaceContour. If there are no more contours, this function
returns NULL.

Q3Mesh_FirstContourEdge 4

You can use the Q3Mesh_FirstContourEdge function to get the first edge of a
mesh contour.

TQ3MeshEdge Q3Mesh_FirstContourEdge (

TQ3MeshContour contour,

TQ3MeshIterator *iterator);

contour A mesh contour.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstContourEdge function returns, as its function result,
the first edge of the mesh contour specified by the contour parameter.
The iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstContourEdge fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextContourEdge function.

C H A P T E R 4

Geometric Objects

4-158 Geometric Objects Reference

Q3Mesh_NextContourEdge 4

You can use the Q3Mesh_NextContourEdge function to get the next edge of a
mesh contour, in a counterclockwise order.

TQ3MeshEdge Q3Mesh_NextContourEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextContourEdge function returns, as its function result,
the next edge counterclockwise in the iteration specified by the iterator
parameter, which must have been filled in by a previous call to
Q3Mesh_FirstContourEdge or Q3Mesh_NextContourEdge. If there are
no more edges, this function returns NULL.

Q3Mesh_FirstContourVertex 4

You can use the Q3Mesh_FirstContourVertex function to get the first vertex of
a mesh contour.

TQ3MeshVertex Q3Mesh_FirstContourVertex (

TQ3MeshContour contour,

TQ3MeshIterator *iterator);

contour A mesh contour.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstContourVertex function returns, as its function result, the
first vertex of the mesh contour specified by the contour parameter. The
iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstContourVertex fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextContourVertex function.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-159

Q3Mesh_NextContourVertex 4

You can use the Q3Mesh_NextContourVertex function to get the next vertex of
a mesh contour, in a counterclockwise order.

TQ3MeshVertex Q3Mesh_NextContourVertex (

TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextContourVertex function returns, as its function result, the
next vertex in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstContourVertex
or Q3Mesh_NextContourVertex. If there are no more vertices, this function
returns NULL.

Q3Mesh_FirstContourFace 4

You can use the Q3Mesh_FirstContourFace function to get the first face
surrounding a mesh contour.

TQ3MeshFace Q3Mesh_FirstContourFace (

TQ3MeshContour contour,

TQ3MeshIterator *iterator);

contour A mesh contour.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstContourFace function returns, as its function result,
the first face of the mesh contour specified by the contour parameter.
The iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstContourFace fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextContourFace function.

C H A P T E R 4

Geometric Objects

4-160 Geometric Objects Reference

Q3Mesh_NextContourFace 4

You can use the Q3Mesh_NextContourFace function to get the next face
surrounding a mesh contour, in a counterclockwise order.

TQ3MeshFace Q3Mesh_NextContourFace (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextContourFace function returns, as its function result,
the next face counterclockwise in the iteration specified by the iterator
parameter, which must have been filled in by a previous call to
Q3Mesh_FirstContourFace or Q3Mesh_NextContourFace. If there are
no more faces, this function returns NULL.

Creating and Editing NURB Curves 4

QuickDraw 3D provides routines that you can use to create and manipulate
NURB curves. See “NURB Curves” on page 4-50 for the definition of a NURB
curve.

Q3NURBCurve_New 4

You can use the Q3NURBCurve_New function to create a new NURB curve.

TQ3GeometryObject Q3NURBCurve_New (

const TQ3NURBCurveData *curveData);

curveData A pointer to a TQ3NURBCurveData structure.

DESCRIPTION

The Q3NURBCurve_New function returns, as its function result, a new NURB
curve having the shape and attributes specified by the curveData parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-161

If a new NURB curve could not be created, Q3NURBCurve_New returns the
value NULL.

Q3NURBCurve_Submit 4

You can use the Q3NURBCurve_Submit function to submit an immediate NURB
curve for drawing, picking, bounding, or writing.

TQ3Status Q3NURBCurve_Submit (

const TQ3NURBCurveData *curveData,

TQ3ViewObject view);

curveData A pointer to a TQ3NURBCurveData structure.

view A view.

DESCRIPTION

The Q3NURBCurve_Submit function submits for drawing, picking, bounding, or
writing the immediate NURB curve whose shape and attribute set are specified
by the curveData parameter. The NURB curve is drawn, picked, bounded, or
written according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3NURBCurve_GetData 4

You can use the Q3NURBCurve_GetData function to get the data that defines a
NURB curve and its attributes.

TQ3Status Q3NURBCurve_GetData (

TQ3GeometryObject curve,

TQ3NURBCurveData *nurbCurveData);

C H A P T E R 4

Geometric Objects

4-162 Geometric Objects Reference

curve A NURB curve.

nurbCurveData

On exit, a pointer to a TQ3NURBCurveData structure that
contains information about the NURB curve specified by the
curve parameter.

DESCRIPTION

The Q3NURBCurve_GetData function returns, through the nurbCurveData
parameter, information about the NURB curve specified by the curve
parameter. QuickDraw 3D allocates memory for the TQ3NURBCurveData
structure internally; you must call Q3NURBCurve_EmptyData to dispose of
that memory.

Q3NURBCurve_SetData 4

You can use the Q3NURBCurve_SetData function to set the data that defines a
NURB curve and its attributes.

TQ3Status Q3NURBCurve_SetData (

TQ3GeometryObject curve,

const TQ3NURBCurveData *nurbCurveData);

curve A NURB curve.

nurbCurveData

A pointer to a TQ3NURBCurveData structure.

DESCRIPTION

The Q3NURBCurve_SetData function sets the data associated with the NURB
curve specified by the curve parameter to the data specified by the
nurbCurveData parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-163

Q3NURBCurve_EmptyData 4

You can use the Q3NURBCurve_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3NURBCurve_GetData.

TQ3Status Q3NURBCurve_EmptyData (TQ3NURBCurveData

*nurbCurveData);

nurbCurveData

A pointer to a TQ3NURBCurveData structure.

DESCRIPTION

The Q3NURBCurve_EmptyData function releases the memory occupied by the
TQ3NURBCurveData structure pointed to by the nurbCurveData parameter; that
memory was allocated by a previous call to Q3NURBCurve_GetData.

Q3NURBCurve_GetControlPoint 4

You can use the Q3NURBCurve_GetControlPoint function to get a four-
dimensional control point for a NURB curve.

TQ3Status Q3NURBCurve_GetControlPoint (

TQ3GeometryObject curve,

unsigned long pointIndex,

TQ3RationalPoint4D *point4D);

curve A NURB curve.

pointIndex An index into the controlPoints array of control points for the
specified NURB curve.

point4D On exit, the control point having the specified index in the
controlPoints array of control points for the specified
NURB curve.

C H A P T E R 4

Geometric Objects

4-164 Geometric Objects Reference

DESCRIPTION

The Q3NURBCurve_GetControlPoint function returns, in the point4D
parameter, the four-dimensional control point of the NURB curve specified by
the curve parameter having the index in the array of control points specified
by the pointIndex parameter.

Q3NURBCurve_SetControlPoint 4

You can use the Q3NURBCurve_SetControlPoint function to set a
four-dimensional control point for a NURB curve.

TQ3Status Q3NURBCurve_SetControlPoint (

TQ3GeometryObject curve,

unsigned long pointIndex,

const TQ3RationalPoint4D *point4D);

curve A NURB curve.

pointIndex An index into the controlPoints array of control points for the
specified NURB curve.

point4D The desired four-dimensional control point.

DESCRIPTION

The Q3NURBCurve_SetControlPoint function sets the four-dimensional
control point of the NURB curve specified by the curve parameter having the
index in the array of control points specified by the pointIndex parameter to
the point specified by the point4D parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-165

Q3NURBCurve_GetKnot 4

You can use the Q3NURBCurve_GetKnot function to get a knot of a NURB curve.

TQ3Status Q3NURBCurve_GetKnot (

TQ3GeometryObject curve,

unsigned long knotIndex,

float *knotValue);

curve A NURB curve.

knotIndex An index into the knots array of knots for the specified
NURB curve.

knotValue On exit, the value of the specified knot of the specified
NURB curve.

DESCRIPTION

The Q3NURBCurve_GetKnot function returns, in the knotValue parameter, the
value of the knot having the index specified by the knotIndex parameter in the
knots array of the NURB curve specified by the curve parameter.

Q3NURBCurve_SetKnot 4

You can use the Q3NURBCurve_SetKnot function to set a knot of a NURB curve.

TQ3Status Q3NURBCurve_SetKnot (

TQ3GeometryObject curve,

unsigned long knotIndex,

float knotValue);

curve A NURB curve.

knotIndex An index into the knots array of knots for the specified
NURB curve.

knotValue The desired value of the specified knot of the specified
NURB curve.

C H A P T E R 4

Geometric Objects

4-166 Geometric Objects Reference

DESCRIPTION

The Q3NURBCurve_SetKnot function sets the value of the knot having the
index specified by the knotIndex parameter in the knots array of the
NURB curve specified by the curve parameter to the value specified in the
knotValue parameter.

Creating and Editing NURB Patches 4

QuickDraw 3D provides routines that you can use to create and manipulate
NURB patches. See “NURB Patches” on page 4-51 for the definition of a NURB
patch.

Q3NURBPatch_New 4

You can use the Q3NURBPatch_New function to create a new NURB patch.

TQ3GeometryObject Q3NURBPatch_New (

const TQ3NURBPatchData *nurbPatchData);

nurbPatchData

A pointer to a TQ3NURBPatchData structure.

DESCRIPTION

The Q3NURBPatch_New function returns, as its function result, a new NURB
patch having the shape and attributes specified by the nurbPatchData
parameter. If a new NURB patch could not be created, Q3NURBPatch_New
returns the value NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-167

Q3NURBPatch_Submit 4

You can use the Q3NURBPatch_Submit function to submit an immediate NURB
patch for drawing, picking, bounding, or writing.

TQ3Status Q3NURBPatch_Submit (

const TQ3NURBPatchData *nurbPatchData,

TQ3ViewObject view);

nurbPatchData

A pointer to a TQ3NURBPatchData structure.

view A view.

DESCRIPTION

The Q3NURBPatch_Submit function submits for drawing, picking, bounding, or
writing the immediate NURB patch whose shape and attribute set are specified
by the nurbPatchData parameter. The NURB patch is drawn, picked, bounded,
or written according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3NURBPatch_GetData 4

You can use the Q3NURBPatch_GetData function to get the data that defines a
NURB patch and its attributes.

TQ3Status Q3NURBPatch_GetData (

TQ3GeometryObject nurbPatch,

TQ3NURBPatchData *nurbPatchData);

nurbPatch A NURB patch.

C H A P T E R 4

Geometric Objects

4-168 Geometric Objects Reference

nurbPatchData

On exit, a pointer to a TQ3NURBPatchData structure that
contains information about the NURB patch specified by the
nurbPatch parameter.

DESCRIPTION

The Q3NURBPatch_GetData function returns, through the nurbPatchData
parameter, information about the NURB patch specified by the nurbPatch
parameter. QuickDraw 3D allocates memory for the TQ3NURBPatchData
structure internally; you must call Q3NURBPatch_EmptyData to dispose of
that memory.

Q3NURBPatch_SetData 4

You can use the Q3NURBPatch_SetData function to set the data that defines a
NURB patch and its attributes.

TQ3Status Q3NURBPatch_SetData (

TQ3GeometryObject nurbPatch,

const TQ3NURBPatchData *nurbPatchData);

nurbPatch A NURB patch.

nurbPatchData

A pointer to a TQ3NURBPatchData structure.

DESCRIPTION

The Q3NURBPatch_SetData function sets the data associated with the NURB
patch specified by the nurbPatch parameter to the data specified by the
nurbPatchData parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-169

Q3NURBPatch_EmptyData 4

You can use the Q3NURBPatch_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3NURBPatch_GetData.

TQ3Status Q3NURBPatch_EmptyData (

TQ3NURBPatchData *nurbPatchData);

nurbPatchData

A pointer to a TQ3NURBPatchData structure.

DESCRIPTION

The Q3NURBPatch_EmptyData function releases the memory occupied by the
TQ3NURBPatchData structure pointed to by the nurbPatchData parameter; that
memory was allocated by a previous call to Q3NURBPatch_GetData.

Q3NURBPatch_GetControlPoint 4

You can use the Q3NURBPatch_GetControlPoint function to get a control point
for a NURB patch.

TQ3Status Q3NURBPatch_GetControlPoint (

TQ3GeometryObject nurbPatch,

unsigned long rowIndex,

unsigned long columnIndex,

TQ3RationalPoint4D *point4D);

nurbPatch A NURB patch.

rowIndex A row index into the array of control points for the specified
NURB patch.

columnIndex A column index into the array of control points for the specified
NURB patch.

C H A P T E R 4

Geometric Objects

4-170 Geometric Objects Reference

point4D On exit, the control point having the specified row and column
indices in the controlPoints array of control points for the
specified NURB patch.

DESCRIPTION

The Q3NURBPatch_GetControlPoint function returns, in the point4D
parameter, the four-dimensional control point of the NURB patch specified by
the nurbPatch parameter having the row and column indices rowIndex and
columnIndex in the controlPoints array of control points.

Q3NURBPatch_SetControlPoint 4

You can use the Q3NURBPatch_SetControlPoint function to set a control point
for a NURB patch.

TQ3Status Q3NURBPatch_SetControlPoint (

TQ3GeometryObject nurbPatch,

unsigned long rowIndex,

unsigned long columnIndex,

const TQ3RationalPoint4D *point4D);

nurbPatch A NURB patch.

rowIndex A row index into the array of control points for the specified
NURB patch.

columnIndex A column index into the array of control points for the specified
NURB patch.

point4D The desired four-dimensional control point.

DESCRIPTION

The Q3NURBPatch_SetControlPoint function sets the four-dimensional
control point having the row and column indices rowIndex and columnIndex
in the controlPoints array of control points of the NURB patch specified by
the nurbPatch parameter to the point specified by the point4D parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-171

Q3NURBPatch_GetUKnot 4

You can use the Q3NURBPatch_GetUKnot function to get the value of a knot in
the u parametric direction.

TQ3Status Q3NURBPatch_GetUKnot (

TQ3GeometryObject nurbPatch,

unsigned long knotIndex,

float *knotValue);

nurbPatch A NURB patch.

knotIndex An index into the uKnots field of the specified NURB patch.

knotValue On exit, the value of the specified knot.

DESCRIPTION

The Q3NURBPatch_GetUKnot function returns, in the knotValue parameter, the
knot value of the NURB patch specified by the nurbPatch parameter having
the knot index specified by the knotIndex parameter in the uKnots array of
u knots.

Q3NURBPatch_SetUKnot 4

You can use the Q3NURBPatch_SetUKnot function to set the value of a knot in
the u parametric direction.

TQ3Status Q3NURBPatch_SetUKnot (

TQ3GeometryObject nurbPatch,

unsigned long knotIndex,

float knotValue);

nurbPatch A NURB patch.

knotIndex An index into the uKnots field of the specified NURB patch.

knotValue The desired value of the specified knot.

C H A P T E R 4

Geometric Objects

4-172 Geometric Objects Reference

DESCRIPTION

The Q3NURBPatch_SetUKnot function sets the knot value of the NURB patch
specified by the nurbPatch parameter having the knot index specified by the
knotIndex parameter in the uKnots array of u knots to the value specified by
the knotValue parameter.

Q3NURBPatch_GetVKnot 4

You can use the Q3NURBPatch_GetVKnot function to get the value of a knot in
the v parametric direction.

TQ3Status Q3NURBPatch_GetVKnot (

TQ3GeometryObject nurbPatch,

unsigned long knotIndex,

float *knotValue);

nurbPatch A NURB patch.

knotIndex An index into the vKnots field of the specified NURB patch.

knotValue On exit, the value of the specified knot.

DESCRIPTION

The Q3NURBPatch_GetVKnot function returns, in the knotValue parameter, the
knot value of the NURB patch specified by the nurbPatch parameter having
the knot index specified by the knotIndex parameter in the vKnots array of
v knots.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-173

Q3NURBPatch_SetVKnot 4

You can use the Q3NURBPatch_SetVKnot function to set the value of a knot in
the v parametric direction.

TQ3Status Q3NURBPatch_SetVKnot (

TQ3GeometryObject nurbPatch,

unsigned long knotIndex,

float knotValue);

nurbPatch A NURB patch.

knotIndex An index into the vKnots field of the specified NURB patch.

knotValue The desired value of the specified knot.

DESCRIPTION

The Q3NURBPatch_SetVKnot function sets the knot value of the NURB patch
specified by the nurbPatch parameter having the knot index specified by the
knotIndex parameter in the vKnots array of v knots to the value specified by
the knotValue parameter.

Creating and Editing Markers 4

QuickDraw 3D provides routines that you can use to create and manipulate
markers. See “Markers” on page 4-55 for the definition of a marker.

Q3Marker_New 4

You can use the Q3Marker_New function to create a new marker.

TQ3GeometryObject Q3Marker_New (const TQ3MarkerData *markerData);

markerData A pointer to a TQ3MarkerData structure.

C H A P T E R 4

Geometric Objects

4-174 Geometric Objects Reference

DESCRIPTION

The Q3Marker_New function returns, as its function result, a new marker having
the location, shape, offset, and attributes specified by the markerData
parameter. If a new marker could not be created, Q3Marker_New returns the
value NULL.

Q3Marker_Submit 4

You can use the Q3Marker_Submit function to submit an immediate marker for
drawing, picking, bounding, or writing.

TQ3Status Q3Marker_Submit (

const TQ3MarkerData *markerData,

TQ3ViewObject view);

markerData A pointer to a TQ3MarkerData structure.

view A view.

DESCRIPTION

The Q3Marker_Submit function submits for drawing, picking, bounding, or
writing the immediate marker whose location, shape, offset, and attribute
set are specified by the markerData parameter. The marker is drawn, picked,
bounded, or written according to the view characteristics specified in the
view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-175

Q3Marker_GetData 4

You can use the Q3Marker_GetData function to get the data associated with
a marker.

TQ3Status Q3Marker_GetData (

TQ3GeometryObject marker,

TQ3MarkerData *markerData);

marker A marker.

markerData On exit, a pointer to a TQ3MarkerData structure.

DESCRIPTION

The Q3Marker_GetData function returns, through the markerData parameter,
information about the marker specified by the marker parameter.
QuickDraw 3D allocates memory for the TQ3MarkerData structure internally;
you must call Q3Marker_EmptyData to dispose of that memory.

Q3Marker_SetData 4

You can use the Q3Marker_SetData function to set the data associated with
a marker.

TQ3Status Q3Marker_SetData (

TQ3GeometryObject marker,

const TQ3MarkerData *markerData);

marker A marker.

markerData A pointer to a TQ3MarkerData structure.

DESCRIPTION

The Q3Marker_SetData function sets the data associated with the marker
specified by the marker parameter to the data specified by the markerData
parameter.

C H A P T E R 4

Geometric Objects

4-176 Geometric Objects Reference

Q3Marker_EmptyData 4

You can use the Q3Marker_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3Marker_GetData.

TQ3Status Q3Marker_EmptyData (TQ3MarkerData *markerData);

markerData A pointer to a TQ3MarkerData structure.

DESCRIPTION

The Q3Marker_EmptyData function releases the memory occupied by the
TQ3MarkerData structure pointed to by the markerData parameter; that
memory was allocated by a previous call to Q3Marker_GetData.

Q3Marker_GetPosition 4

You can use the Q3Marker_GetPosition function to get the position
of a marker.

TQ3Status Q3Marker_GetPosition (

TQ3GeometryObject marker,

TQ3Point3D *location);

marker A marker.

location On exit, the location of the specified marker.

DESCRIPTION

The Q3Marker_GetPosition function returns, in the location parameter, the
location of the marker specified by the marker parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-177

Q3Marker_SetPosition 4

You can use the Q3Marker_SetPosition function to set the position
of a marker.

TQ3Status Q3Marker_SetPosition (

TQ3GeometryObject marker,

const TQ3Point3D *location);

marker A marker.

location The desired location of the specified marker.

DESCRIPTION

The Q3Marker_SetPosition function sets the position of the marker specified
by the marker parameter to the point specified in the position parameter.

Q3Marker_GetXOffset 4

You can use the Q3Marker_GetXOffset function to get the horizontal offset
of a marker.

TQ3Status Q3Marker_GetXOffset (

TQ3GeometryObject marker,

long *xOffset);

marker A marker.

xOffset On exit, the horizontal offset of the specified marker.

DESCRIPTION

The Q3Marker_GetXOffset function returns, in the xOffset parameter, the
horizontal offset of the marker specified by the marker parameter.

C H A P T E R 4

Geometric Objects

4-178 Geometric Objects Reference

Q3Marker_SetXOffset 4

You can use the Q3Marker_SetXOffset function to set the horizontal offset
of a marker.

TQ3Status Q3Marker_SetXOffset (

TQ3GeometryObject marker,

long xOffset);

marker A marker.

xOffset The desired horizontal offset of the specified marker.

DESCRIPTION

The Q3Marker_SetXOffset function sets the horizontal offset of the marker
specified by the marker parameter to the value specified in the xOffset
parameter.

Q3Marker_GetYOffset 4

You can use the Q3Marker_GetYOffset function to get the vertical offset
of a marker.

TQ3Status Q3Marker_GetYOffset (

TQ3GeometryObject marker,

long *yOffset);

marker A marker.

yOffset On exit, the vertical offset of the specified marker.

DESCRIPTION

The Q3Marker_GetYOffset function returns, in the yOffset parameter, the
vertical offset of the marker specified by the marker parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-179

Q3Marker_SetYOffset 4

You can use the Q3Marker_SetYOffset function to set the vertical offset
of a marker.

TQ3Status Q3Marker_SetYOffset (

TQ3GeometryObject marker,

long yOffset);

marker A marker.

yOffset The desired vertical offset of the specified marker.

DESCRIPTION

The Q3Marker_SetYOffset function sets the vertical offset of the marker
specified by the marker parameter to the value specified in the yOffset
parameter.

Q3Marker_GetBitmap 4

You can use the Q3Marker_GetBitmap function to get the bitmap of a marker.

TQ3Status Q3Marker_GetBitmap (

TQ3GeometryObject marker,

TQ3Bitmap *bitmap);

marker A marker.

bitmap On exit, the bitmap of the specified marker.

DESCRIPTION

The Q3Marker_GetBitmap function returns, in the bitmap parameter, a
copy of the bitmap of the marker specified by the marker parameter.
Q3Marker_GetBitmap allocates memory internally for the returned bitmap;
when you’re done using the bitmap, you should call the Q3Bitmap_Empty
function to dispose of that memory.

C H A P T E R 4

Geometric Objects

4-180 Geometric Objects Reference

Q3Marker_SetBitmap 4

You can use the Q3Marker_SetBitmap function to set the bitmap of a marker.

TQ3Status Q3Marker_SetBitmap (

TQ3GeometryObject marker,

const TQ3Bitmap *bitmap);

marker A marker.

bitmap The desired bitmap of the specified marker.

DESCRIPTION

The Q3Marker_SetBitmap function sets the bitmap of the marker specified by
the marker parameter to that specified in the bitmap parameter.
Q3Marker_SetBitmap copies the bitmap to internal QuickDraw 3D memory, so
you can dispose of the specified bitmap after calling Q3Marker_SetBitmap.

Managing Bitmaps 4

QuickDraw 3D provides routines that you can use to dispose of the
memory occupied by a bitmap and to determine the size of the memory
occupied by a bitmap.

Q3Bitmap_Empty 4

You can use the Q3Bitmap_Empty function to release the memory occupied by a
bitmap that was allocated by a previous call to some QuickDraw 3D routine.

TQ3Status Q3Bitmap_Empty (TQ3Bitmap *bitmap);

bitmap A pointer to a bitmap obtained by a previous call to some
QuickDraw 3D routine such as Q3Marker_GetData,
Q3Marker_GetBitmap, Q3DrawContext_GetMask, or
Q3ViewHints_GetMask.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 4-181

DESCRIPTION

The Q3Bitmap_Empty function releases the memory occupied by the bitmap
pointed to by the bitmap parameter; that memory must have been allocated
by a previous call to some QuickDraw 3D routine (for example,
Q3Marker_GetBitmap). You should not call Q3Bitmap_Empty to deallocate
bitmaps that you allocated yourself.

Q3Bitmap_GetImageSize 4

You can use the Q3Bitmap_GetImageSize function to determine how much
memory is occupied by a bitmap of a particular size.

unsigned long Q3Bitmap_GetImageSize (

unsigned long width,

unsigned long height);

width The width, in bits, of a bitmap.

height The height of a bitmap.

DESCRIPTION

The Q3Bitmap_GetImageSize function returns, as its function result, the size,
in bytes, of the smallest block of memory required to hold a bitmap having a
width and height specified by the width and height parameters, respectively.

C H A P T E R 4

Geometric Objects

4-182 Summary of Geometric Objects

Summary of Geometric Objects 4

C Summary 4

Constants 4

#define kQ3NURBCurveMaxOrder 16 /*maximum order for NURB curves*/

#define kQ3NURBPatchMaxOrder 11 /*maximum order for NURB patches*/

#define kQ3GeometryTypeBox Q3_OBJECT_TYPE('b','o','x',' ')

#define kQ3GeometryTypeGeneralPolygon Q3_OBJECT_TYPE('g','p','g','n')

#define kQ3GeometryTypeLine Q3_OBJECT_TYPE('l','i','n','e')

#define kQ3GeometryTypeMarker Q3_OBJECT_TYPE('m','r','k','r')

#define kQ3GeometryTypeMesh Q3_OBJECT_TYPE('m','e','s','h')

#define kQ3GeometryTypeNURBCurve Q3_OBJECT_TYPE('n','r','b','c')

#define kQ3GeometryTypeNURBPatch Q3_OBJECT_TYPE('n','r','b','p')

#define kQ3GeometryTypePoint Q3_OBJECT_TYPE('p','n','t',' ')

#define kQ3GeometryTypePolygon Q3_OBJECT_TYPE('p','l','y','g')

#define kQ3GeometryTypePolyLine Q3_OBJECT_TYPE('p','l','y','l')

#define kQ3GeometryTypeTriangle Q3_OBJECT_TYPE('t','r','n','g')

#define kQ3GeometryTypeTriGrid Q3_OBJECT_TYPE('t','r','i','g')

typedef enum TQ3PixelType {

kQ3PixelTypeRGB32 /*32 bits per pixel*/

} TQ3PixelType;

typedef enum TQ3Endian {

kQ3EndianBig,

kQ3EndianLittle

} TQ3Endian;

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-183

typedef enum TQ3GeneralPolygonShapeHint {

kQ3GeneralPolygonShapeHintComplex,

kQ3GeneralPolygonShapeHintConcave,

kQ3GeneralPolygonShapeHintConvex

} TQ3GeneralPolygonShapeHint;

typedef enum TQ3EndCapMasks {

kQ3EndCapNone = 0,

kQ3EndCapMaskTop = 1 << 0,

kQ3EndCapMaskBottom = 1 << 1

} TQ3EndCapMasks;

Data Types 4

typedef unsigned long TQ3EndCap;

Points

typedef struct TQ3Point2D {

float x;

float y;

} TQ3Point2D;

typedef struct TQ3Point3D {

float x;

float y;

float z;

} TQ3Point3D;

Rational Points

typedef struct TQ3RationalPoint3D {

float x;

float y;

float w;

} TQ3RationalPoint3D;

C H A P T E R 4

Geometric Objects

4-184 Summary of Geometric Objects

typedef struct TQ3RationalPoint4D {

float x;

float y;

float z;

float w;

} TQ3RationalPoint4D;

Polar and Spherical Points

typedef struct TQ3PolarPoint {

float r;

float theta;

} TQ3PolarPoint;

typedef struct TQ3SphericalPoint {

float rho;

float theta;

float phi;

} TQ3SphericalPoint;

Vectors

typedef struct TQ3Vector2D {

float x;

float y;

} TQ3Vector2D;

typedef struct TQ3Vector3D {

float x;

float y;

float z;

} TQ3Vector3D;

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-185

Quaternions

typedef struct TQ3Quaternion {

float w;

float x;

float y;

float z;

} TQ3Quaternion;

Rays

typedef struct TQ3Ray3D {

TQ3Point3D origin;

TQ3Vector3D direction;

} TQ3Ray3D;

Parametric Points

typedef struct TQ3Param2D {

float u;

float v;

} TQ3Param2D;

typedef struct TQ3Param3D {

float u;

float v;

float w;

} TQ3Param3D;

Tangents

typedef struct TQ3Tangent2D {

TQ3Vector3D uTangent;

TQ3Vector3D vTangent;

} TQ3Tangent2D;

C H A P T E R 4

Geometric Objects

4-186 Summary of Geometric Objects

typedef struct TQ3Tangent3D {

TQ3Vector3D uTangent;

TQ3Vector3D vTangent;

TQ3Vector3D wTangent;

} TQ3Tangent3D;

Vertices

typedef struct TQ3Vertex3D {

TQ3Point3D point;

TQ3AttributeSet attributeSet;

} TQ3Vertex3D;

Matrices

typedef struct TQ3Matrix3x3 {

float value[3][3];

} TQ3Matrix3x3;

typedef struct TQ3Matrix4x4 {

float value[4][4];

} TQ3Matrix4x4;

Bitmaps and Pixel Maps

typedef struct TQ3Bitmap {

unsigned char *image;

unsigned long width;

unsigned long height;

unsigned long rowBytes;

TQ3Endian bitOrder;

} TQ3Bitmap;

typedef struct TQ3Pixmap {

void *image;

unsigned long width;

unsigned long height;

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-187

unsigned long rowBytes;

unsigned long pixelSize;

TQ3PixelType pixelType;

TQ3Endian bitOrder;

TQ3Endian byteOrder;

} TQ3Pixmap;

typedef struct TQ3StoragePixmap {

TQ3StorageObject image;

unsigned long width;

unsigned long height;

unsigned long rowBytes;

unsigned long pixelSize;

TQ3PixelType pixelType;

TQ3Endian bitOrder;

TQ3Endian byteOrder;

} TQ3StoragePixmap;

Areas and Plane Equations

typedef struct TQ3Area {

TQ3Point2D min;

TQ3Point2D max;

} TQ3Area;

typedef struct TQ3PlaneEquation {

TQ3Vector3D normal;

float constant;

} TQ3PlaneEquation;

Point Objects

typedef struct TQ3PointData {

TQ3Point3D point;

TQ3AttributeSet pointAttributeSet;

} TQ3PointData;

C H A P T E R 4

Geometric Objects

4-188 Summary of Geometric Objects

Lines

typedef struct TQ3LineData {

TQ3Vertex3D vertices[2];

TQ3AttributeSet lineAttributeSet;

} TQ3LineData;

Polylines

typedef struct TQ3PolyLineData {

unsigned long numVertices;

TQ3Vertex3D *vertices;

TQ3AttributeSet *segmentAttributeSet;

TQ3AttributeSet polyLineAttributeSet;

} TQ3PolyLineData;

Triangles

typedef struct TQ3TriangleData {

TQ3Vertex3D vertices[3];

TQ3AttributeSet triangleAttributeSet;

} TQ3TriangleData;

Simple Polygons

typedef struct TQ3PolygonData {

unsigned long numVertices;

TQ3Vertex3D *vertices;

TQ3AttributeSet polygonAttributeSet;

} TQ3PolygonData;

General Polygons

typedef struct TQ3GeneralPolygonContourData {

unsigned long numVertices;

TQ3Vertex3D *vertices;

} TQ3GeneralPolygonContourData;

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-189

typedef struct TQ3GeneralPolygonData {

unsigned long numContours;

TQ3GeneralPolygonContourData *contours;

TQ3GeneralPolygonShapeHint shapeHint;

TQ3AttributeSet generalPolygonAttributeSet;

} TQ3GeneralPolygonData;

Boxes

typedef struct TQ3BoxData {

TQ3Point3D origin;

TQ3Vector3D orientation;

TQ3Vector3D majorAxis;

TQ3Vector3D minorAxis;

TQ3AttributeSet *faceAttributeSet;

TQ3AttributeSet boxAttributeSet;

} TQ3BoxData;

Trigrids

typedef struct TQ3TriGridData {

unsigned long numRows;

unsigned long numColumns;

TQ3Vertex3D *vertices;

TQ3AttributeSet *facetAttributeSet;

TQ3AttributeSet triGridAttributeSet;

} TQ3TriGridData;

Meshes

typedef struct TQ3MeshComponentPrivate *TQ3MeshComponent;

typedef struct TQ3MeshVertexPrivate *TQ3MeshVertex;

typedef struct TQ3MeshVertexPrivate *TQ3MeshFace;

typedef struct TQ3MeshEdgeRepPrivate *TQ3MeshEdge;

typedef struct TQ3MeshContourPrivate *TQ3MeshContour;

C H A P T E R 4

Geometric Objects

4-190 Summary of Geometric Objects

typedef struct TQ3MeshIterator {

void *var1;

void *var2;

void *var3;

struct {

void *field1;

char field2[4];

} var4;

} TQ3MeshIterator;

NURB Curves

typedef struct TQ3NURBCurveData {

unsigned long order;

unsigned long numPoints;

TQ3RationalPoint4D *controlPoints;

float *knots;

TQ3AttributeSet curveAttributeSet;

} TQ3NURBCurveData;

NURB Patches

typedef struct TQ3NURBPatchData {

unsigned long uOrder;

unsigned long vOrder;

unsigned long numRows;

unsigned long numColumns;

TQ3RationalPoint4D *controlPoints;

float *uKnots;

float *vKnots;

unsigned long numTrimLoops;

TQ3NURBPatchTrimLoopData *trimLoops;

TQ3AttributeSet patchAttributeSet;

} TQ3NURBPatchData;

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-191

typedef struct TQ3NURBPatchTrimLoopData {

unsigned long numTrimCurves;

TQ3NURBPatchTrimCurveData *trimCurves;

} TQ3NURBPatchTrimLoopData;

typedef struct TQ3NURBPatchTrimCurveData {

unsigned long order;

unsigned long numPoints;

TQ3RationalPoint3D *controlPoints;

float *knots;

} TQ3NURBPatchTrimCurveData;

Markers

typedef struct TQ3MarkerData {

TQ3Point3D location;

long xOffset;

long yOffset;

TQ3Bitmap bitmap;

TQ3AttributeSet markerAttributeSet;

} TQ3MarkerData;

Geometric Objects Routines 4

Managing Geometric Objects

TQ3ObjectType Q3Geometry_GetType (

TQ3GeometryObject geometry);

TQ3Status Q3Geometry_GetAttributeSet (

TQ3GeometryObject geometry,

TQ3AttributeSet *attributeSet);

TQ3Status Q3Geometry_SetAttributeSet (

TQ3GeometryObject geometry,

TQ3AttributeSet attributeSet);

TQ3Status Q3Geometry_Submit (TQ3GeometryObject geometry,

TQ3ViewObject view);

C H A P T E R 4

Geometric Objects

4-192 Summary of Geometric Objects

Creating and Editing Points

TQ3GeometryObject Q3Point_New (const TQ3PointData *pointData);

TQ3Status Q3Point_Submit (const TQ3PointData *pointData,

TQ3ViewObject view);

TQ3Status Q3Point_GetData (TQ3GeometryObject point,

TQ3PointData *pointData);

TQ3Status Q3Point_SetData (TQ3GeometryObject point,

const TQ3PointData *pointData);

TQ3Status Q3Point_EmptyData (TQ3PointData *pointData);

TQ3Status Q3Point_GetPosition (TQ3GeometryObject point,

TQ3Point3D *position);

TQ3Status Q3Point_SetPosition (TQ3GeometryObject point,

const TQ3Point3D *position);

Creating and Editing Lines

TQ3GeometryObject Q3Line_New (const TQ3LineData *lineData);

TQ3Status Q3Line_Submit (const TQ3LineData *lineData,

TQ3ViewObject view);

TQ3Status Q3Line_GetData (TQ3GeometryObject line,

TQ3LineData *lineData);

TQ3Status Q3Line_SetData (TQ3GeometryObject line,

const TQ3LineData *lineData);

TQ3Status Q3Line_GetVertexPosition (

TQ3GeometryObject line,

unsigned long index,

TQ3Point3D *position);

TQ3Status Q3Line_SetVertexPosition (

TQ3GeometryObject line,

unsigned long index,

const TQ3Point3D *position);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-193

TQ3Status Q3Line_GetVertexAttributeSet (

TQ3GeometryObject line,

unsigned long index,

TQ3AttributeSet *attributeSet);

TQ3Status Q3Line_SetVertexAttributeSet (

TQ3GeometryObject line,

unsigned long index,

TQ3AttributeSet attributeSet);

TQ3Status Q3Line_EmptyData (TQ3LineData *lineData);

Creating and Editing Polylines

TQ3GeometryObject Q3PolyLine_New (

const TQ3PolyLineData *polyLineData);

TQ3Status Q3PolyLine_Submit (const TQ3PolyLineData *polyLineData,

TQ3ViewObject view);

TQ3Status Q3PolyLine_GetData (TQ3GeometryObject polyLine,

TQ3PolyLineData *polyLineData);

TQ3Status Q3PolyLine_SetData (TQ3GeometryObject polyLine,

const TQ3PolyLineData *polyLineData);

TQ3Status Q3PolyLine_EmptyData(TQ3PolyLineData *polyLineData);

TQ3Status Q3PolyLine_GetVertexPosition (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3Point3D *position);

TQ3Status Q3PolyLine_SetVertexPosition (

TQ3GeometryObject polyLine,

unsigned long index,

const TQ3Point3D *position);

C H A P T E R 4

Geometric Objects

4-194 Summary of Geometric Objects

TQ3Status Q3PolyLine_GetVertexAttributeSet (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3AttributeSet *attributeSet);

TQ3Status Q3PolyLine_SetVertexAttributeSet (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3AttributeSet attributeSet);

TQ3Status Q3PolyLine_GetSegmentAttributeSet (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3AttributeSet *attributeSet);

TQ3Status Q3PolyLine_SetSegmentAttributeSet (

TQ3GeometryObject polyLine,

unsigned long index,

TQ3AttributeSet attributeSet);

Creating and Editing Triangles

TQ3GeometryObject Q3Triangle_New (

const TQ3TriangleData *triangleData);

TQ3Status Q3Triangle_Submit (const TQ3TriangleData *triangleData,

TQ3ViewObject view);

TQ3Status Q3Triangle_GetData (TQ3GeometryObject triangle,

TQ3TriangleData *triangleData);

TQ3Status Q3Triangle_SetData (TQ3GeometryObject triangle,

const TQ3TriangleData *triangleData);

TQ3Status Q3Triangle_EmptyData(TQ3TriangleData *triangleData);

TQ3Status Q3Triangle_GetVertexPosition (

TQ3GeometryObject triangle,

unsigned long index,

TQ3Point3D *point);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-195

TQ3Status Q3Triangle_SetVertexPosition (

TQ3GeometryObject triangle,

unsigned long index,

const TQ3Point3D *point);

TQ3Status Q3Triangle_GetVertexAttributeSet (

TQ3GeometryObject triangle,

unsigned long index,

TQ3AttributeSet *attributeSet);

TQ3Status Q3Triangle_SetVertexAttributeSet (

TQ3GeometryObject triangle,

unsigned long index,

TQ3AttributeSet attributeSet);

Creating and Editing Simple Polygons

TQ3GeometryObject Q3Polygon_New (

const TQ3PolygonData *polygonData);

TQ3Status Q3Polygon_Submit (const TQ3PolygonData *polygonData,

TQ3ViewObject view);

TQ3Status Q3Polygon_GetData (TQ3GeometryObject polygon,

TQ3PolygonData *polygonData);

TQ3Status Q3Polygon_SetData (TQ3GeometryObject polygon,

const TQ3PolygonData *polygonData);

TQ3Status Q3Polygon_EmptyData (TQ3PolygonData *polygonData);

TQ3Status Q3Polygon_GetVertexPosition (

TQ3GeometryObject polygon,

unsigned long index,

TQ3Point3D *point);

TQ3Status Q3Polygon_SetVertexPosition (

TQ3GeometryObject polygon,

unsigned long index,

const TQ3Point3D *point);

C H A P T E R 4

Geometric Objects

4-196 Summary of Geometric Objects

TQ3Status Q3Polygon_GetVertexAttributeSet (

TQ3GeometryObject polygon,

unsigned long index,

TQ3AttributeSet *attributeSet);

TQ3Status Q3Polygon_SetVertexAttributeSet (

TQ3GeometryObject polygon,

unsigned long index,

TQ3AttributeSet attributeSet);

Creating and Editing General Polygons

TQ3GeometryObject Q3GeneralPolygon_New (

const TQ3GeneralPolygonData

*generalPolygonData);

TQ3Status Q3GeneralPolygon_Submit (

const TQ3GeneralPolygonData

*generalPolygonData,

TQ3ViewObject view);

TQ3Status Q3GeneralPolygon_GetData (

TQ3GeometryObject generalPolygon,

TQ3GeneralPolygonData *generalPolygonData);

TQ3Status Q3GeneralPolygon_SetData (

TQ3GeometryObject generalPolygon,

const TQ3GeneralPolygonData

*generalPolygonData);

TQ3Status Q3GeneralPolygon_EmptyData (

TQ3GeneralPolygonData *generalPolygonData);

TQ3Status Q3GeneralPolygon_GetVertexPosition (

TQ3GeometryObject generalPolygon,

unsigned long contourIndex,

unsigned long pointIndex,

TQ3Point3D *position);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-197

TQ3Status Q3GeneralPolygon_SetVertexPosition (

TQ3GeometryObject generalPolygon,

unsigned long contourIndex,

unsigned long pointIndex,

const TQ3Point3D *position);

TQ3Status Q3GeneralPolygon_GetVertexAttributeSet (

TQ3GeometryObject generalPolygon,

unsigned long contourIndex,

unsigned long pointIndex,

TQ3AttributeSet *attributeSet);

TQ3Status Q3GeneralPolygon_SetVertexAttributeSet (

TQ3GeometryObject generalPolygon,

unsigned long contourIndex,

unsigned long pointIndex,

TQ3AttributeSet attributeSet);

TQ3Status Q3GeneralPolygon_GetShapeHint (

TQ3GeometryObject generalPolygon,

TQ3GeneralPolygonShapeHint *shapeHint);

TQ3Status Q3GeneralPolygon_SetShapeHint (

TQ3GeometryObject generalPolygon,

TQ3GeneralPolygonShapeHint shapeHint);

Creating and Editing Boxes

TQ3GeometryObject Q3Box_New (const TQ3BoxData *boxData);

TQ3Status Q3Box_Submit (const TQ3BoxData *boxData,

TQ3ViewObject view);

TQ3Status Q3Box_GetData (TQ3GeometryObject box,

TQ3BoxData *boxData);

TQ3Status Q3Box_SetData (TQ3GeometryObject box,

const TQ3BoxData *boxData);

TQ3Status Q3Box_EmptyData (TQ3BoxData *boxData);

C H A P T E R 4

Geometric Objects

4-198 Summary of Geometric Objects

TQ3Status Q3Box_GetOrigin (TQ3GeometryObject box, TQ3Point3D *origin);

TQ3Status Q3Box_SetOrigin (TQ3GeometryObject box,

const TQ3Point3D *origin);

TQ3Status Q3Box_GetOrientation(TQ3GeometryObject box,

TQ3Vector3D *orientation);

TQ3Status Q3Box_SetOrientation(TQ3GeometryObject box,

const TQ3Vector3D *orientation);

TQ3Status Q3Box_GetMajorAxis (TQ3GeometryObject box,

TQ3Vector3D *majorAxis);

TQ3Status Q3Box_SetMajorAxis (TQ3GeometryObject box,

const TQ3Vector3D *majorAxis);

TQ3Status Q3Box_GetMinorAxis (TQ3GeometryObject box,

TQ3Vector3D *minorAxis);

TQ3Status Q3Box_SetMinorAxis (TQ3GeometryObject box,

const TQ3Vector3D *minorAxis);

TQ3Status Q3Box_GetFaceAttributeSet (

TQ3GeometryObject box,

unsigned long faceIndex,

TQ3AttributeSet *faceAttributeSet);

TQ3Status Q3Box_SetFaceAttributeSet (

TQ3GeometryObject box,

unsigned long faceIndex,

TQ3AttributeSet faceAttributeSet);

Creating and Editing Trigrids

TQ3GeometryObject Q3TriGrid_New (

const TQ3TriGridData *triGridData);

TQ3Status Q3TriGrid_Submit (const TQ3TriGridData *triGridData,

TQ3ViewObject view);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-199

TQ3Status Q3TriGrid_GetData (TQ3GeometryObject triGrid,

TQ3TriGridData *triGridData);

TQ3Status Q3TriGrid_SetData (TQ3GeometryObject triGrid,

const TQ3TriGridData *triGridData);

TQ3Status Q3TriGrid_EmptyData (TQ3TriGridData *triGridData);

TQ3Status Q3TriGrid_GetVertexPosition (

TQ3GeometryObject triGrid,

unsigned long rowIndex,

unsigned long columnIndex,

TQ3Point3D *position);

TQ3Status Q3TriGrid_SetVertexPosition (

TQ3GeometryObject triGrid,

unsigned long rowIndex,

unsigned long columnIndex,

const TQ3Point3D *position);

TQ3Status Q3TriGrid_GetVertexAttributeSet (

TQ3GeometryObject triGrid,

unsigned long rowIndex,

unsigned long columnIndex,

TQ3AttributeSet *attributeSet);

TQ3Status Q3TriGrid_SetVertexAttributeSet (

TQ3GeometryObject triGrid,

unsigned long rowIndex,

unsigned long columnIndex,

TQ3AttributeSet attributeSet);

TQ3Status Q3TriGrid_GetFacetAttributeSet (

TQ3GeometryObject triGrid,

unsigned long faceIndex,

TQ3AttributeSet *facetAttributeSet);

C H A P T E R 4

Geometric Objects

4-200 Summary of Geometric Objects

TQ3Status Q3TriGrid_SetFacetAttributeSet (

TQ3GeometryObject triGrid,

unsigned long faceIndex,

TQ3AttributeSet facetAttributeSet);

Creating and Editing Meshes

TQ3GeometryObject Q3Mesh_New (void);

TQ3MeshVertex Q3Mesh_VertexNew(TQ3GeometryObject mesh,

const TQ3Vertex3D *vertex);

TQ3Status Q3Mesh_VertexDelete (TQ3GeometryObject mesh, TQ3MeshVertex vertex);

TQ3MeshFace Q3Mesh_FaceNew (TQ3GeometryObject mesh,

unsigned long numVertices,

const TQ3MeshVertex *vertices,

TQ3AttributeSet attributeSet);

TQ3Status Q3Mesh_FaceDelete (TQ3GeometryObject mesh, TQ3MeshFace face);

TQ3Status Q3Mesh_DelayUpdates (TQ3GeometryObject mesh);

TQ3Status Q3Mesh_ResumeUpdates(TQ3GeometryObject mesh);

TQ3MeshContour Q3Mesh_FaceToContour (

TQ3GeometryObject mesh,

TQ3MeshFace containerFace,

TQ3MeshFace face);

TQ3MeshFace Q3Mesh_ContourToFace (

TQ3GeometryObject mesh,

TQ3MeshContour contour);

TQ3Status Q3Mesh_GetNumComponents (

TQ3GeometryObject mesh,

unsigned long *numComponents);

TQ3Status Q3Mesh_GetNumEdges (TQ3GeometryObject mesh,

unsigned long *numEdges);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-201

TQ3Status Q3Mesh_GetNumVertices (

TQ3GeometryObject mesh,

unsigned long *numVertices);

TQ3Status Q3Mesh_GetNumFaces (TQ3GeometryObject mesh,

unsigned long *numFaces);

TQ3Status Q3Mesh_GetNumCorners(TQ3GeometryObject mesh,

unsigned long *numCorners);

TQ3Status Q3Mesh_GetOrientable(TQ3GeometryObject mesh,

TQ3Boolean *orientable);

TQ3Status Q3Mesh_GetComponentNumVertices (

TQ3GeometryObject mesh,

TQ3MeshComponent component,

unsigned long *numVertices);

TQ3Status Q3Mesh_GetComponentNumEdges (

TQ3GeometryObject mesh,

TQ3MeshComponent component,

unsigned long *numEdges);

TQ3Status Q3Mesh_GetComponentBoundingBox (

TQ3GeometryObject mesh,

TQ3MeshComponent component,

TQ3BoundingBox *boundingBox);

TQ3Status Q3Mesh_GetComponentOrientable (

TQ3GeometryObject mesh,

TQ3MeshComponent component,

TQ3Boolean *orientable);

TQ3Status Q3Mesh_GetVertexCoordinates (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3Point3D *coordinates);

C H A P T E R 4

Geometric Objects

4-202 Summary of Geometric Objects

TQ3Status Q3Mesh_SetVertexCoordinates (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

const TQ3Point3D *coordinates);

TQ3Status Q3Mesh_GetVertexIndex (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

unsigned long *index);

TQ3Status Q3Mesh_GetVertexOnBoundary (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3Boolean *onBoundary);

TQ3Status Q3Mesh_GetVertexComponent (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3MeshComponent *component);

TQ3Status Q3Mesh_GetVertexAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3AttributeSet *attributeSet);

TQ3Status Q3Mesh_SetVertexAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3AttributeSet attributeSet);

TQ3Status Q3Mesh_GetFaceNumVertices (

TQ3GeometryObject mesh,

TQ3MeshFace face,

unsigned long *numVertices);

TQ3Status Q3Mesh_GetFacePlaneEquation (

TQ3GeometryObject mesh,

TQ3MeshFace face,

TQ3PlaneEquation *planeEquation);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-203

TQ3Status Q3Mesh_GetFaceNumContours (

TQ3GeometryObject mesh,

TQ3MeshFace face,

unsigned long *numContours);

TQ3Status Q3Mesh_GetFaceIndex (TQ3GeometryObject mesh,

TQ3MeshFace face,

unsigned long *index);

TQ3Status Q3Mesh_GetFaceComponent (

TQ3GeometryObject mesh,

TQ3MeshFace face,

TQ3MeshComponent *component);

TQ3Status Q3Mesh_GetFaceAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshFace face,

TQ3AttributeSet *attributeSet);

TQ3Status Q3Mesh_SetFaceAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshFace face,

TQ3AttributeSet attributeSet);

TQ3Status Q3Mesh_GetEdgeVertices (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3MeshVertex *vertex1,

TQ3MeshVertex *vertex2);

TQ3Status Q3Mesh_GetEdgeFaces (TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3MeshFace *face1,

TQ3MeshFace *face2);

TQ3Status Q3Mesh_GetEdgeOnBoundary (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3Boolean *onBoundary);

C H A P T E R 4

Geometric Objects

4-204 Summary of Geometric Objects

TQ3Status Q3Mesh_GetEdgeComponent (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3MeshComponent *component);

TQ3Status Q3Mesh_GetEdgeAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3AttributeSet *attributeSet);

TQ3Status Q3Mesh_SetEdgeAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshEdge edge,

TQ3AttributeSet attributeSet);

TQ3Status Q3Mesh_GetContourFace (

TQ3GeometryObject mesh,

TQ3MeshContour contour,

TQ3MeshFace *face);

TQ3Status Q3Mesh_GetContourNumVertices (

TQ3GeometryObject mesh,

TQ3MeshContour contour,

unsigned long *numVertices);

TQ3Status Q3Mesh_GetCornerAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3MeshFace face,

TQ3AttributeSet *attributeSet);

TQ3Status Q3Mesh_SetCornerAttributeSet (

TQ3GeometryObject mesh,

TQ3MeshVertex vertex,

TQ3MeshFace face,

TQ3AttributeSet attributeSet);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-205

Traversing Mesh Components, Vertices, Faces, and Edges

TQ3MeshComponent Q3Mesh_FirstMeshComponent (

TQ3GeometryObject mesh,

TQ3MeshIterator *iterator);

TQ3MeshComponent Q3Mesh_NextMeshComponent (

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_FirstComponentVertex (

TQ3MeshComponent component,

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_NextComponentVertex (

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_FirstComponentEdge (

TQ3MeshComponent component,

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_NextComponentEdge (

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_FirstMeshVertex (

TQ3GeometryObject mesh,

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_NextMeshVertex (

TQ3MeshIterator *iterator);

TQ3MeshFace Q3Mesh_FirstMeshFace (

TQ3GeometryObject mesh,

TQ3MeshIterator *iterator);

TQ3MeshFace Q3Mesh_NextMeshFace (

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_FirstMeshEdge (

TQ3GeometryObject mesh,

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_NextMeshEdge(TQ3MeshIterator *iterator);

C H A P T E R 4

Geometric Objects

4-206 Summary of Geometric Objects

TQ3MeshEdge Q3Mesh_FirstVertexEdge (

TQ3MeshVertex vertex,

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_NextVertexEdge (

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_FirstVertexVertex (

TQ3MeshVertex vertex,

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_NextVertexVertex (

TQ3MeshIterator *iterator);

TQ3MeshFace Q3Mesh_FirstVertexFace (

TQ3MeshVertex vertex,

TQ3MeshIterator *iterator);

TQ3MeshFace Q3Mesh_NextVertexFace (

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_FirstFaceEdge (

TQ3MeshFace face,

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_NextFaceEdge (

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_FirstFaceVertex (

TQ3MeshFace face, TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_NextFaceVertex (

TQ3MeshIterator *iterator);

TQ3MeshFace Q3Mesh_FirstFaceFace (

TQ3MeshFace face,

TQ3MeshIterator *iterator);

TQ3MeshFace Q3Mesh_NextFaceFace (

TQ3MeshIterator *iterator);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-207

TQ3MeshContour Q3Mesh_FirstFaceContour (

TQ3MeshFace face, TQ3MeshIterator *iterator);

TQ3MeshContour Q3Mesh_NextFaceContour (

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_FirstContourEdge (

TQ3MeshContour contour,

TQ3MeshIterator *iterator);

TQ3MeshEdge Q3Mesh_NextContourEdge (

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_FirstContourVertex (

TQ3MeshContour contour,

TQ3MeshIterator *iterator);

TQ3MeshVertex Q3Mesh_NextContourVertex (

TQ3MeshIterator *iterator);

TQ3MeshFace Q3Mesh_FirstContourFace (

TQ3MeshContour contour,

TQ3MeshIterator *iterator);

TQ3MeshFace Q3Mesh_NextContourFace (

TQ3MeshIterator *iterator);

#define Q3ForEachMeshComponent(m,c,i) \

for ((c) = Q3Mesh_FirstMeshComponent((m),(i)); \

(c); \

(c) = Q3Mesh_NextMeshComponent((i)))

#define Q3ForEachComponentVertex(c,v,i) \

for ((v) = Q3Mesh_FirstComponentVertex((c),(i)); \

(v); \

(v) = Q3Mesh_NextComponentVertex((i)))

C H A P T E R 4

Geometric Objects

4-208 Summary of Geometric Objects

#define Q3ForEachComponentEdge(c,e,i) \

for ((e) = Q3Mesh_FirstComponentEdge((c),(i)); \

(e); \

(e) = Q3Mesh_NextComponentEdge((i)))

#define Q3ForEachMeshVertex(m,v,i) \

for ((v) = Q3Mesh_FirstMeshVertex((m),(i)); \

(v); \

(v) = Q3Mesh_NextMeshVertex((i)))

#define Q3ForEachMeshFace(m,f,i) \

for ((f) = Q3Mesh_FirstMeshFace((m),(i)); \

(f); \

(f) = Q3Mesh_NextMeshFace((i)))

#define Q3ForEachMeshEdge(m,e,i) \

for ((e) = Q3Mesh_FirstMeshEdge((m),(i)); \

(e); \

(e) = Q3Mesh_NextMeshEdge((i)))

#define Q3ForEachVertexEdge(v,e,i) \

for ((e) = Q3Mesh_FirstVertexEdge((v),(i)); \

(e); \

(e) = Q3Mesh_NextVertexEdge((i)))

#define Q3ForEachVertexVertex(v,n,i) \

for ((n) = Q3Mesh_FirstVertexVertex((v),(i)); \

(n); \

(n) = Q3Mesh_NextVertexVertex((i)))

#define Q3ForEachVertexFace(v,f,i) \

for ((f) = Q3Mesh_FirstVertexFace((v),(i)); \

(f); \

(f) = Q3Mesh_NextVertexFace((i)))

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-209

#define Q3ForEachFaceEdge(f,e,i) \

for ((e) = Q3Mesh_FirstFaceEdge((f),(i)); \

(e); \

(e) = Q3Mesh_NextFaceEdge((i)))

#define Q3ForEachFaceVertex(f,v,i) \

for ((v) = Q3Mesh_FirstFaceVertex((f),(i)); \

(v); \

(v) = Q3Mesh_NextFaceVertex((i)))

#define Q3ForEachFaceFace(f,n,i) \

for ((n) = Q3Mesh_FirstFaceFace((f),(i)); \

(n); \

(n) = Q3Mesh_NextFaceFace((i)))

#define Q3ForEachFaceContour(f,h,i) \

for ((h) = Q3Mesh_FirstFaceContour((f),(i)); \

(h); \

(h) = Q3Mesh_NextFaceContour((i)))

#define Q3ForEachContourEdge(h,e,i) \

for ((e) = Q3Mesh_FirstContourEdge((h),(i)); \

(e); \

(e) = Q3Mesh_NextContourEdge((i)))

#define Q3ForEachContourVertex(h,v,i) \

for ((v) = Q3Mesh_FirstContourVertex((h),(i)); \

(v); \

(v) = Q3Mesh_NextContourVertex((i)))

#define Q3ForEachContourFace(h,f,i) \

for ((f) = Q3Mesh_FirstContourFace((h),(i)); \

(f); \

(f) = Q3Mesh_NextContourFace((i)))

C H A P T E R 4

Geometric Objects

4-210 Summary of Geometric Objects

Creating and Editing NURB Curves

TQ3GeometryObject Q3NURBCurve_New (

const TQ3NURBCurveData *curveData);

TQ3Status Q3NURBCurve_Submit (const TQ3NURBCurveData *curveData,

TQ3ViewObject view);

TQ3Status Q3NURBCurve_GetData (TQ3GeometryObject curve,

TQ3NURBCurveData *nurbCurveData);

TQ3Status Q3NURBCurve_SetData (TQ3GeometryObject curve,

const TQ3NURBCurveData *nurbCurveData);

TQ3Status Q3NURBCurve_EmptyData (

TQ3NURBCurveData *nurbCurveData);

TQ3Status Q3NURBCurve_GetControlPoint (

TQ3GeometryObject curve,

unsigned long pointIndex,

TQ3RationalPoint4D *point4D);

TQ3Status Q3NURBCurve_SetControlPoint (

TQ3GeometryObject curve,

unsigned long pointIndex,

const TQ3RationalPoint4D *point4D);

TQ3Status Q3NURBCurve_GetKnot (TQ3GeometryObject curve,

unsigned long knotIndex,

float *knotValue);

TQ3Status Q3NURBCurve_SetKnot (TQ3GeometryObject curve,

unsigned long knotIndex,

float knotValue);

Creating and Editing NURB Patches

TQ3GeometryObject Q3NURBPatch_New (

const TQ3NURBPatchData *nurbPatchData);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-211

TQ3Status Q3NURBPatch_Submit (const TQ3NURBPatchData *nurbPatchData,

TQ3ViewObject view);

TQ3Status Q3NURBPatch_GetData (TQ3GeometryObject nurbPatch,

TQ3NURBPatchData *nurbPatchData);

TQ3Status Q3NURBPatch_SetData (TQ3GeometryObject nurbPatch,

const TQ3NURBPatchData *nurbPatchData);

TQ3Status Q3NURBPatch_EmptyData (

TQ3NURBPatchData *nurbPatchData);

TQ3Status Q3NURBPatch_GetControlPoint (

TQ3GeometryObject nurbPatch,

unsigned long rowIndex,

unsigned long columnIndex,

TQ3RationalPoint4D *point4D);

TQ3Status Q3NURBPatch_SetControlPoint (

TQ3GeometryObject nurbPatch,

unsigned long rowIndex,

unsigned long columnIndex,

const TQ3RationalPoint4D *point4D);

TQ3Status Q3NURBPatch_GetUKnot(TQ3GeometryObject nurbPatch,

unsigned long knotIndex,

float *knotValue);

TQ3Status Q3NURBPatch_SetUKnot(TQ3GeometryObject nurbPatch,

unsigned long knotIndex,

float knotValue);

TQ3Status Q3NURBPatch_GetVKnot(TQ3GeometryObject nurbPatch,

unsigned long knotIndex,

float *knotValue);

TQ3Status Q3NURBPatch_SetVKnot(TQ3GeometryObject nurbPatch,

unsigned long knotIndex,

float knotValue);

C H A P T E R 4

Geometric Objects

4-212 Summary of Geometric Objects

Creating and Editing Markers

TQ3GeometryObject Q3Marker_New(const TQ3MarkerData *markerData);

TQ3Status Q3Marker_Submit (const TQ3MarkerData *markerData,

TQ3ViewObject view);

TQ3Status Q3Marker_GetData (TQ3GeometryObject marker,

TQ3MarkerData *markerData);

TQ3Status Q3Marker_SetData (TQ3GeometryObject marker,

const TQ3MarkerData *markerData);

TQ3Status Q3Marker_EmptyData (TQ3MarkerData *markerData);

TQ3Status Q3Marker_GetPosition(TQ3GeometryObject marker,

TQ3Point3D *location);

TQ3Status Q3Marker_SetPosition(TQ3GeometryObject marker,

const TQ3Point3D *location);

TQ3Status Q3Marker_GetXOffset (TQ3GeometryObject marker, long *xOffset);

TQ3Status Q3Marker_SetXOffset (TQ3GeometryObject marker, long xOffset);

TQ3Status Q3Marker_GetYOffset (TQ3GeometryObject marker, long *yOffset);

TQ3Status Q3Marker_SetYOffset (TQ3GeometryObject marker, long yOffset);

TQ3Status Q3Marker_GetBitmap (TQ3GeometryObject marker, TQ3Bitmap *bitmap);

TQ3Status Q3Marker_SetBitmap (TQ3GeometryObject marker,

const TQ3Bitmap *bitmap);

Managing Bitmaps

TQ3Status Q3Bitmap_Empty (TQ3Bitmap *bitmap);

unsigned long Q3Bitmap_GetImageSize (

unsigned long width, unsigned long height);

C H A P T E R 4

Geometric Objects

Summary of Geometric Objects 4-213

Errors, Warnings, and Notices 4

kQ3ErrorDegenerateGeometry
kQ3ErrorGeometryInsufficientNumberOfPoints
kQ3ErrorVector3DNotUnitLength
kQ3WarningQuaternionEntriesAreZero
kQ3NoticeMeshVertexHasNoComponent
kQ3NoticeMeshInvalidVertexFacePair
kQ3NoticeMeshEdgeVertexDoNotCorrespond
kQ3NoticeMeshEdgeIsNotBoundary

C H A P T E R 5

Contents

5-1

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 Attribute Objects

About Attribute Objects 5-3
Types of Attributes and Attribute Sets 5-4
Attribute Inheritance 5-6

Using Attribute Objects 5-7
Creating and Configuring Attribute Sets 5-7
Iterating Through an Attribute Set 5-8
Defining Custom Attribute Types 5-9

Attribute Objects Reference 5-13
Constants 5-14

Attribute Types 5-14
Attribute Objects Routines 5-16

Drawing Attributes 5-16
Creating and Managing Attribute Sets 5-17
Registering Custom Attributes 5-23

Application-Defined Routines 5-24
Summary of Attribute Objects 5-27

C Summary 5-27
Constants 5-27
Data Types 5-27
Attribute Objects Routines 5-28
Application-Defined Routines 5-29

Errors 5-29

This document was created with FrameMaker 4.0.4

C H A P T E R 5

About Attribute Objects

5-3

Attribute Objects 5

This chapter describes attribute objects (or attributes) and attribute sets.
Attributes store information about the characteristics of the materials that make
up the objects in a model. For example, you can attach an attribute to a
geometric object that specifies the object’s color. You can also attach an attribute
to part of an object, for example to a vertex of a mesh. QuickDraw 3D provides
a wide range of predefined attribute types, and you can define custom attribute
types if you wish.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. To attach attribute sets to geometric objects, you should also be familiar
with the routines described in the chapter “Geometric Objects” in this book.

This chapter begins by describing attributes and attribute sets. Then it shows
how to create attribute sets and attach them to parts of a model. The section
“Attribute Objects Reference,” beginning on page 5-13 provides a complete
description of attributes and attribute sets and of the routines you can use to
create and manipulate them.

About Attribute Objects 5

An

attribute object

 (or, more briefly, an

attribute

) is a type of QuickDraw 3D
object that determines some of the characteristics of a model, such as the color
of objects or parts of objects in the model, the transparency of objects, and so
forth. In general, attributes define material properties of the surfaces of objects
in a model.

An attribute is defined as an attribute type and some associated data. You
apply an attribute to an object by creating an instance of a specific attribute
type, defining its data, and then attaching it to the object. QuickDraw 3D
defines many types of attributes, including diffuse color, specular color,
transparency color, surface normals, and surface tangents.

In general, however, attributes are not applied to objects individually. Instead,
you usually create an

attribute set,

 which is a collection of zero or more
different attribute types and their associated data. For example, to create a
transparent red triangle, you create an attribute set, add both color and
transparency attributes to it, and then attach the attribute set to the triangle. An
attribute set is of type

TQ3AttributeSet

, a type of

TQ3SetObject

.

This document was created with FrameMaker 4.0.4

C H A P T E R 5

Attribute Objects

5-4

About Attribute Objects

Types of Attributes and Attribute Sets 5

QuickDraw 3D defines a large number of basic attribute types, which represent
information such as surface color, transparency, parameterization, normal,
tangent, and so forth. In addition, if the basic QuickDraw 3D attribute types are
not sufficient for the needs of your application, you can define custom attribute
types. For example, you might want to maintain information about the
temperature over time of each point on the surface of an object. To do so, you
can define a new attribute type and a data structure to hold the relevant
information. You also need to define an

attribute metahandler,

 which contains
methods for handling your custom attribute data. (QuickDraw 3D defines
metahandlers for all the basic attribute types.)

The basic attributes types are defined by constants. See “Attribute Types” on
page 5-14 for a complete description of these attribute types.

typedef enum TQ3AttributeTypes {

kQ3AttributeTypeNone = 0,

kQ3AttributeTypeSurfaceUV = 1,

kQ3AttributeTypeShadingUV = 2,

kQ3AttributeTypeNormal = 3,

kQ3AttributeTypeAmbientCoefficient = 4,

kQ3AttributeTypeDiffuseColor = 5,

kQ3AttributeTypeSpecularColor = 6,

kQ3AttributeTypeSpecularControl = 7,

kQ3AttributeTypeTransparencyColor = 8,

kQ3AttributeTypeSurfaceTangent = 9,

kQ3AttributeTypeHighlightState = 10,

kQ3AttributeTypeSurfaceShader = 11

} TQ3AttributeTypes;

You can attach a set of attributes to a view, to a group of objects, to a single
geometric object, to a face of an object, or to a vertex of an object. In addition,
you can attach edge and corner attributes to meshes. For each of these levels,
QuickDraw 3D defines a set of

natural attributes.

 For example, the surface
normal attribute (which defines the normal vector at a point) makes no sense
when applied to a view or a nonpolygonal geometric object. It does, however,
make sense to include the surface normal attribute in a set of face or vertex
attributes. Accordingly, the surface normal attribute is contained in the natural
sets of attributes for faces and vertices, but not for views, groups, or
nonpolygonal geometric objects. Table 5-1 lists the natural attributes that can be
assigned to objects in the QuickDraw 3D object hierarchy.

C H A P T E R 5

Attribute Objects

About Attribute Objects

5-5

IMPORTANT

You can, if you wish, include in the attribute set of any
kind of object attributes that are not natural to that object.
For instance, you can put a surface normal attribute into an
attribute set attached to a view. You can then access that
unnatural attribute in precisely the same way you access
any other attribute in the set. The only difference between
natural and unnatural attributes is that unnatural
attributes in an attribute set are not inherited by objects
lower down in the class hierarchy. See “Attribute
Inheritance” on page 5-6 for details.

▲

Note

Surface normals assigned to faces are ignored by
renderers, as are the surface normals that are computed
geometrically from the points that make up the face.

◆

Table 5-1

Natural sets of attributes for objects in a hierarchy

Object type Natural attributes in the set

View object
Group object
Geometric object
Face

kQ3AttributeTypeAmbientCoefficient
kQ3AttributeTypeDiffuseColor
kQ3AttributeTypeSpecularColor
kQ3AttributeTypeSpecularControl
kQ3AttributeTypeTransparencyColor
kQ3AttributeTypeHighlightState
kQ3AttributeTypeSurfaceShader

Vertex

kQ3AttributeTypeSurfaceUV
kQ3AttributeTypeShadingUV
kQ3AttributeTypeNormal
kQ3AttributeTypeAmbientCoefficient
kQ3AttributeTypeDiffuseColor
kQ3AttributeTypeSpecularColor
kQ3AttributeTypeSpecularControl
kQ3AttributeTypeTransparencyColor
kQ3AttributeTypeSurfaceTangent

C H A P T E R 5

Attribute Objects

5-6

About Attribute Objects

Attribute Inheritance 5

During the rendering of the objects in a view, attribute sets of objects higher in
the view hierarchy are inherited by objects below them. For example, if the
attribute set of a view specifies a particular diffuse color, then all objects in that
view are rendered with that diffuse color,

unless

 some other attribute set
overrides the color specified in the view attributes. That is, if some face of some
object has an attribute set containing a different diffuse color, the face’s diffuse
color overrides the diffuse color that otherwise would have been inherited
from the view attribute set.

Attribute inheritance always occurs in this order:

1. view

2. group

3. geometric object

4. face

5. mesh edge

6. vertex

7. mesh corner

In other words, view attributes are always inherited by all groups of objects in
the model, unless a group contains overriding attributes. Similarly, any
attributes assigned to a geometric object are inherited by all faces of the object,
unless a face contains overriding attributes.

This attribute inheritance applies only to the natural attributes contained in any
attribute set. If, for example, an attribute set of a view contains a surface
normal attribute (which is

not

 a natural attribute for view attribute sets), that
attribute is not inherited by any objects lower down in the hierarchy.

If you define a custom attribute, you can specify whether you want that
attribute to be inherited along the attribute inheritance path by including an
attribute inheritance method in your attribute metahandler. See “Defining
Custom Attribute Types” on page 5-9 for a sample attribute metahandler that
specifies that the temperature attribute is to be inherited. If you do not supply
an attribute inheritance method, QuickDraw 3D assumes you want no such
inheritance for your custom attribute.

C H A P T E R 5

Attribute Objects

Using Attribute Objects

5-7

Using Attribute Objects 5

This section describes the basic capabilities that QuickDraw 3D provides to
create and configure attribute sets. It also shows how to read the attributes in
an attribute set and, if necessary, change those attributes. In general, it’s very
simple to create, configure, and modify attribute sets.

This section also shows how to define a custom attribute type. To do so, you
need to provide definitions of the data associated with that attribute type and
an attribute metahandler to define a set of attribute-handling methods. See
“Defining Custom Attribute Types,” beginning on page 5-9 for complete details.

Creating and Configuring Attribute Sets 5

You create a new attribute set by calling the

Q3AttributeSet_New

 function.
You configure the attribute set by adding the desired attributes to the set, using
the

Q3AttributeSet_Add

 function. Finally, you attach the configured attribute
set to an object by calling an appropriate QuickDraw 3D routine. For example,
to attach an attribute set to a vertex of a triangle, you call the function

Q3Triangle_SetVertexAttributeSet

. Listing 5-1 illustrates how to set the
three vertices of a triangle to a specific diffuse color.

Listing 5-1

Creating and configuring a vertex attribute set

TQ3Status MySetTriangleVerticesDiffuseColor

(TQ3GeometryObject triangle, TQ3ColorRGB color)

{

TQ3AttributeSet myAttrSet; /*attribute set*/

TQ3Status myResult; /*result code*/

unsigned long myIndex; /*vertex index*/

/*Create a new empty attribute set.*/

myAttrSet = Q3AttributeSet_New();

if (myAttrSet == NULL)

return (kQ3Failure);

C H A P T E R 5

Attribute Objects

5-8

Using Attribute Objects

/*Add the specified color attribute to the attribute set.*/

myResult = Q3AttributeSet_Add

(myAttrSet, kQ3AttributeTypeDiffuseColor, &color);

if (myResult == kQ3Failure)

return (kQ3Failure);

/*Attach the attribute set to each triangle vertex.*/

for (myIndex = 0; myIndex < 3; myIndex++) {

myResult = Q3Triangle_SetVertexAttributeSet

(triangle, myIndex, myAttrSet);

if (myResult == kQ3Failure)

return (kQ3Failure);

}

return (kQ3Success);

}

You can assign any number of different attribute types to a single attribute set.
The function defined in Listing 5-1 assigns only one attribute—a diffuse color—
to the new attribute set.

If you want to change the value of a certain attribute in an attribute set, you can
simply overwrite the data associated with that attribute by calling

Q3AttributeSet_Add

 once again. You can remove an attribute from an
attribute set by calling

Q3AttributeSet_Clear

. To remove all attributes from
an attribute set, you can call

Q3AttributeSet_Empty

.

Iterating Through an Attribute Set 5

QuickDraw 3D provides the

Q3AttributeSet_GetNextAttributeType

function that you can use to iterate through the attributes in an attribute
set. To get the first attribute in an attribute set, pass the constant

kQ3AttributeTypeNone

 to

Q3AttributeSet_GetNextAttributeType

.
You can retrieve any subsequent attributes by successively
calling

Q3AttributeSet_GetNextAttributeType

, which returns

kQ3AttributeTypeNone

 when you reach the end of the list of attributes.
Listing 5-2 illustrates how to use

Q3AttributeSet_GetNextAttributeType

to determine the number of attributes in an attribute set.

C H A P T E R 5

Attribute Objects

Using Attribute Objects

5-9

Listing 5-2

Counting the attributes in an attribute set

unsigned long MyCountAttributesInSet (TQ3AttributeSet mySet)

{

unsigned long myCount; /*attribute count*/

TQ3AttributeType myType; /*attribute type*/

TQ3Status myResult; /*result code*/

for (myCount = 0,

 myType = kQ3AttributeTypeNone,

 myResult =

Q3AttributeSet_GetNextAttributeType(mySet, &myType);

 myType != kQ3AttributeTypeNone;

 myResult =

Q3AttributeSet_GetNextAttributeType(mySet, &myType)) {

myCount++;

}

return (myCount);

}

Notice that the

Q3AttributeSet_GetNextAttributeType

 function returns a
result code that indicates whether the call succeeded or failed. In general, the
call fails only if the attribute set is invalid in some way.

Defining Custom Attribute Types 5

QuickDraw 3D allows you to define custom attribute types so that you can
attach to a vertex (or face, or geometric object, or group, or view) types of data
different from those associated with the basic attribute types defined by
QuickDraw 3D. Once you have defined and registered your custom attribute
type, you manipulate attributes of that type exactly as you manipulate the
standard QuickDraw 3D attributes. For example, you add a custom attribute to
an attribute set by calling

Q3AttributeSet_Add

, and you retrieve the data
associated with a custom attribute by calling

Q3AttributeSet_Get

.

To define a custom attribute type, you first define the internal structure of the
data associated with your custom attribute type. Then you must write an
attribute metahandler to define a set of attribute-handling methods.

C H A P T E R 5

Attribute Objects

5-10

Using Attribute Objects

QuickDraw 3D calls those methods at certain times to handle operations on
attribute sets that contain your custom attribute. For example, when you call

Q3Triangle_Write

 to write a triangle to a file, QuickDraw 3D might need to
call your attribute’s handler to write your custom attribute data to the file.

Suppose that you want to define a custom attribute that contains data about
temperature over time. You might use the

MyTemperatureData

 structure,
defined like this:

typedef struct MyTemperatureData {

unsigned long startTime; /*starting time*/

unsigned long nTemps; /*no. temps in array*/

float *temperatures; /*array of temps*/

} MyTemperatureData;

Your attribute metahandler is an application-defined function that returns the
addresses of the methods associated with the custom attribute type. A
metahandler can define some or all of the methods indicated by these constants:

kQ3MethodTypeObjectReadData

kQ3MethodTypeObjectTraverse

kQ3MethodTypeObjectWrite

kQ3MethodTypeElementCopyAdd

kQ3MethodTypeElementDelete

kQ3MethodTypeElementCopyDuplicate

kQ3MethodTypeElementCopyGet

kQ3MethodTypeElementCopyReplace

kQ3MethodTypeAttributeCopyInherit

kQ3MethodTypeAttributeInherit

Listing 5-3 defines a simple attribute metahandler. See “Defining an Object
Metahandler,” beginning on page 3-15 for a more complete description of
metahandlers.

Listing 5-3

Reporting custom attribute methods

TQ3FunctionPointer MyTemperatureDataMetaHandler (TQ3MethodType methodType)

{

switch (methodType) {

C H A P T E R 5

Attribute Objects

Using Attribute Objects

5-11

case kQ3MethodTypeElementDelete:

return (TQ3FunctionPointer) MyTemperatureDataDispose;

case kQ3MethodTypeElementCopyReplace:

return (TQ3FunctionPointer) MyTemperatureDataCopyReplace;

case kQ3MethodTypeAttributeCopyInherit:

return (TQ3FunctionPointer) kQ3True;

case kQ3MethodTypeAttributeInherit:

return (TQ3FunctionPointer) kQ3True;

default:

return (NULL);

}

}

As you can see, the

MyTemperatureDataMetaHandler

 metahandler simply
returns the appropriate function address, or

NULL

 if the metahandler does
not implement a particular method type. All the method types listed above
are optional. (In fact, you don’t need to specify a metahandler at all if you
want QuickDraw 3D to use its default methods to handle your custom
attribute type.)

The metahandler defined in Listing 5-3 installs the

MyTemperatureDataDispose

 function as the custom attribute’s dispose
method, which QuickDraw 3D calls whenever you clear your custom attribute
or replace an existing custom attribute. A dispose method is passed a pointer to
the data associated with an attribute. Your dispose method should deallocate
any storage you allocated yourself. Listing 5-4 shows a simple dispose method.

Listing 5-4

Disposing of a custom attribute’s data

TQ3Status MyTemperatureDataDispose (MyTemperatureData *tmpData)

{

if (tData->temperatures != NULL) {

free(tmpData->temperatures);

tData->temperatures = NULL;

}

return kQ3Success;

}

C H A P T E R 5

Attribute Objects

5-12

Using Attribute Objects

If you do not define a dispose method, QuickDraw 3D automatically disposes
of the block of data allocated when a custom attribute was added to an
attribute set. If the data associated with a custom attribute is always of a fixed
size and does not contain any pointers to other data that needs to be disposed
of, you do not need to define a dispose or copy method.

The metahandler defined in Listing 5-3 installs the

MyTemperatureDataCopyReplace

 function as the custom attribute’s copy
method. A copy method is passed two pointers, specifying the source and
target addresses of the data to copy. Listing 5-5 shows a simple copy method.

Listing 5-5

Copying a custom attribute’s data

TQ3Status MyTemperatureDataCopyReplace

(const MyTemperatureData *src, MyTemperatureData *dst)

{

float *temp;

if (dst->nTemps != src->nTemps) {

temp = realloc(dst->temperatures, nTemps * sizeof(float));

if (temp == NULL)

return (kQ3Failure);

}

dst->startTime = src->startTime;

dst->nTemps = src->nTemps;

dst->temperatures = temp;

memcpy(temp, dst->temperatures, dst->nTemps * sizeof(float));

return (kQ3Success);

}

If you do not define a copy method, QuickDraw 3D automatically copies the
block of data using a default memory copy method.

The inherit method simply requests a Boolean value that indicates whether you
want your custom attribute to be inherited down the class hierarchy. You
should return

kQ3True

 if you want your attribute to be inherited or

kQ3False

if not.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference

5-13

Before you can use a custom attribute type, you need to register your attribute
metahandler with QuickDraw 3D by calling the

Q3AttributeClass_Register

function. You might execute the

MyStartUpQuickDraw3D

 function defined in
Listing 5-6 at application startup time.

Listing 5-6

Initializing QuickDraw 3D and registering a custom attribute type

TQ3AttributeType gAttributeType_Temperature;

void MyStartUpQuickDraw3D (void)

{

TQ3ObjectClass myAttrib;

if (Q3Initialize() == kQ3Failure) /*initialize QuickDraw 3D*/

MyFailRoutine();

/*register attribute type*/

myAttrib = Q3AttributeClass_Register(

gAttributeTypeTemperature,

“MyCompany:SurfWorks:Temperature”,

sizeof(MyTemperatureData),

MyTemperatureData_MetaHandler);

if (myAttrib == kQ3ObjectTypeInvalid)

MyFailRoutine();

}

Attribute Objects Reference 5

This section describes the constants and routines that you can use to manage an
object’s attributes and attribute sets.

C H A P T E R 5

Attribute Objects

5-14

Attribute Objects Reference

Constants 5

This section describes the constants that you use to define attribute types.

Attribute Types 5

Every attribute has a unique attribute type. QuickDraw 3D defines a large
number of attribute types, and your application can define additional attribute
types. Attribute types are defined by constants. Attribute type values greater
than 0 are reserved for use by QuickDraw 3D. Your custom attribute types
must have attribute type values that are less than 0. Here are the attribute types
currently defined by QuickDraw 3D.

typedef enum TQ3AttributeTypes {

kQ3AttributeTypeNone = 0,

kQ3AttributeTypeSurfaceUV = 1,

kQ3AttributeTypeShadingUV = 2,

kQ3AttributeTypeNormal = 3,

kQ3AttributeTypeAmbientCoefficient = 4,

kQ3AttributeTypeDiffuseColor = 5,

kQ3AttributeTypeSpecularColor = 6,

kQ3AttributeTypeSpecularControl = 7,

kQ3AttributeTypeTransparencyColor = 8,

kQ3AttributeTypeSurfaceTangent = 9,

kQ3AttributeTypeHighlightState = 10,

kQ3AttributeTypeSurfaceShader = 11

} TQ3AttributeTypes;

Constant descriptions

kQ3AttributeTypeNone

The attribute has no type. You can pass this constant to
the Q3AttributeSet_GetNextAttributeType function
to get the first attribute type in an attribute set. When
there are no more attribute types in a set,
Q3AttributeSet_GetNextAttributeType returns
kQ3AttributeTypeNone.

kQ3AttributeTypeSurfaceUV

The attribute is a surface uv parameterization, of type
TQ3Param2D.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 5-15

kQ3AttributeTypeShadingUV

The attribute is a shading uv parameterization, of type
TQ3Param2D. A shading uv parameterization is an
alternative to the surface uv parameterization that is used
for shading. See the chapter “Shader Objects” for more
information about shading uv parameterizations.

kQ3AttributeTypeNormal

The attribute is a surface normal, of type TQ3Vector3D.
kQ3AttributeTypeAmbientCoefficient

The attribute is an ambient coefficient, of type float. An
ambient coefficient determines the amount of ambient
light reflected from an object’s surface. An ambient
coefficient should be between 0.0 (no reflection of ambient
light) and 1.0 (complete reflection of ambient light).

kQ3AttributeTypeDiffuseColor

The attribute is a diffuse color, of type TQ3ColorRGB.
kQ3AttributeTypeSpecularColor

The attribute is a specular color, of type TQ3ColorRGB.
kQ3AttributeTypeSpecularControl

The attribute is a specular control, of type float.
kQ3AttributeTypeTransparencyColor

The attribute is a transparency color, of type TQ3ColorRGB.
A transparency color determines the amount of light that
can pass through a surface. The color (0, 0, 0) indicates
complete transparency, and (1, 1, 1) indicates complete
opacity. QuickDraw 3D multiplies an object’s transparency
color by its diffuse color when a transparency color
attribute is attached to the object.

kQ3AttributeTypeSurfaceTangent

The attribute is a surface tangent, of type TQ3Tangent2D.
kQ3AttributeTypeHighlightState

The attribute is a highlight state, of type TQ3Boolean. A
highlight state determines whether a highlight style
overrides the material attributes of an object (kQ3True) or
not (kQ3False).

C H A P T E R 5

Attribute Objects

5-16 Attribute Objects Reference

kQ3AttributeTypeSurfaceShader

The attribute is a surface shader, of type
TQ3SurfaceShaderObject. See the chapter “Shader
Objects” for information on creating surface shaders and
adding them to attribute sets. Note that when you include
a surface shader in an attribute set, the reference count of
the shader is incremented.

Attribute Objects Routines 5

This section describes routines you can use to manage attributes.

Drawing Attributes 5

QuickDraw 3D provides a routine that you can use to draw an attribute.

Q3Attribute_Submit 5

You can use the Q3Attribute_Submit function to submit an attribute in
immediate mode.

TQ3Status Q3Attribute_Submit (

TQ3AttributeType attributeType,

const void *data,

TQ3ViewObject view);

attributeType

An attribute type.

data A pointer to the attribute’s data.

view A view.

DESCRIPTION

The Q3Attribute_Submit function submits the attribute specified by the
attributeType and data parameters into the view specified by the view
parameter.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 5-17

SPECIAL CONSIDERATIONS

You should call Q3Attribute_Submit only in a submitting loop.

Creating and Managing Attribute Sets 5

QuickDraw 3D provides a number of routines for creating and managing
attribute sets.

Q3AttributeSet_New 5

You can use the Q3AttributeSet_New function to create an attribute set.

TQ3AttributeSet Q3AttributeSet_New (void);

DESCRIPTION

The Q3AttributeSet_New function returns, as its function result, a new empty
attribute set. If Q3AttributeSet_New fails, it returns NULL.

Q3AttributeSet_Add 5

You can use the Q3AttributeSet_Add function to add an attribute to an
attribute set.

TQ3Status Q3AttributeSet_Add (

TQ3AttributeSet attributeSet,

TQ3AttributeType type,

const void *data);

attributeSet

An attribute set.

type An attribute type.

data A pointer to the attribute’s data.

C H A P T E R 5

Attribute Objects

5-18 Attribute Objects Reference

DESCRIPTION

The Q3AttributeSet_Add function adds the attribute specified by the type
and data parameters to the attribute set specified by the attributeSet
parameter. The attribute set must already exist when you call
Q3AttributeSet_Add. If that attribute set already contains an attribute of
the specified type, Q3AttributeSet_Add replaces that attribute with the one
specified by the type and data parameters. Note that the attribute data is
copied into the attribute set. Accordingly, you can reuse the data parameter
once you have called Q3AttributeSet_Add.

Q3AttributeSet_Contains 5

You can use the Q3AttributeSet_Contains function to determine whether an
attribute set contains an attribute of a specific type.

TQ3Boolean Q3AttributeSet_Contains (

TQ3AttributeSet attributeSet,

TQ3AttributeType attributeType);

attributeSet

An attribute set.

attributeType

An attribute type.

DESCRIPTION

The Q3AttributeSet_Contains function returns, as its function result, a
Boolean value that indicates whether the attribute set specified by the
attributeSet parameter contains (kQ3True) or does not contain (kQ3False)
an attribute of the type specified by the attributeType parameter.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 5-19

Q3AttributeSet_Get 5

You can use the Q3AttributeSet_Get function to get the data associated with
an attribute in an attribute set.

TQ3Status Q3AttributeSet_Get (

TQ3AttributeSet attributeSet,

TQ3AttributeType type,

void *data);

attributeSet

An attribute set.

type An attribute type.

data On entry, a pointer to a structure large enough to hold the
attribute data associated with attributes of the specified type.
On exit, a pointer to the attribute data of the attribute having
the specified type.

DESCRIPTION

The Q3AttributeSet_Get function returns, in the data parameter, the data
currently associated with the attribute whose type is specified by the type
parameter in the attribute set specified by the attributeSet parameter. If no
attribute of that type is in the attribute set, Q3AttributeSet_Get returns
kQ3Failure and posts the error kQ3ErrorAttributeNotContained.

If you pass the value NULL in the data parameter, no data is copied back to
your application.

ERRORS

kQ3ErrorAttributeNotContained

C H A P T E R 5

Attribute Objects

5-20 Attribute Objects Reference

Q3AttributeSet_GetNextAttributeType 5

You can use the Q3AttributeSet_GetNextAttributeType function to iterate
through all the attributes in an attribute set.

TQ3Status Q3AttributeSet_GetNextAttributeType (

TQ3AttributeSet source,

TQ3AttributeType *type);

source An attribute set.

type On entry, an attribute type. On exit, the attribute type of
the attribute that immediately follows that attribute in the
attribute set.

DESCRIPTION

The Q3AttributeSet_GetNextAttributeType function returns, in the type
parameter, the attribute type of the attribute that immediately follows the
attribute having the type specified by the type parameter in the attribute set
specified by the source parameter. To get the type of the first attribute in
the attribute set, pass kQ3AttributeTypeNone in the type parameter.
Q3AttributeSet_GetNextAttributeType returns kQ3AttributeTypeNone
when it has reached then end of the list of attributes.

Q3AttributeSet_Empty 5

You can use the Q3AttributeSet_Empty function to empty an attribute set of
all its attributes.

TQ3Status Q3AttributeSet_Empty (TQ3AttributeSet target);

target An attribute set.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 5-21

DESCRIPTION

The Q3AttributeSet_Empty function removes all the attributes currently in
the attribute set specified by the target parameter.

Q3AttributeSet_Clear 5

You can use the Q3AttributeSet_Clear function to remove an attribute of a
certain type from an attribute set.

TQ3Status Q3AttributeSet_Clear (

TQ3AttributeSet attributeSet,

TQ3AttributeType type);

attributeSet

An attribute set.

type An attribute type.

DESCRIPTION

The Q3AttributeSet_Clear function removes the attribute whose type is
specified by the type parameter from the attribute set specified by the
attributeSet parameter.

Q3AttributeSet_Submit 5

You can use the Q3AttributeSet_Submit function to submit an attribute set in
immediate mode.

TQ3Status Q3AttributeSet_Submit (

TQ3AttributeSet attributeSet,

TQ3ViewObject view);

attributeSet

An attribute set.

view A view.

C H A P T E R 5

Attribute Objects

5-22 Attribute Objects Reference

DESCRIPTION

The Q3AttributeSet_Submit function submits the attribute set specified by
the attributeSet parameter into the view specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call Q3AttributeSet_Submit only in a submitting loop.

Q3AttributeSet_Inherit 5

You can use the Q3AttributeSet_Inherit function to configure an attribute
set so that it contains all the attributes of a child set together with all the
attributes inherited from a parent set.

TQ3Status Q3AttributeSet_Inherit (

TQ3AttributeSet parent,

TQ3AttributeSet child,

TQ3AttributeSet result);

parent An attribute set.

child An attribute set.

result On entry, an attribute set. On exit, an attribute set that contains
all the attributes in the specified child set together with all the
attributes inherited from the specified parent set.

DESCRIPTION

The Q3AttributeSet_Inherit function returns, in the result parameter, an
attribute set that merges attributes from the attribute sets specified by the
child and parent parameters. The resulting set contains all the attributes in
the child set together with all those in the parent set having an attribute type
that is not contained in the child attribute set.

If the specified child and parent attribute sets contain any custom attribute
types, Q3AttributeSet_Inherit uses the custom type’s
kQ3MethodTypeAttributeCopyInherit custom method. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 5-23

Registering Custom Attributes 5

You can add a custom attribute type by calling the
Q3AttributeClass_Register function. If necessary, you can
delete an application-defined attribute type by calling the
Q3ObjectClass_Unregister function.

Note
For complete details on adding custom attribute
types, see “Defining Custom Attribute Types,” beginning
on page 5-9. ◆

Q3AttributeClass_Register 5

You can use the Q3AttributeClass_Register function to register an
application-defined attribute type.

TQ3ObjectClass Q3AttributeClass_Register (

TQ3AttributeType attributeType,

const char *creatorName,

unsigned long sizeOfElement,

TQ3MetaHandler metaHandler);

attributeType

The type of your custom attribute.

creatorName A pointer to a null-terminated string containing the name of the
attribute’s creator and the name of the type of attribute being
registered.

sizeOfElement

The size of the data associated with the specified custom
attribute type.

metaHandler A pointer to an application-defined metahandler that
QuickDraw 3D calls to handle the new custom attribute type.

C H A P T E R 5

Attribute Objects

5-24 Attribute Objects Reference

DESCRIPTION

The Q3AttributeClass_Register function returns, as its function result, an
object class reference for a new custom attribute type having a type specified
by the attributeType parameter and a name specified by the creatorName
parameter. The metaHandler parameter is a pointer to the metahandler for
your custom attribute type. See the chapter “QuickDraw 3D Objects” for
information on writing a metahandler. If Q3AttributeClass_Register cannot
create a new attribute type, it returns the value NULL.

The creatorName parameter should be a pointer to null-terminated C string
that contains your (or your company’s) name and the name of the type of
attribute you are defining. Use the colon character (:) to delimit fields within
this string. The string should not contain any spaces or punctuation other than
the colon character, and it cannot end with a colon. Here are some examples of
valid creator names:

“MyCompany:SurfDraw:Wavelength”

“MyCompany:SurfWorks:VRModule:WaterTemperature”

The sizeOfElement parameter specifies the fixed size of the data associated
with your custom attribute type. You can associate dynamically sized data with
your attribute type by putting a pointer to a dynamically sized block of data
into the attribute set and having your handler’s copy method duplicate the
data. (In this case, you would set the sizeOfElement parameter to
sizeof(Ptr).) You also need to have your handler’s dispose method
deallocate any dynamically sized blocks.

SEE ALSO

See page 5-24 for information on methods for a custom attribute type.

Application-Defined Routines 5

This section describes the methods you can implement to handle a
custom attribute.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 5-25

TQ3AttributeCopyInheritMethod 5

You can define an attribute inheritance method to copy attributes during
inheritance.

typedef TQ3Status (*TQ3AttributeCopyInheritMethod) (

const void *fromInternalAttribute,

void *toInternalAttribute);

fromInternalAttribute

A pointer to the attribute data associated with an attribute
having your custom attribute type.

toInternalAttribute

On entry, a pointer to an uninitialized block of memory large
enough to contain the attribute data associated with an
attribute having your custom attribute type.

DESCRIPTION

Your TQ3AttributeCopyInheritMethod function should copy the attribute
data pointed to by the fromInternalAttribute parameter into the location
pointed to by the toInternalAttribute parameter. This method is called
whenever the Q3AttributeSet_Inherit function is used to copy an attribute
of your custom type from one set to another set.

You should strive to make your TQ3AttributeCopyInheritMethod method as
fast as possible. For example, if your custom element contains objects, you
should call the Q3Shared_GetReference function instead of the
Q3Object_Duplicate function.

RESULT CODES

Your TQ3AttributeCopyInheritMethod function should return kQ3Success if
it is successful and kQ3Failure otherwise.

C H A P T E R 5

Attribute Objects

5-26 Attribute Objects Reference

TQ3AttributeInheritMethod 5

You must define an attribute inheritance method to manage inheritance of your
custom attribute type.

typedef TQ3Boolean TQ3AttributeInheritMethod;

DESCRIPTION

Your TQ3AttributeInheritMethod function should return a Boolean value
that indicates whether attributes of your custom type should be inherited
(kQ3True) or not (kQ3False).

C H A P T E R 5

Attribute Objects

Summary of Attribute Objects 5-27

Summary of Attribute Objects 5

C Summary 5

Constants 5

typedef enum TQ3AttributeTypes {

kQ3AttributeTypeNone = 0,

kQ3AttributeTypeSurfaceUV = 1,

kQ3AttributeTypeShadingUV = 2,

kQ3AttributeTypeNormal = 3,

kQ3AttributeTypeAmbientCoefficient = 4,

kQ3AttributeTypeDiffuseColor = 5,

kQ3AttributeTypeSpecularColor = 6,

kQ3AttributeTypeSpecularControl = 7,

kQ3AttributeTypeTransparencyColor = 8,

kQ3AttributeTypeSurfaceTangent = 9,

kQ3AttributeTypeHighlightState = 10,

kQ3AttributeTypeSurfaceShader = 11

} TQ3AttributeTypes;

#define kQ3MethodTypeAttributeCopyInherit Q3_METHOD_TYPE('a','c','p','i')

#define kQ3MethodTypeAttributeInherit Q3_METHOD_TYPE('i','n','h','t')

Data Types 5

typedef TQ3ElementType TQ3AttributeType;

C H A P T E R 5

Attribute Objects

5-28 Summary of Attribute Objects

Attribute Objects Routines 5

Drawing Attributes

TQ3Status Q3Attribute_Submit (TQ3AttributeType attributeType,

const void *data,

TQ3ViewObject view);

Creating and Managing Attribute Sets

TQ3AttributeSet Q3AttributeSet_New (

void);

TQ3Status Q3AttributeSet_Add (TQ3AttributeSet attributeSet,

TQ3AttributeType type,

const void *data);

TQ3Boolean Q3AttributeSet_Contains (

TQ3AttributeSet attributeSet,

TQ3AttributeType attributeType);

TQ3Status Q3AttributeSet_Get (TQ3AttributeSet attributeSet,

TQ3AttributeType type,

void *data);

TQ3Status Q3AttributeSet_GetNextAttributeType (

TQ3AttributeSet source,

TQ3AttributeType *type);

TQ3Status Q3AttributeSet_Empty(TQ3AttributeSet target);

TQ3Status Q3AttributeSet_Clear(TQ3AttributeSet attributeSet,

TQ3AttributeType type);

TQ3Status Q3AttributeSet_Submit (

TQ3AttributeSet attributeSet,

TQ3ViewObject view);

C H A P T E R 5

Attribute Objects

Summary of Attribute Objects 5-29

TQ3Status Q3AttributeSet_Inherit (

TQ3AttributeSet parent,

TQ3AttributeSet child,

TQ3AttributeSet result);

Registering Custom Attributes

TQ3ObjectClass Q3AttributeClass_Register (

TQ3AttributeType attributeType,

const char *creatorName,

unsigned long sizeOfElement,

TQ3MetaHandler metaHandler);

Application-Defined Routines 5

typedef TQ3Status (*TQ3AttributeCopyInheritMethod) (

const void *fromInternalAttribute,

void *toInternalAttribute);

typedef TQ3Boolean TQ3AttributeInheritMethod;

Errors 5

kQ3ErrorAttributeNotContained Attribute not contained in attribute set
kQ3ErrorAttributeInvalidType Invalid type of attribute

C H A P T E R 6

Contents

6-1

Contents

Figure 6-0
Listing 6-0
Table 6-0

6 Style Objects

About Style Objects 6-3
Backfacing Styles 6-4
Interpolation Styles 6-5
Fill Styles 6-6
Highlight Styles 6-6
Subdivision Styles 6-7
Orientation Styles 6-8
Shadow-Receiving Styles 6-9
Picking ID Styles 6-9
Picking Parts Styles 6-9

Using Style Objects 6-10
Style Objects Reference 6-10

Data Structures 6-11
Subdivision Style Data Structure 6-11

Style Objects Routines 6-12
Managing Styles 6-12
Managing Backfacing Styles 6-14
Managing Interpolation Styles 6-16
Managing Fill Styles 6-19
Managing Highlight Styles 6-22
Managing Subdivision Styles 6-25
Managing Orientation Styles 6-28
Managing Shadow-Receiving Styles 6-30
Managing Picking ID Styles 6-33
Managing Picking Parts Styles 6-36

This document was created with FrameMaker 4.0.4

C H A P T E R 6

6-2

Contents

Summary of Style Objects 6-39
C Summary 6-39

Constants 6-39
Data Types 6-40
Style Objects Routines 6-40

C H A P T E R 6

About Style Objects

6-3

Style Objects 6

This chapter describes style objects (or styles) and the functions you can use to
manipulate them. You use styles to specify some of the basic characteristics of a
renderer. For example, one renderer style determines whether an object is
drawn as a solid filled object or as a set of edges. Another renderer style
determines whether a surface is drawn smoothly or as a set of polygonal facets.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about renderers, see the chapter “Renderer Objects” in
this book. You do not, however, need to know how to create or manipulate
renderers to read this chapter.

This chapter begins by describing style objects and their features. Then it shows
how to specify the current rendering styles of a model. The section “Style
Objects Reference,” beginning on page 6-10 provides a complete description of
style objects and the routines you can use to create and manipulate them.

About Style Objects 6

A

style object

 (or, more briefly, a

style

) is a type of QuickDraw 3D object that
determines some of the basic characteristics of the renderer used to draw the
geometric objects in a scene. A style is of type

TQ3StyleObject

, which is a
subclass of a shape object.

You can apply a style to a model by creating a style object and then submitting
it to the model. QuickDraw 3D provides functions that allow both retained and
immediate style submitting. Alternatively, you can create a style object and
then add it to a group. Then, when the group is submitted for rendering, the
style is applied to all objects in the group (if it’s an ordered display group) or to
all objects in the group following the style (if it’s a display group).

Note

See the chapter “Group Objects” for complete information
on how styles are applied to the objects in a group.

◆

QuickDraw 3D defines these types of styles that affect the rendering or picking
of a scene:

■

backfacing styles

■

interpolation styles

This document was created with FrameMaker 4.0.4

C H A P T E R 6

Style Objects

6-4

About Style Objects

■

fill styles

■

highlight styles

■

subdivision styles

■

orientation styles

■

shadow-receiving styles

■

picking ID styles

■

picking parts styles

Unlike attributes, which define characteristics of the appearances of individual
surfaces and can be applied to only part of a model, styles define characteristics
of a renderer and are generally (but not always) applied to a model as a whole.

IMPORTANT

Some renderers might not support all types of styles, and
some renderers might not be able to apply a given style to
all geometric objects. For example, not all renderers can
draw shadows; such renderers therefore ignore the
shadow-receiving style.

▲

If you apply a style to an object and then apply a different style of the same
type to that object, the style applied second replaces the style applied first.

Backfacing Styles 6

A model’s

backfacing style

 determines whether or not a renderer draws
shapes (typically polygons) that face away from a view’s camera.
QuickDraw 3D defines constants for the backfacing styles that are currently
available.

typedef enum TQ3BackfacingStyle {

kQ3BackfacingStyleBoth,

kQ3BackfacingStyleRemove,

kQ3BackfacingStyleFlip

} TQ3BackfacingStyle;

The default value,

kQ3BackfacingStyleBoth

, specifies that the renderer
should draw shapes that face either toward or away from the camera. The
backfacing shapes may be illuminated only dimly or not at all, because their
face normals point away from the camera.

C H A P T E R 6

Style Objects

About Style Objects

6-5

The constant

kQ3BackfacingStyleRemove

 specifies that the renderer should
not draw or otherwise process shapes that face away from the camera.
(This process is called

backface culling.

) This rendering style is likely to
be significantly faster than the other two backfacing styles (because up to
half the shapes are not rendered) but can cause holes to appear in visible
backfacing objects.

Note

An object that faces away from the camera might still be
visible. Accordingly, backface culling is not the same as
hidden surface removal.

◆

The constant

kQ3BackfacingStyleFlip

 specifies that the renderer should
draw shapes that face toward or away from the camera. The face normals of
backfacing shapes are inverted so that they face toward the camera.

Interpolation Styles 6

A model’s

interpolation style

 determines the method of interpolation a
renderer uses when applying lighting or other shading effects to a surface.
QuickDraw 3D defines constants for the interpolation styles that are currently
available.

typedef enum TQ3InterpolationStyle {

kQ3InterpolationStyleNone,

kQ3InterpolationStyleVertex,

kQ3InterpolationStylePixel

} TQ3InterpolationStyle;

The constant

kQ3InterpolationStyleNone

 specifies that no interpolation is to
occur. When a renderer applies an effect (such as illumination) to a surface, it
calculates a single intensity value for an entire polygon. This style results in a
model’s surfaces having a faceted appearance.

To render surfaces smoothly, you can specify one of two interpolation styles.
The constant

kQ3InterpolationStyleVertex

 specifies that the renderer is to
interpolate values linearly across a polygon, using the values at the vertices.
The constant

kQ3InterpolationStylePixel

 specifies that the renderer is to
apply an effect at every pixel in the image. For example, a renderer will
calculate illumination based on the surface normal of every pixel in the image.
This rendering style is likely to be computation-intensive.

C H A P T E R 6

Style Objects

6-6

About Style Objects

Fill Styles 6

A model’s

fill style

 determines whether an object is drawn as a solid filled
object or is drawn as a set of edges or points. QuickDraw 3D defines constants
for the fill styles that are currently available.

typedef enum TQ3FillStyle {

kQ3FillStyleFilled,

kQ3FillStyleEdges,

kQ3FillStylePoints

} TQ3FillStyle;

The default value,

kQ3FillStyleFilled

, specifies that the renderer should
draw shapes as solid filled objects. The constant

kQ3FillStyleEdges

 specifies
that the renderer should draw shapes as the sets of lines that define the edges
of the surfaces rather than as filled shapes. The constant

kQ3FillStylePoints

specifies that the renderer should draw shapes as the sets of points that define
the vertices of the surfaces. This fill style is used primarily to accelerate the
rendering of very complex shapes.

Highlight Styles 6

A model’s

highlight style

 determines the material attributes of a geometric
object (or a group of geometric objects) that override the normal attributes
of the object (or group of objects). For example, it is often useful during
interaction with the objects in a model to highlight a selected shape by
changing its color. You can define the specific highlight style to be applied to a
selected object, thus avoiding the need to edit the geometric description of the
object simply to change its color or other attributes.

If a highlight style is defined for a model, any renderers that support
highlighting will use the attributes in that style to override the material
attributes defined for any geometric objects in the model. However, the
highlight style is used for a particular geometric object only if the object’s

highlight state

 (that is, an attribute of type

kQ3AttributeTypeHighlightState

 that has data of type

TQ3Boolean

) is set to

kQ3True

. For example, suppose that the attribute set of a box contains an
attribute of type

kQ3AttributeTypeHighlightState

, which is set to

kQ3True

.
Further, suppose that the face attribute sets of the box do not contain any
attributes of that type. In this case, the attribute set of the current highlight
style is used during rendering.

C H A P T E R 6

Style Objects

About Style Objects

6-7

Subdivision Styles 6

A model’s

subdivision style

 determines how a renderer decomposes
smooth curves and surfaces into polylines and polygonal meshes for display
purposes. You can control the fineness of the decomposition by changing
either the subdivision style or the parameters associated with a particular
style. QuickDraw 3D defines constants for the subdivision styles that are
currently available.

typedef enum TQ3SubdivisionMethod {

kQ3SubdivisionMethodConstant,

kQ3SubdivisionMethodWorldSpace,

kQ3SubdivisionMethodScreenSpace

} TQ3SubdivisionMethod;

The value

kQ3SubdivisionMethodConstant

 specifies

constant subdivision:

the renderer should subdivide a curve into some given number of polyline
segments and a surface into a certain-sized mesh of polygons.

The value

kQ3SubdivisionMethodWorldSpace

 specifies

world-space
subdivision:

 the renderer should subdivide a curve (or surface) into polylines
(or polygons) whose sides have a world-space length that is at most as large as
a given value.

The value

kQ3SubdivisionMethodScreenSpace

 specifies

screen-space
subdivision:

 the renderer should subdivide a curve (or surface) into polylines
(or polygons) whose sides have a length that is at most as large as some
number of pixels.

A full specification of a subdivision style requires both a

subdivision method

(which is specified by one of the three subdivision style constants) together
with one or two

subdivision method specifiers.

 For a curve rendered with
constant subdivision, for example, the subdivision method specifier indicates
the number of polylines into which the curve is to be subdivided. A
subdivision method specifier is passed either as a parameter to a routine or as a
field in a subdivision style data structure. See page 6-11 for complete details on
the meaning of subdivision method specifiers for each of the three subdivision
methods.

C H A P T E R 6

Style Objects

6-8

About Style Objects

Orientation Styles 6

A model’s

orientation style

 determines which side of a planar surface is
considered to be the “front” side. QuickDraw 3D defines constants for the
orientation styles that are currently available.

typedef enum TQ3OrientationStyle {

kQ3OrientationStyleCounterClockwise,

kQ3OrientationStyleClockwise

} TQ3OrientationStyle;

The default value,

kQ3OrientationStyleCounterClockwise

, specifies that the
front face of a polygonal shape is that face whose vertices are listed in
counterclockwise order. The constant

kQ3OrientationStyleClockwise

specifies that the front face of a polygonal shape is that face whose vertices are
listed in clockwise order. Figure 6-1 shows the front of a polygonal face.

Figure 6-1

The front side of a polygon

Note that the cross product of the vectors formed by the first two edges (that is,
by the segments from A to B and from B to C) points straight out of the page,
indicating that this is the front side of the polygon.

D
C

B
E

A

C H A P T E R 6

Style Objects

About Style Objects

6-9

Shadow-Receiving Styles 6

A model’s

shadow-receiving style

 determines whether or not objects in a
model receive shadows cast by other objects in the model. The shadow-
receiving style is defined by a Boolean value. If a renderer’s shadow-receiving
style is set to

kQ3True

, objects in the scene receive shadows. If a renderer’s
shadow-receiving style is set to

kQ3False

, objects in the scene do not
receive shadows.

Picking ID Styles 6

A

picking ID style

 determines the picking ID of an object in a model.
A

picking ID

 is an arbitrary 32-bit integer that you can use to determine which
object was selected by a pick operation. For example, you can assign different
picking IDs to the eight corners of a cube; when the user selects a corner,
you can inspect the corner’s picking ID (by looking at the

pickID

 field of
the hit data structure associated with that corner) to determine which corner
was selected.

Note

See the chapter “Pick Objects” for complete
information about picking.

◆

You assign a picking ID to a geometric object by creating a picking ID style
having the desired picking ID and then submitting that style object before
submitting the geometric object. See “Managing Picking ID Styles,” beginning
on page 6-33 for a description of the functions you can use to create and
manipulate picking ID styles.

IMPORTANT

QuickDraw 3D does not perform any validation to ensure
that the picking IDs you assign to objects in a model are
unique. It is your application’s responsibility to generate
unique picking IDs.

▲

Picking Parts Styles 6

A model’s

picking parts style

 determines the kinds of objects that are eligible
for placement in a hit list during a pick operation. Currently, you can use the
picking parts style to limit your attention to certain parts of a mesh. The

C H A P T E R 6

Style Objects

6-10

Using Style Objects

picking parts style is specified by a value defined using one or more pick parts
masks, which are defined by these constants:

typedef enum TQ3PickPartsMasks {

kQ3PickPartsObject = 0,

kQ3PickPartsMaskFace = 1 << 0,

kQ3PickPartsMaskEdge = 1 << 1,

kQ3PickPartsMaskVertex = 1 << 2

} TQ3PickPartsMasks;

The default picking parts style is

kQ3PickPartsObject

, which indicates that
the hit list is to contain only whole objects. You can add in the other masks to
select parts of a mesh for picking. For instance, to pick edges and vertices, you
would draw a pick parts style using the value:

kQ3PickPartsMaskEdge | kQ3PickPartsMaskVertex

Note
For a description of mesh parts, see the chapter
“Geometric Objects.” For complete information about
picking parts, see the chapter “Pick Objects.” ◆

Using Style Objects 6

You apply styles either by submitting them during rendering or picking or by
including a style object in a group. See Listing 1-11 on page 1-32 in the chapter
“Introduction to QuickDraw 3D” for examples of submitting styles during
retained mode rendering. See Listing 15-3 on page 15-15 in the chapter “Pick
Objects” for an example of submitting a style during immediate mode picking.

Style Objects Reference 6

This section describes the data structures and routines you can use to manage
style objects.

C H A P T E R 6

Style Objects

Style Objects Reference 6-11

Data Structures 6

This section describes the data structures supplied by QuickDraw 3D for
managing style objects.

Subdivision Style Data Structure 6

You use a subdivision style data structure to get or set information about the
type of subdivision of curves and surfaces used by a renderer. A subdivision
style data structure is defined by the TQ3SubdivisionStyleData data type.

typedef struct TQ3SubdivisionStyleData {

TQ3SubdivisionMethod method;

float c1;

float c2;

} TQ3SubdivisionStyleData;

Field descriptions
method The method of curve and surface subdivision used by the

renderer. This field must contain one of these constants:

kQ3SubdivisionMethodConstant

kQ3SubdivisionMethodWorldSpace

kQ3SubdivisionMethodScreenSpace

The constant kQ3SubdivisionMethodConstant indicates
that the renderer subdivides a curve into a number
(specified in the c1 field) of polyline segments and a
surface into a mesh (whose dimensions are specified by
the c1 and c2 fields) of polygons. The constant
kQ3SubdivisionMethodWorldSpace indicates that the
renderer subdivides a curve (or surface) into polylines (or
polygons) whose sides have a world-space length that is at
most as large as the value specified in the c1 field. The
constant kQ3SubdivisionMethodScreenSpace indicates
that the renderer subdivides a curve (or surface) into
polylines (or polygons) whose sides have a length that is
at most as large as the number of pixels specified in the
c1 field.

C H A P T E R 6

Style Objects

6-12 Style Objects Reference

c1 For constant subdivision, the number of polylines into
which a curve should be subdivided, or the number of
vertices in the u parametric direction of the polygonal
mesh into which a surface is subdivided. For world-space
subdivision, the maximum length of a polyline segment
(or polygon side) into which a curve (or surface) is
subdivided. For screen-space subdivision, the maximum
number of pixels in a polyline segment (or polygon side)
into which a curve (or surface) is subdivided; for a NURB
curve or surface, however, c1 specifies the maximum
allowable distance between the curve or surface and the
polylines or polygons into which it is subdivided. The
value in this field should be an integer greater than 0 for
constant subdivision, and greater than 0.0 for world-space
or screen-space subdivision.

c2 For constant subdivision, the number of vertices in the v
parametric direction of the polygonal mesh into which a
surface is subdivided. The value in this field should be an
integer greater than 0. For world-space and screen-space
subdivision, this field is unused.

Style Objects Routines 6

This section describes the routines you can use to manage a renderer’s styles.

Managing Styles 6

QuickDraw 3D provides general routines for operating with style objects.

Q3Style_GetType 6

You can use the Q3Style_GetType function to get the type of a style object.

TQ3ObjectType Q3Style_GetType (TQ3StyleObject style);

style A style object.

C H A P T E R 6

Style Objects

Style Objects Reference 6-13

DESCRIPTION

The Q3Style_GetType function returns, as its function result, the type of the
style object specified by the style parameter. The types of style objects
currently supported by QuickDraw 3D are defined by these constants:

kQ3StyleTypeBackfacing

kQ3StyleTypeFill

kQ3StyleTypeHighlight

kQ3StyleTypeInterpolation

kQ3StyleTypeOrientation

kQ3StyleTypePickID

kQ3StyleTypePickParts

kQ3StyleTypeReceiveShadows

kQ3StyleTypeSubdivision

If the specified style object is invalid or is not one of these types,
Q3Style_GetType returns the value kQ3ObjectTypeInvalid.

Q3Style_Submit 6

You can use the Q3Style_Submit function to submit a style in retained mode.

TQ3Status Q3Style_Submit (

TQ3StyleObject style,

TQ3ViewObject view);

style A style object.

view A view.

DESCRIPTION

The Q3Style_Submit function submits the style specified by the style
parameter to the view specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call Q3Style_Submit only in a submitting loop.

C H A P T E R 6

Style Objects

6-14 Style Objects Reference

Managing Backfacing Styles 6

QuickDraw 3D provides routines that you can use to manage backfacing styles.

Q3BackfacingStyle_New 6

You can use the Q3BackfacingStyle_New function to create a new backfacing
style object.

TQ3StyleObject Q3BackfacingStyle_New (

TQ3BackfacingStyle backfacingStyle);

backfacingStyle

A backfacing style value.

DESCRIPTION

The Q3BackfacingStyle_New function returns, as its function result, a new
style object having the backfacing style specified by the backfacingStyle
parameter. The backfacingStyle parameter should be one of these values:

kQ3BackfacingStyleBoth

kQ3BackfacingStyleRemove

kQ3BackfacingStyleFlip

If a new style object could not be created, Q3BackfacingStyle_New returns the
value NULL.

To change the current backfacing style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode
or Q3BackfacingStyle_Submit (described next) to draw the style in
immediate mode.

SEE ALSO

See “Backfacing Styles” on page 6-4 for a description of the available
backfacing styles.

C H A P T E R 6

Style Objects

Style Objects Reference 6-15

Q3BackfacingStyle_Submit 6

You can use the Q3BackfacingStyle_Submit function to submit a backfacing
style for drawing in immediate mode.

TQ3Status Q3BackfacingStyle_Submit (

TQ3BackfacingStyle backfacingStyle,

TQ3ViewObject view);

backfacingStyle

A backfacing style value.

view A view.

DESCRIPTION

The Q3BackfacingStyle_Submit function sets the backfacing style of the view
specified by the view parameter to the style specified in the backfacingStyle
parameter.

SPECIAL CONSIDERATIONS

You should call Q3BackfacingStyle_Submit only in a submitting loop.

Q3BackfacingStyle_Get 6

You can use the Q3BackfacingStyle_Get function to get the backfacing style
value of a backfacing style.

TQ3Status Q3BackfacingStyle_Get (

TQ3StyleObject backfacingObject,

TQ3BackfacingStyle *backfacingStyle);

backfacingObject

A backfacing style object.

backfacingStyle

On exit, a pointer to the backfacing style value of the specified
backfacing style object.

C H A P T E R 6

Style Objects

6-16 Style Objects Reference

DESCRIPTION

The Q3BackfacingStyle_Get function returns, in the backfacingStyle
parameter, a pointer to the current backfacing style value of the backfacing
style object specified by the backfacingObject parameter.

Q3BackfacingStyle_Set 6

You can use the Q3BackfacingStyle_Set function to set the backfacing style
value of a backfacing style.

TQ3Status Q3BackfacingStyle_Set (

TQ3StyleObject backfacingObject,

TQ3BackfacingStyle backfacingStyle);

backfacingObject

A backfacing style object.

backfacingStyle

A backfacing style value.

DESCRIPTION

The Q3BackfacingStyle_Set function sets the backfacing style value of the
style object specified by the backfacingObject parameter to the value
specified in the backfacingStyle parameter.

Managing Interpolation Styles 6

QuickDraw 3D provides routines that you can use to manage
interpolation styles.

C H A P T E R 6

Style Objects

Style Objects Reference 6-17

Q3InterpolationStyle_New 6

You can use the Q3InterpolationStyle_New function to create a new
interpolation style object.

TQ3StyleObject Q3InterpolationStyle_New (

TQ3InterpolationStyle interpolationStyle);

interpolationStyle

An interpolation style value.

DESCRIPTION

The Q3InterpolationStyle_New function returns, as its function result,
a new style object having the interpolation style specified by the
interpolationStyle parameter. The interpolationStyle parameter
should be one of these values:

kQ3InterpolationStyleNone

kQ3InterpolationStyleVertex

kQ3InterpolationStylePixel

If a new style object could not be created, Q3InterpolationStyle_New returns
the value NULL.

To change the current interpolation style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode or
Q3InterpolationStyle_Submit (described next) to draw the style in
immediate mode.

SEE ALSO

See “Interpolation Styles” on page 6-5 for a description of the available
interpolation styles.

C H A P T E R 6

Style Objects

6-18 Style Objects Reference

Q3InterpolationStyle_Submit 6

You can use the Q3InterpolationStyle_Submit function to submit an
interpolation style in immediate mode.

TQ3Status Q3InterpolationStyle_Submit (

TQ3InterpolationStyle interpolationStyle,

TQ3ViewObject view);

interpolationStyle

An interpolation style value.

view A view.

DESCRIPTION

The Q3InterpolationStyle_Submit function sets the interpolation style of the
view specified by the view parameter to the style specified in the
interpolationStyle parameter.

SPECIAL CONSIDERATIONS

You should call Q3InterpolationStyle_Submit only in a submitting loop.

Q3InterpolationStyle_Get 6

You can use the Q3InterpolationStyle_Get function to get the interpolation
style value of an interpolation style.

TQ3Status Q3InterpolationStyle_Get (

TQ3StyleObject interpolationObject,

TQ3InterpolationStyle *interpolationStyle);

interpolationObject

An interpolation style object.

C H A P T E R 6

Style Objects

Style Objects Reference 6-19

interpolationStyle

On exit, a pointer to the interpolation style value of the
specified interpolation style object.

DESCRIPTION

The Q3InterpolationStyle_Get function returns, in the interpolationStyle
parameter, a pointer to the current interpolation style value of the interpolation
style object specified by the interpolationObject parameter.

Q3InterpolationStyle_Set 6

You can use the Q3InterpolationStyle_Set function to set the interpolation
style value of an interpolation style.

TQ3Status Q3InterpolationStyle_Set (

TQ3StyleObject interpolationObject,

TQ3InterpolationStyle interpolationStyle);

interpolationObject

An interpolation style object.

interpolationStyle

An interpolation style value.

DESCRIPTION

The Q3InterpolationStyle_Set function sets the interpolation style value of
the style object specified by the interpolationObject parameter to the value
specified in the interpolationStyle parameter.

Managing Fill Styles 6

QuickDraw 3D provides routines that you can use to manage fill styles.

C H A P T E R 6

Style Objects

6-20 Style Objects Reference

Q3FillStyle_New 6

You can use the Q3FillStyle_New function to create a new fill style object.

TQ3StyleObject Q3FillStyle_New (TQ3FillStyle fillStyle);

fillStyle A fill style value.

DESCRIPTION

The Q3FillStyle_New function returns, as its function result, a new style object
having the fill style specified by the fillStyle parameter. The fillStyle
parameter should be one of these values:

kQ3FillStyleFilled

kQ3FillStyleEdges

kQ3FillStylePoints

If a new style object could not be created, Q3FillStyle_New returns the
value NULL.

To change the current fill style, you must actually draw the style object.
You can call Q3Style_Submit to draw the style in retained mode or
Q3FillStyle_Submit (described next) to draw the style in immediate mode.

SEE ALSO

See “Fill Styles” on page 6-6 for a description of the available fill styles.

Q3FillStyle_Submit 6

You can use the Q3FillStyle_Submit function to submit a fill style in
immediate mode.

TQ3Status Q3FillStyle_Submit (

TQ3FillStyle fillStyle,

TQ3ViewObject view);

C H A P T E R 6

Style Objects

Style Objects Reference 6-21

fillStyle A fill style value.

view A view.

DESCRIPTION

The Q3FillStyle_Submit function sets the fill style of the view specified by
the view parameter to the style specified in the fillStyle parameter.

SPECIAL CONSIDERATIONS

You should call Q3FillStyle_Submit only in a submitting loop.

Q3FillStyle_Get 6

You can use the Q3FillStyle_Get function to get the fill style value of a
fill style.

TQ3Status Q3FillStyle_Get (

TQ3StyleObject styleObject,

TQ3FillStyle *fillStyle);

styleObject A fill style object.

fillStyle On exit, a pointer to the fill style value of the specified fill
style object.

DESCRIPTION

The Q3FillStyle_Get function returns, in the fillStyle parameter, a pointer
to the current fill style value of the fill style object specified by the styleObject
parameter.

C H A P T E R 6

Style Objects

6-22 Style Objects Reference

Q3FillStyle_Set 6

You can use the Q3FillStyle_Set function to set the fill style value of a
fill style.

TQ3Status Q3FillStyle_Set (

TQ3StyleObject styleObject,

TQ3FillStyle fillStyle);

styleObject A fill style object.

fillStyle A fill style value.

DESCRIPTION

The Q3FillStyle_Set function sets the fill style value of the style object
specified by the styleObject parameter to the value specified in the
fillStyle parameter.

Managing Highlight Styles 6

QuickDraw 3D provides routines that you can use to manage highlight styles.

Q3HighlightStyle_New 6

You can use the Q3HighlightStyle_New function to create a new highlight
style object.

TQ3StyleObject Q3HighlightStyle_New (

TQ3AttributeSet highlightAttribute);

highlightAttribute

An attribute set.

C H A P T E R 6

Style Objects

Style Objects Reference 6-23

DESCRIPTION

The Q3HighlightStyle_New function returns, as its function result, a new style
object having the highlight style specified by the highlightAttribute
parameter. The highlightAttribute parameter should be a reference to an
attribute set.

If a new style object could not be created, Q3HighlightStyle_New returns the
value NULL.

To change the current highlight style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode
or Q3HighlightStyle_Submit (described next) to draw the style in
immediate mode.

SEE ALSO

See “Highlight Styles” on page 6-6 for a description of highlight styles.

Q3HighlightStyle_Submit 6

You can use the Q3HighlightStyle_Submit function to submit a highlight
style in immediate mode.

TQ3Status Q3HighlightStyle_Submit (

TQ3AttributeSet highlightAttribute,

TQ3ViewObject view);

highlightAttribute

An attribute set.

view A view.

DESCRIPTION

The Q3HighlightStyle_Submit function sets the highlight style of the view
specified by the view parameter to the style specified in the
highlightAttribute parameter.

SPECIAL CONSIDERATIONS

You should call Q3HighlightStyle_Submit only in a submitting loop.

C H A P T E R 6

Style Objects

6-24 Style Objects Reference

Q3HighlightStyle_Get 6

You can use the Q3HighlightStyle_Get function to get the highlight style
value of a highlight style.

TQ3Status Q3HighlightStyle_Get (

TQ3StyleObject highlight,

TQ3AttributeSet *highlightAttribute);

highlight A highlight style object.

highlightAttribute

On exit, a pointer to the attribute set of the specified highlight
style object.

DESCRIPTION

The Q3HighlightStyle_Get function returns, in the highlightAttribute
parameter, a pointer to the current attribute set of the style object specified by
the highlight parameter.

Q3HighlightStyle_Set 6

You can use the Q3HighlightStyle_Set function to set the highlight style
value of a highlight style.

TQ3Status Q3HighlightStyle_Set (

TQ3StyleObject highlight,

TQ3AttributeSet highlightAttribute);

highlight A highlight style object.

highlightAttribute

An attribute set.

C H A P T E R 6

Style Objects

Style Objects Reference 6-25

DESCRIPTION

The Q3HighlightStyle_Set function sets the highlight style value of the style
object specified by the highlight parameter to the attribute set specified in the
highlightAttribute parameter.

Managing Subdivision Styles 6

QuickDraw 3D provides routines that you can use to manage subdivision styles.

Q3SubdivisionStyle_New 6

You can use the Q3SubdivisionStyle_New function to create a new
subdivision style object.

TQ3StyleObject Q3SubdivisionStyle_New (

const TQ3SubdivisionStyleData *data);

data A pointer to a subdivision style data structure.

DESCRIPTION

The Q3SubdivisionStyle_New function returns, as its function result, a new
style object having the subdivision style specified by the data parameter. The
method field of the subdivision style data structure pointed to by the data
parameter should be one of these values:

kQ3SubdivisionMethodConstant

kQ3SubdivisionMethodWorldSpace

kQ3SubdivisionMethodScreenSpace

The meaning of the c1 and c2 fields depends on the value of the method field.
See “Subdivision Style Data Structure” on page 6-11 for details.

If a new style object could not be created, Q3SubdivisionStyle_New returns
the value NULL.

C H A P T E R 6

Style Objects

6-26 Style Objects Reference

To change the current subdivision style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode or
Q3SubdivisionStyle_Submit to draw the style in immediate mode.

SEE ALSO

See “Subdivision Styles” on page 6-7 for a description of subdivision styles.

Q3SubdivisionStyle_Submit 6

You can use the Q3SubdivisionStyle_Submit function to submit a
subdivision style in immediate mode.

TQ3Status Q3SubdivisionStyle_Submit (

const TQ3SubdivisionStyleData *data,

TQ3ViewObject view);

data A pointer to a subdivision style data structure.

view A view.

DESCRIPTION

The Q3SubdivisionStyle_Submit function sets the subdivision style of the
view specified by the view parameter to the style specified by the data
parameter.

SPECIAL CONSIDERATIONS

You should call Q3SubdivisionStyle_Submit only in a submitting loop.

C H A P T E R 6

Style Objects

Style Objects Reference 6-27

Q3SubdivisionStyle_GetData 6

You can use the Q3SubdivisionStyle_GetData function to get the subdivision
style method and specifiers of a subdivision style.

TQ3Status Q3SubdivisionStyle_GetData (

TQ3StyleObject subdiv,

TQ3SubdivisionStyleData *data);

subdiv A subdivision style object.

data On exit, a pointer to a subdivision style data structure.

DESCRIPTION

The Q3SubdivisionStyle_GetData function returns, in the data parameter, a
pointer to a subdivision style data structure for the style object specified by the
subdiv parameter.

Q3SubdivisionStyle_SetData 6

You can use the Q3SubdivisionStyle_SetData function to set the subdivision
style method and specifiers of a subdivision style.

TQ3Status Q3SubdivisionStyle_SetData (

TQ3StyleObject subdiv,

const TQ3SubdivisionStyleData *data);

subdiv A subdivision style object.

data A pointer to a subdivision style data structure.

DESCRIPTION

The Q3SubdivisionStyle_SetData function sets the subdivision style values
of the style object specified by the subdiv parameter to the values specified in
the data parameter.

C H A P T E R 6

Style Objects

6-28 Style Objects Reference

Managing Orientation Styles 6

QuickDraw 3D provides routines that you can use to manage orientation styles.

Q3OrientationStyle_New 6

You can use the Q3OrientationStyle_New function to create a new orientation
style object.

TQ3StyleObject Q3OrientationStyle_New (

TQ3OrientationStyle frontFacingDirection);

frontFacingDirection

An orientation style value.

DESCRIPTION

The Q3OrientationStyle_New function returns, as its function result,
a new style object having the orientation style specified by the
frontFacingDirection parameter. The frontFacingDirection parameter
should be one of these values:

kQ3OrientationStyleCounterClockwise

kQ3OrientationStyleClockwise

If a new style object could not be created, Q3OrientationStyle_New returns
the value NULL.

To change the current orientation style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode
or Q3OrientationStyle_Submit (described next) to draw the style in
immediate mode.

SEE ALSO

See “Orientation Styles” on page 6-8 for a description of orientation styles.

C H A P T E R 6

Style Objects

Style Objects Reference 6-29

Q3OrientationStyle_Submit 6

You can use the Q3OrientationStyle_Submit function to submit a orientation
style in immediate mode.

TQ3Status Q3OrientationStyle_Submit (

TQ3OrientationStyle frontFacingDirection,

TQ3ViewObject view);

frontFacingDirection

An orientation style value.

view A view.

DESCRIPTION

The Q3OrientationStyle_Submit function sets the orientation style of
the view specified by the view parameter to the style specified by the
frontFacingDirection parameter.

SPECIAL CONSIDERATIONS

You should call Q3OrientationStyle_Submit only in a submitting loop.

Q3OrientationStyle_Get 6

You can use the Q3OrientationStyle_Get function to get the orientation style
value of an orientation style.

TQ3Status Q3OrientationStyle_Get (

TQ3StyleObject frontFacingDirectionObject,

TQ3OrientationStyle *frontFacingDirection);

frontFacingDirectionObject

An orientation style object.

frontFacingDirection

On exit, a pointer to the orientation style value of the specified
orientation style object.

C H A P T E R 6

Style Objects

6-30 Style Objects Reference

DESCRIPTION

The Q3OrientationStyle_Get function returns, in the frontFacingDirection
parameter, a pointer to the current orientation style value of the style object
specified by the frontFacingDirectionObject parameter.

Q3OrientationStyle_Set 6

You can use the Q3OrientationStyle_Set function to set the orientation style
value of a orientation style.

TQ3Status Q3OrientationStyle_Set (

TQ3StyleObject frontFacingDirectionObject,

TQ3OrientationStyle frontFacingDirection);

frontFacingDirectionObject

An orientation style object.

frontFacingDirection

An orientation style value.

DESCRIPTION

The Q3OrientationStyle_Set function sets the orientation style value of the
style object specified by the frontFacingDirectionObject parameter to the
value specified in the frontFacingDirection parameter.

Managing Shadow-Receiving Styles 6

QuickDraw 3D provides routines that you can use to manage
shadow-receiving styles.

C H A P T E R 6

Style Objects

Style Objects Reference 6-31

Q3ReceiveShadowsStyle_New 6

You can use the Q3ReceiveShadowsStyle_New function to create a new
shadow-receiving style object.

TQ3StyleObject Q3ReceiveShadowsStyle_New (TQ3Boolean receives);

receives A Boolean value that determines whether the new style object
specifies that objects in the scene receive shadows (kQ3True) or
do not receive shadows (kQ3False).

DESCRIPTION

The Q3ReceiveShadowsStyle_New function returns, as its function result, a
new style object having the shadow-receiving style specified by the receives
parameter.

If a new style object could not be created, Q3ReceiveShadowsStyle_New
returns the value NULL.

To change the current shadow-receiving style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode or
Q3ReceiveShadowsStyle_Submit (described next) to draw the style in
immediate mode.

SEE ALSO

See “Shadow-Receiving Styles” on page 6-9 for a description of
shadow-receiving styles.

Q3ReceiveShadowsStyle_Submit 6

You can use the Q3ReceiveShadowsStyle_Submit function to submit a
shadow-receiving style in immediate mode.

TQ3Status Q3ReceiveShadowsStyle_Submit (

TQ3Boolean receives,

TQ3ViewObject view);

C H A P T E R 6

Style Objects

6-32 Style Objects Reference

receives A Boolean value that determines whether objects in the scene
receive shadows (kQ3True) or do not receive shadows
(kQ3False).

view A view.

DESCRIPTION

The Q3ReceiveShadowsStyle_Submit function sets the shadow-receiving style
of the view specified by the view parameter to the style specified by the
receives parameter.

SPECIAL CONSIDERATIONS

You should call Q3ReceiveShadowsStyle_Submit only in a submitting loop.

Q3ReceiveShadowsStyle_Get 6

You can use the Q3ReceiveShadowsStyle_Get function to get the shadow-
receiving style value of a shadow-receiving style.

TQ3Status Q3ReceiveShadowsStyle_Get (

TQ3StyleObject styleObject,

TQ3Boolean *receives);

styleObject A shadow-receiving style object.

receives On exit, a pointer to the shadow-receiving style value of the
specified shadow-receiving style object.

DESCRIPTION

The Q3ReceiveShadowsStyle_Get function returns, in the receives
parameter, a pointer to the current shadow-receiving style value of
the style object specified by the styleObject parameter.

C H A P T E R 6

Style Objects

Style Objects Reference 6-33

Q3ReceiveShadowsStyle_Set 6

You can use the Q3ReceiveShadowsStyle_Set function to set the
shadow-receiving style value of a shadow-receiving style.

TQ3Status Q3ReceiveShadowsStyle_Set (

TQ3StyleObject styleObject,

TQ3Boolean receives);

styleObject A shadow-receiving style object.

receives A Boolean value that determines whether objects in the scene
receive shadows (kQ3True) or do not receive shadows
(kQ3False).

DESCRIPTION

The Q3ReceiveShadowsStyle_Set function sets the shadow-receiving style
value of the style object specified by the styleObject parameter to the value
specified in the receives parameter.

Managing Picking ID Styles 6

QuickDraw 3D provides routines that you can use to manage picking ID styles.

Q3PickIDStyle_New 6

You can use the Q3PickIDStyle_New function to create a new picking ID
style object.

TQ3StyleObject Q3PickIDStyle_New (unsigned long id);

id A picking ID.

C H A P T E R 6

Style Objects

6-34 Style Objects Reference

DESCRIPTION

The Q3PickIDStyle_New function returns, as its function result, a new style
object having the picking ID specified by the id parameter. If a new style object
could not be created, Q3PickIDStyle_New returns the value NULL.

SEE ALSO

See “Picking ID Styles” on page 6-9 for a description of picking ID styles.

Q3PickIDStyle_Submit 6

You can use the Q3PickIDStyle_Submit function to submit a picking ID style
in immediate mode.

TQ3Status Q3PickIDStyle_Submit (

unsigned long id,

TQ3ViewObject view);

id A picking ID.

view A view.

DESCRIPTION

The Q3PickIDStyle_Submit function sets the picking ID of the view specified
by the view parameter to the value specified by the id parameter.

SPECIAL CONSIDERATIONS

You should call Q3PickIDStyle_Submit only in a submitting loop.

C H A P T E R 6

Style Objects

Style Objects Reference 6-35

Q3PickIDStyle_Get 6

You can use the Q3PickIDStyle_Get function to get the picking ID style value
of a picking ID style.

TQ3Status Q3PickIDStyle_Get (

TQ3StyleObject pickIDObject,

unsigned long *id);

pickIDObject

A picking ID style object.

id On exit, the picking ID of the specified picking ID style object.

DESCRIPTION

The Q3PickIDStyle_Get function returns, in the id parameter, the current
picking ID of the style object specified by the pickIDObject parameter.

Q3PickIDStyle_Set 6

You can use the Q3PickIDStyle_Set function to set the picking ID of a picking
ID style.

TQ3Status Q3PickIDStyle_Set (

TQ3StyleObject pickIDObject,

unsigned long id);

pickIDObject

A picking ID style object.

id A picking ID.

C H A P T E R 6

Style Objects

6-36 Style Objects Reference

DESCRIPTION

The Q3PickIDStyle_Set function sets the picking ID of the style object
specified by the pickIDObject parameter to the value specified in the id
parameter.

Managing Picking Parts Styles 6

QuickDraw 3D provides routines that you can use to manage picking
parts styles.

Q3PickPartsStyle_New 6

You can use the Q3PickPartsStyle_New function to create a new picking parts
style object.

TQ3StyleObject Q3PickPartsStyle_New (TQ3PickParts parts);

parts A picking parts style value.

DESCRIPTION

The Q3PickPartsStyle_New function returns, as its function result, a new style
object having the picking parts style specified by the parts parameter. See
page 6-10 for a list of masks you can use to construct a picking parts style value.

If a new style object could not be created, Q3PickPartsStyle_New returns the
value NULL.

To change the current picking parts style, you must actually draw the
style object. You can call Q3Style_Submit to draw the style in retained
mode or Q3PickPartsStyle_Submit (described next) to draw the style in
immediate mode.

SEE ALSO

See “Picking Parts Styles” on page 6-9 for a description of picking parts styles.

C H A P T E R 6

Style Objects

Style Objects Reference 6-37

Q3PickPartsStyle_Submit 6

You can use the Q3PickPartsStyle_Submit function to submit a picking parts
style in immediate mode.

TQ3Status Q3PickPartsStyle_Submit (

TQ3PickParts parts,

TQ3ViewObject view);

parts A picking parts style value.

view A view.

DESCRIPTION

The Q3PickPartsStyle_Submit function sets the picking parts style of the
view specified by the view parameter to the style specified by the parts
parameter.

SPECIAL CONSIDERATIONS

You should call Q3PickPartsStyle_Submit only in a submitting loop.

Q3PickPartsStyle_Get 6

You can use the Q3PickPartsStyle_Get function to get the picking parts style
value of a picking parts style.

TQ3Status Q3PickPartsStyle_Get (

TQ3StyleObject pickPartsObject,

TQ3PickParts *parts);

pickPartsObject

A picking parts style object.

parts On entry, a pointer to a variable of type TQ3PickParts. On exit,
the current picking parts style value of the specified style object.

C H A P T E R 6

Style Objects

6-38 Style Objects Reference

DESCRIPTION

The Q3PickPartsStyle_Get function returns, in the parts parameter, a
pointer to the current picking parts value of the style object specified by the
pickPartsObject parameter. See page 6-10 for a list of masks used to construct
a picking parts value.

Q3PickPartsStyle_Set 6

You can use the Q3PickPartsStyle_Set function to set the picking parts style
value of a picking parts style.

TQ3Status Q3PickPartsStyle_Set (

TQ3StyleObject pickPartsObject,

TQ3PickParts parts);

pickPartsObject

A picking parts style object.

parts A picking parts style value.

DESCRIPTION

The Q3PickPartsStyle_Set function sets the picking parts style value of the
style object specified by the pickPartsObject parameter to the value specified
in the parts parameter.

C H A P T E R 6

Style Objects

Summary of Style Objects 6-39

Summary of Style Objects 6

C Summary 6

Constants 6

typedef enum TQ3BackfacingStyle {

kQ3BackfacingStyleBoth,

kQ3BackfacingStyleRemove,

kQ3BackfacingStyleFlip

} TQ3BackfacingStyle;

typedef enum TQ3InterpolationStyle {

kQ3InterpolationStyleNone,

kQ3InterpolationStyleVertex,

kQ3InterpolationStylePixel

} TQ3InterpolationStyle;

typedef enum TQ3FillStyle {

kQ3FillStyleFilled,

kQ3FillStyleEdges,

kQ3FillStylePoints

} TQ3FillStyle;

typedef enum TQ3SubdivisionMethod {

kQ3SubdivisionMethodConstant,

kQ3SubdivisionMethodWorldSpace,

kQ3SubdivisionMethodScreenSpace

} TQ3SubdivisionMethod;

C H A P T E R 6

Style Objects

6-40 Summary of Style Objects

typedef enum TQ3OrientationStyle {

kQ3OrientationStyleCounterClockwise,

kQ3OrientationStyleClockwise

} TQ3OrientationStyle;

#define kQ3StyleTypeBackfacing Q3_OBJECT_TYPE('b','c','k','f')

#define kQ3StyleTypeFill Q3_OBJECT_TYPE('f','i','s','t')

#define kQ3StyleTypeHighlight Q3_OBJECT_TYPE('h','i','g','h')

#define kQ3StyleTypeInterpolation Q3_OBJECT_TYPE('i','n','t','p')

#define kQ3StyleTypeOrientation Q3_OBJECT_TYPE('o','f','d','r')

#define kQ3StyleTypePickID Q3_OBJECT_TYPE('p','k','i','d')

#define kQ3StyleTypePickParts Q3_OBJECT_TYPE('p','k','p','t')

#define kQ3StyleTypeReceiveShadows Q3_OBJECT_TYPE('r','c','s','h')

#define kQ3StyleTypeSubdivision Q3_OBJECT_TYPE('s','b','d','v')

Data Types 6

typedef struct TQ3SubdivisionStyleData {

TQ3SubdivisionMethod method;

float c1;

float c2;

} TQ3SubdivisionStyleData;

Style Objects Routines 6

Managing Styles

TQ3ObjectType Q3Style_GetType (TQ3StyleObject style);

TQ3Status Q3Style_Submit (TQ3StyleObject style, TQ3ViewObject view);

Managing Backfacing Styles

TQ3StyleObject Q3BackfacingStyle_New (

TQ3BackfacingStyle backfacingStyle);

C H A P T E R 6

Style Objects

Summary of Style Objects 6-41

TQ3Status Q3BackfacingStyle_Submit (

TQ3BackfacingStyle backfacingStyle,

TQ3ViewObject view);

TQ3Status Q3BackfacingStyle_Get (

TQ3StyleObject backfacingObject,

TQ3BackfacingStyle *backfacingStyle);

TQ3Status Q3BackfacingStyle_Set (

TQ3StyleObject backfacingObject,

TQ3BackfacingStyle backfacingStyle);

Managing Interpolation Styles

TQ3StyleObject Q3InterpolationStyle_New (

TQ3InterpolationStyle interpolationStyle);

TQ3Status Q3InterpolationStyle_Submit (

TQ3InterpolationStyle interpolationStyle,

TQ3ViewObject view);

TQ3Status Q3InterpolationStyle_Get (

TQ3StyleObject interpolationObject,

TQ3InterpolationStyle *interpolationStyle);

TQ3Status Q3InterpolationStyle_Set (

TQ3StyleObject interpolationObject,

TQ3InterpolationStyle interpolationStyle);

Managing Fill Styles

TQ3StyleObject Q3FillStyle_New(TQ3FillStyle fillStyle);

TQ3Status Q3FillStyle_Submit (TQ3FillStyle fillStyle, TQ3ViewObject view);

TQ3Status Q3FillStyle_Get (TQ3StyleObject styleObject,

TQ3FillStyle *fillStyle);

TQ3Status Q3FillStyle_Set (TQ3StyleObject styleObject,

TQ3FillStyle fillStyle);

C H A P T E R 6

Style Objects

6-42 Summary of Style Objects

Managing Highlight Styles

TQ3StyleObject Q3HighlightStyle_New (

TQ3AttributeSet highlightAttribute);

TQ3Status Q3HighlightStyle_Submit (

TQ3AttributeSet highlightAttribute,

TQ3ViewObject view);

TQ3Status Q3HighlightStyle_Get(TQ3StyleObject highlight,

TQ3AttributeSet *highlightAttribute);

TQ3Status Q3HighlightStyle_Set(TQ3StyleObject highlight,

TQ3AttributeSet highlightAttribute);

Managing Subdivision Styles

TQ3StyleObject Q3SubdivisionStyle_New (

const TQ3SubdivisionStyleData *data);

TQ3Status Q3SubdivisionStyle_Submit (

const TQ3SubdivisionStyleData *data,

TQ3ViewObject view);

TQ3Status Q3SubdivisionStyle_GetData (

TQ3StyleObject subdiv,

TQ3SubdivisionStyleData *data);

TQ3Status Q3SubdivisionStyle_SetData (

TQ3StyleObject subdiv,

const TQ3SubdivisionStyleData *data);

Managing Orientation Styles

TQ3StyleObject Q3OrientationStyle_New (

TQ3OrientationStyle frontFacingDirection);

TQ3Status Q3OrientationStyle_Submit (

TQ3OrientationStyle frontFacingDirection,

TQ3ViewObject view);

C H A P T E R 6

Style Objects

Summary of Style Objects 6-43

TQ3Status Q3OrientationStyle_Get (

TQ3StyleObject frontFacingDirectionObject,

TQ3OrientationStyle *frontFacingDirection);

TQ3Status Q3OrientationStyle_Set (

TQ3StyleObject frontFacingDirectionObject,

TQ3OrientationStyle frontFacingDirection);

Managing Shadow-Receiving Styles

TQ3StyleObject Q3ReceiveShadowsStyle_New (

TQ3Boolean receives);

TQ3Status Q3ReceiveShadowsStyle_Submit (

TQ3Boolean receives, TQ3ViewObject view);

TQ3Status Q3ReceiveShadowsStyle_Get (

TQ3StyleObject styleObject,

TQ3Boolean *receives);

TQ3Status Q3ReceiveShadowsStyle_Set (

TQ3StyleObject styleObject,

TQ3Boolean receives);

Managing Picking ID Styles

TQ3StyleObject Q3PickIDStyle_New (

unsigned long id);

TQ3Status Q3PickIDStyle_Submit(unsigned long id, TQ3ViewObject view);

TQ3Status Q3PickIDStyle_Get (TQ3StyleObject pickIDObject,

unsigned long *id);

TQ3Status Q3PickIDStyle_Set (TQ3StyleObject pickIDObject,

unsigned long id);

C H A P T E R 6

Style Objects

6-44 Summary of Style Objects

Managing Picking Parts Styles

TQ3StyleObject Q3PickPartsStyle_New (

TQ3PickParts parts);

TQ3Status Q3PickPartsStyle_Submit (

TQ3PickParts parts, TQ3ViewObject view);

TQ3Status Q3PickPartsStyle_Get(TQ3StyleObject pickPartsObject,

TQ3PickParts *parts);

TQ3Status Q3PickPartsStyle_Set(TQ3StyleObject pickPartsObject,

TQ3PickParts parts);

C H A P T E R 7

Contents

7-1

Contents

Figure 7-0
Listing 7-0
Table 7-0

7 Transform Objects

About Transform Objects 7-3
Spaces 7-5
Types of Transforms 7-11

Matrix Transforms 7-11
Translate Transforms 7-11
Scale Transforms 7-12
Rotate Transforms 7-14
Rotate-About-Point Transforms 7-15
Rotate-About-Axis Transforms 7-16
Quaternion Transforms 7-16

Transform Objects Reference 7-16
Data Structures 7-17

Rotate Transform Data Structure 7-17
Rotate-About-Point Transform Data Structure 7-17
Rotate-About-Axis Data Structure 7-18

Transform Objects Routines 7-18
Managing Transforms 7-18
Creating and Manipulating Matrix Transforms 7-20
Creating and Manipulating Rotate Transforms 7-23
Creating and Manipulating Rotate-About-Point Transforms 7-28
Creating and Manipulating Rotate-About-Axis Transforms 7-33
Creating and Manipulating Scale Transforms 7-39
Creating and Manipulating Translate Transforms 7-42
Creating and Manipulating Quaternion Transforms 7-45

This document was created with FrameMaker 4.0.4

C H A P T E R 7

7-2

Contents

Summary of Transform Objects 7-48
C Summary 7-48

Constants 7-48
Data Types 7-48
Transform Objects Routines 7-49

Errors 7-54

C H A P T E R 7

About Transform Objects

7-3

Transform Objects 7

This chapter describes transform objects (or transforms) and the functions you
can use to create and manipulate them. You can use transforms to change the
position, size, or orientation of a geometric object. QuickDraw 3D uses
numerous transforms internally, for example, when creating a two-dimensional
image of a three-dimensional model. QuickDraw 3D supports a number of
types of transforms, including translate, scaling, rotation, and arbitrary affine
transforms.

You should read this chapter for general information about the types of
transforms supported by QuickDraw 3D and for specific information about
applying transforms to objects in your models. See the chapter “View Objects”
for routines that you can use to get information about the transforms that
QuickDraw 3D uses internally when rendering a model.

This chapter begins by describing transform objects and their features. It
also describes the various coordinate systems or spaces supported by
QuickDraw 3D. The section “Transform Objects Reference,” beginning on
page 7-16 provides a complete description of transform objects and the routines
you can use to create and manipulate them.

About Transform Objects 7

A

transform object

 (or, more briefly, a

transform

) is an object that you can use
to modify or transform the appearance or behavior of drawable QuickDraw 3D
objects. You use transforms to reposition and reorient geometric shapes in
space. Transforms are useful because they do not alter the geometric
representation of objects (that is, the vertices or other values that define a
geometric object); rather, they are applied as matrices at rendering time,
temporarily “moving” an object in space. Thus you can reference a single object
multiple times with different transforms and can place an object in many
different locations within a model.

A transform is of type

TQ3TransformObject

, which is a type of shape object.
QuickDraw 3D defines these basic types of transforms:

■

matrix transforms

■

translate transforms

■

scale transforms

This document was created with FrameMaker 4.0.4

C H A P T E R 7

Transform Objects

7-4

About Transform Objects

■

rotate transforms

■

rotate-about-point transforms

■

rotate-about-axis transforms

■

quaternion transforms

No matter how you specify a transform, QuickDraw 3D maintains its data in
that form until you begin to render an image, at which time it converts the data
to a temporary matrix that is applied to the objects it governs. Because
transforms are a type of shape object, you apply a transform by drawing it into
a view or by putting it into a group. If you draw a transform in a view, you can
use either retained or immediate transforms.

When you apply several transforms to a vector, the transform matrices are
premultiplied to the vector. For example, in the multiplication

v

[A][B]...[M] of
the vector

v

 by the matrices A, B,..., M, matrix A is first applied to the vector,
then B, and so forth. Accordingly, you should specify transforms to be
concatenated in the reverse order that you want to apply them. This scheme is
consistent with the application of matrices in a hierarchy, in which matrices at
the top of a hierarchy are applied last.

For example, consider the very simple model illustrated in Figure 7-1, which
consists of three separate groups. A geometric object is first grouped with a
scale and a translate transform (the translate transform was added to the group
before the scale transform was added); the resulting group is then grouped
with a rotate-about-axis transform, and that group is finally grouped with a
second translate transform.

Figure 7-1

A simple model illustrating the order in which transforms are applied

Translate

Group 3

GeometryTranslate
Group 1

ScaleRotate
about axis

Group 2

C H A P T E R 7

Transform Objects

About Transform Objects

7-5

When this model is rendered, the transforms are applied to the geometric
object in this order: scale, translate (group 1), rotate-about-axis (group 2),
translate (group 3). Your application should add transforms to a group in the
reverse order they are to be rendered. That is, in the example, you would first
add the translate transform to Group 1 and then add the scale transform.

Note

For information about creating groups of QuickDraw 3D
objects, see the chapter “Group Objects.”

◆

Spaces 7

A

coordinate system

 (or

space

) is any system of assigning planar or spatial
positions to objects. In general, QuickDraw 3D operates with rectilinear or

Cartesian coordinate systems,

 in which the position of a point in a plane or
in space is determined by projecting the point onto the

coordinate axes,

 which
are mutually perpendicular lines that intersect at a point called the

origin

. By
convention, the

origin

 is the planar point (0, 0) or the spatial point (0, 0, 0).
Figure 7-2 shows a Cartesian coordinate system that is

right-handed

 (that is, if
the thumb of the right hand points in the direction of the positive

x

 axis and the
index finger points in the direction of the positive

y

 axis, then the middle finger
points in the direction of the positive

z

 axis).

Figure 7-2

A right-handed Cartesian coordinate system

y axis

x axis

z axis

Origin

C H A P T E R 7

Transform Objects

7-6

About Transform Objects

Note

You can, for certain purposes, specify positions using other
types of coordinate systems, such as the

polar coordinate
system

 (a system of assigning planar positions to objects in
terms of their distances

r

 from the origin along a ray that
forms a given angle

θ

 with a fixed coordinate line) or the

spherical coordinate system

 (a system of assigning spatial
positions to objects in terms of their distances

r

 from the
origin along a ray that forms a given angle

θ

 with a fixed
coordinate line and another angle

φ

 with another fixed
coordinate line). QuickDraw 3D provides routines you can
use to convert among these three types of coordinate
systems. See the chapter “QuickDraw 3D Mathematical
Utilities” for details. Unless noted differently, this book
always uses Cartesian coordinate systems.

◆

QuickDraw 3D, like virtually all other 3D graphics systems, defines several
distinct coordinate systems and maintains transforms that it uses to convert
one coordinate system into another.

Because it’s often useful to define an object once and then to create multiple
copies of that object for placement at different positions and orientations,
QuickDraw 3D supports a

local coordinate system

 for each object you define.
An object’s local coordinate system is simply the coordinate system in which it
is specified (that is, that determines the values you specify in the relevant data
structure). Any given object can be defined using any of infinitely many local
coordinate systems. Usually, you’ll pick a local coordinate system whose origin
coincides with some part of the object. For instance, it’s quite natural to define
a box using a local coordinate system whose origin is at the box’s origin, and
whose axes coincide with the box’s axes.

Note

A local coordinate system is sometimes called an

object coordinate system

 or a

modeling coordinate
system,

 and the space it defines is the

object space

or

modeling space.

◆

The

world coordinate system

 (or

world space

) defines the locations of all
geometric objects as they exist at rendering or picking time, with all applicable
transforms acting on them. It’s important to note that world space is relevant
only within a submitting loop, because the transforms that relocate or reorient
an object must be applied to the object to determine its position and orientation
in world coordinates.

C H A P T E R 7

Transform Objects

About Transform Objects

7-7

Note

The world coordinate system is sometimes called the

global coordinate system

 or the

application coordinate
system,

 and the space it defines is the

global space

 or

application space.

◆

You can create copies of an object and place them at different locations by
applying different transforms to each copy. A transform changes an object’s
position or orientation in world coordinates, but not its local coordinates. In
other words, if you use the function

Q3Box_GetOrigin

 with two copies of a
single box, the function always returns the same origin for each box, whether
or not transforms have been applied to one or both of the copies.

The relationship between an object’s local coordinate system and the world
coordinate system is specified by that object’s

local-to-world transform.

 For
objects that have no transforms applied to them at rendering time, the local-to-
world transform can be represented by the identity matrix, in which case the
local coordinate system of that object and the world coordinate system
coincide. If one or more transforms is applied to the object at rendering time,
the world space location of the object is determined by taking its local space
position and applying the transforms to it.

A world coordinate system defines the relative positions and sizes of geometric
objects. When an object is rendered in a view, the view’s camera specifies yet
another coordinate system, the

camera coordinate system

 (or

camera space

).
A camera coordinate system is defined by the camera placement structure
associated with the camera, which is defined like this:

typedef struct TQ3CameraPlacement {

TQ3Point3D cameraLocation;

TQ3Point3D pointOfInterest;

TQ3Vector3D upVector;

} TQ3CameraPlacement;

Note

See the chapter “Camera Objects” for complete
information about the camera placement structure.

◆

The

cameraLocation

 field specifies the origin of the camera coordinate system.
The

pointOfInterest

 field specifies the

z

 axis of the camera coordinate
system, and the

upVector

 field specifies the

y

 axis of the camera coordinate
system. The

x

 axis of the camera coordinate system is determined by the

C H A P T E R 7

Transform Objects

7-8

About Transform Objects

left-hand rule. Figure 7-3 shows a camera coordinate system and its relation
to the world coordinate system. In this figure, the camera is set to take
an isometric view of the box whose origin is at the origin of the world
coordinate system.

Figure 7-3

A camera coordinate system

As you know, a camera specifies a method of projecting a three-dimensional
model onto a two-dimensional plane, called the

view plane.

 The camera, the
view plane, and the hither and yon clipping planes together define the part of
the model that is projected onto that view plane. As you can see in Figure 9-7
on page 9-13, these objects define a rectangular frustum known as the

viewing
box.

 When perspective camera is used, the camera, the view plane, and the
hither and yon clipping planes define a pyramidal frustum known as the

viewing frustum

 (see Figure 9-5 on page 9-10). Because a camera and its
camera coordinate system determine a unique view frustum, camera space is
also called

frustum space.

xw

yw

yc

zc

xc

zw

World
coordinate axes

Camera
coordinate axes

Camera

A box

1239om a34098

Todaisudr lkjasdf

C H A P T E R 7

Transform Objects

About Transform Objects

7-9

The final step in creating an image of a model is to map the two-dimensional
image projected onto the view plane into the draw context associated with a
view. In general, the draw context specifies a window on a screen or other
display device that is to contain all or part of the view plane image.
Accordingly, QuickDraw 3D maintains, for each draw context, a

window
coordinate system

 (or

window space

) that defines the position of objects in the
draw context. Figure 7-4 shows a window coordinate system.

Figure 7-4

A window coordinate system

Note

A window coordinate system is sometimes called a

screen coordinate system

 or a

draw context coordinate
system,

 and the space it defines is the

screen space

 or

draw context space.

◆

In addition to the local-to-world transform (which defines the relationship
between an object’s local coordinate system and the world coordinate system),
QuickDraw 3D also maintains a

world-to-frustum transform

 (which defines
the relationship between the world coordinate system and the frustum
coordinate system) and a

frustum-to-window transform

 (which defines the
relationship between a frustum coordinate system and a window coordinate
system). See Figure 7-5. You can, if necessary, get a matrix representation of
these three transforms. See the chapter “View Objects” for details.

The world-to-frustum transform is actually the product of two transforms
specified by matrices, the view orientation matrix and the view mapping

xwi

ywi

Origin

C H A P T E R 7

Transform Objects

7-10

About Transform Objects

matrix. The

view orientation matrix

 rotates and translates the view’s camera so
that it is pointing down the negative

z

 axis. The

view mapping matrix

transforms the viewing frustum into a standard rectangular solid. This
standard rectangular solid is a box containing

x

 values from –1 to 1,

y

 values
from –1 to 1, and

z

 values from 0 to –1. The far clipping plane is the plane
defined by the equation

z

 = – 1, and the near clipping plane is the plane defined
by the equation

z

 = 0.

With a perspective camera, the view mapping matrix performs most of the
work of projection. The objects transformed by the world-to-frustum transform
are still 3D, but it’s easy to get the 2D projection onto the view plane by simply
dropping the

z

 coordinate of each rendered point.

Figure 7-5

View state transformations

3D local
coordinates

Geometry

World
coordinates

View
orientation

matrix

Local to world
matrix

Camera
coordinates

View
mapping

matrix

Frustum
coordinates

2D device
(window

coordinates)

+y

– y

– z

– x + x

+ z

This document was created with FrameMaker 4.0.4

C H A P T E R 7

Transform Objects

About Transform Objects 7-11

Types of Transforms 7

QuickDraw 3D supports a number of different ways of transforming geometric
objects. Equivalently, these transforms are ways of transforming coordinate
systems containing geometric objects.

Matrix Transforms 7

A matrix transform is any transform specified by an affine, invertible 4-by-4
matrix. QuickDraw 3D does not check that the matrix you specify is affine
or invertible, so it is your responsibility to ensure that the matrix has
these qualities.

A matrix transform is the most general type of transform and can be used to
represent any of the other kinds of transforms. If, however, you just want to
apply a translation to an object, it’s better to use a translate transform instead of
a matrix transform. By using the more specific type of transform object, you
allow renderers and shaders to apply optimizations that might not apply to a
more general transform.

Translate Transforms 7

A translate transform translates an object along the x, y, and z axes by specified
values. You specify the desired translation values using a vector. For example,
to translate an object by 2 units along the positive x axis, by 4 units along the
positive y axis, and by 3 units along the positive z axis, you could define a
vector like this:

TQ3Vector3D myVector;

TQ3TransformObject myTransform;

Q3Vector3D_Set(&myVector, 2.0, 4.0, 3.0);

myTransform = Q3TranslateTransform_New(&myVector);

C H A P T E R 7

Transform Objects

7-12 About Transform Objects

Figure 7-6 shows a unit cube before and after a translate transform is applied.

Figure 7-6 A translate transform

Scale Transforms 7

A scale transform scales an object along the x, y, and z axes by specified values.
As with a translate transform, you specify the desired transform using a vector.
For example, to scale an object by a factor of 2 along the positive x axis, by a
factor of 4 along the positive y axis, and by a factor of 3 along the positive z
axis, you could define a vector like this:

TQ3Vector3D myVector;

Q3Vector3D_Set(&myVector, 2.0, 4.0, 3.0);

y

z

x

3

4

2

C H A P T E R 7

Transform Objects

About Transform Objects 7-13

Figure 7-7 shows a unit cube before and after applying a scale transform.

Figure 7-7 A scale transform

y

z

x3

4

21

C H A P T E R 7

Transform Objects

7-14 About Transform Objects

Rotate Transforms 7

A rotate transform rotates an object about the x, y, or z axis by a specified
number of radians at the origin. To specify a rotate transform, you fill in the
fields of a rotate transform data structure, which specifies the axis of rotation
and the number of radians to rotate. You can use QuickDraw 3D macros to
convert degrees to radians, if you prefer to work with degrees. (See the chapter
“QuickDraw 3D Mathematical Utilities” for details.) Figure 7-8 shows a unit
cube before and after applying a rotate transform.

Figure 7-8 A rotate transform

y

z

x

C H A P T E R 7

Transform Objects

About Transform Objects 7-15

Rotate-About-Point Transforms 7

A rotate-about-point transform rotates an object about the x, y, or z axis by
a specified number of radians at an arbitrary point in space. To specify a
rotate-about-point transform, you fill in the fields of a rotate-about-point
transform data structure, which specifies the axis of rotation, the point of
rotation, and the number of radians to rotate. Figure 7-9 shows a unit cube
before and after applying a rotate-about-point transform.

Figure 7-9 A rotate-about-point transform

y

z

x

C H A P T E R 7

Transform Objects

7-16 Transform Objects Reference

Rotate-About-Axis Transforms 7

A rotate-about-axis transform rotates an object about an arbitrary axis in space
by a specified number of radians at an arbitrary point in space. To specify a
rotate-about-axis transform, you fill in the fields of a rotate-about-axis
transform data structure, which specifies the axis of rotation, the point of
rotation, and the number of radians to rotate. Figure 7-10 shows a unit cube
before and after applying a rotate-about-axis transform.

Figure 7-10 A rotate-about-axis transform

Quaternion Transforms 7

A quaternion transform rotates and twists an object according to the
mathematical properties of quaternions.

Transform Objects Reference 7

This section describes the QuickDraw 3D data structures and routines that you
can use to manage transforms.

y

z

x

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-17

Data Structures 7

QuickDraw 3D defines a number of data structures that you can use to specify
the various kinds of transform objects.

Rotate Transform Data Structure 7

You can use a rotate transform data structure to specify a rotate transform (for
example, when calling the Q3RotateTransform_NewData function). The rotate
transform data structure is defined by the TQ3RotateTransformData data type.

typedef struct TQ3RotateTransformData {

TQ3Axis axis;

float radians;

} TQ3RotateTransformData;

Field descriptions
axis The axis of rotation. You can use the constants kQ3AxisX,

kQ3AxisY, and kQ3AxisZ to specify an axis.
radians The number of radians to rotate around the axis of rotation.

Rotate-About-Point Transform Data Structure 7

You can use a rotate-about-point transform data structure to specify
a rotate transform about an axis at an arbitrary point in space (for
example, when calling the Q3RotateAboutPointTransform_NewData
function). The rotate-about-point transform data structure is defined by
the TQ3RotateAboutPointTransformData data type.

typedef struct TQ3RotateAboutPointTransformData {

TQ3Axis axis;

float radians;

TQ3Point3D about;

} TQ3RotateAboutPointTransformData;

Field descriptions
axis The axis of rotation. You can use the constants kQ3AxisX,

kQ3AxisY, and kQ3AxisZ to specify an axis.
radians The number of radians to rotate around the axis of rotation.
about The point at which the rotation is to occur.

C H A P T E R 7

Transform Objects

7-18 Transform Objects Reference

Rotate-About-Axis Data Structure 7

You can use an rotate-about-axis transform data structure to specify a
rotate transform about an arbitrary axis in space at an arbitrary point
in space. The rotate-about-axis transform data structure is defined by
the TQ3RotateAboutAxisTransformData data type.

typedef struct TQ3RotateAboutAxisTransformData {

TQ3Point3D origin;

TQ3Vector3D orientation;

float radians;

} TQ3RotateAboutAxisTransformData;

Field descriptions
origin The origin of the axis of rotation.
orientation The orientation of the axis of rotation. This vector must be

normalized or the results will be unpredictable.
radians The number of radians to rotate around the axis of rotation.

Transform Objects Routines 7

This section describes the routines you can use to manage transforms.

Managing Transforms 7

QuickDraw 3D provides general routines that you can use to manage
transforms.

Q3Transform_GetType 7

You can use the Q3Transform_GetType function to get the type of a
transform object.

TQ3ObjectType Q3Transform_GetType (TQ3TransformObject transform);

transform A transform.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-19

DESCRIPTION

The Q3Transform_GetType function returns, as its function result, the type
of the transform object specified by the transform parameter. The types of
transform objects currently supported by QuickDraw 3D are defined by
these constants:

kQ3TransformTypeMatrix

kQ3TransformTypeQuaternion

kQ3TransformTypeRotate

kQ3TransformTypeRotateAboutAxis

kQ3TransformTypeRotateAboutPoint

kQ3TransformTypeScale

kQ3TransformTypeTranslate

If the specified transform object is invalid or is not one of these types,
Q3Transform_GetType returns the value kQ3ObjectTypeInvalid.

Q3Transform_GetMatrix 7

You can use the Q3Transform_GetMatrix function to get the matrix
representation of a transform.

TQ3Matrix4x4 *Q3Transform_GetMatrix (

TQ3TransformObject transform,

TQ3Matrix4x4 *matrix);

transform A transform.

matrix On exit, a pointer to the matrix that represents the transform
specified in the transform parameter.

DESCRIPTION

The Q3Transform_GetMatrix function returns, in the matrix parameter and as
its function result, the matrix that represents the transform specified by the
transform parameter. The caller is responsible for allocating the memory
pointed to by matrix.

C H A P T E R 7

Transform Objects

7-20 Transform Objects Reference

Q3Transform_Submit 7

You can use the Q3Transform_Submit function to submit a transform.

TQ3Status Q3Transform_Submit (

TQ3TransformObject transform,

TQ3ViewObject view);

transform A transform.

view A view.

DESCRIPTION

The Q3Transform_Submit function pushes the transform specified by the
transform parameter onto the view transform stack of the specified view.
Q3Transform_Submit returns kQ3Success if the operation succeeds and
kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Creating and Manipulating Matrix Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
matrix transforms.

Q3MatrixTransform_New 7

You can use the Q3MatrixTransform_New function to create a new matrix
transform.

TQ3TransformObject Q3MatrixTransform_New (

const TQ3Matrix4x4 *matrix);

matrix On entry, a pointer to a 4-by-4 matrix that defines the desired
new transform.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-21

DESCRIPTION

The Q3MatrixTransform_New function returns, as its function result, a
reference to a new transform object of type kQ3TransformTypeMatrix
using the data passed in the matrix parameter. The data you pass in the
matrix parameter is copied into internal QuickDraw 3D data structures.
If QuickDraw 3D cannot allocate memory for those structures,
Q3MatrixTransform_New returns the value NULL.

It is your responsibility to ensure that the matrix specified by the matrix
parameter is affine and invertible. QuickDraw 3D does not check for
these qualities.

Q3MatrixTransform_Submit 7

You can use the Q3MatrixTransform_Submit function to submit a matrix
transform without creating an object or allocating memory.

TQ3Status Q3MatrixTransform_Submit (

const TQ3Matrix4x4 *matrix,

TQ3ViewObject view);

matrix A pointer to a 4-by-4 matrix.

view A view.

DESCRIPTION

The Q3MatrixTransform_Submit function pushes the matrix transform
specified by the matrix parameter on the view transform stack of the
view specified by the view parameter. The function returns kQ3Success
if the operation succeeds and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

C H A P T E R 7

Transform Objects

7-22 Transform Objects Reference

Q3MatrixTransform_Get 7

You can use the Q3MatrixTransform_Get function to query the private data
stored in a matrix transform.

TQ3Status Q3MatrixTransform_Get (

TQ3TransformObject transform,

TQ3Matrix4x4 *matrix);

transform A transform.

matrix On exit, a pointer to the matrix associated with the transform
specified in the transform parameter.

DESCRIPTION

The Q3MatrixTransform_Get function returns, in the matrix parameter,
information about the matrix transform specified by the transform parameter.
You should use Q3MatrixTransform_Get only with transforms of type
kQ3TransformTypeMatrix.

Q3MatrixTransform_Set 7

You can use the Q3MatrixTransform_Set function to set new private data for a
matrix transform.

TQ3Status Q3MatrixTransform_Set (

TQ3TransformObject transform,

const TQ3Matrix4x4 *matrix);

transform A transform.

matrix A pointer to the new matrix to be associated with the transform
specified in the transform parameter.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-23

DESCRIPTION

The Q3MatrixTransform_Set function sets the matrix transform specified by
the transform parameter to the matrix passed in the matrix parameter. You
should use Q3MatrixTransform_Set only with transforms of type
kQ3TransformTypeMatrix.

Creating and Manipulating Rotate Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
rotate transforms. A rotate transform rotates an object about the x, y, or z axis
by a specified number of radians. You can use macros to convert radians to
degrees if you prefer to work with degrees instead of radians. See the chapter
“QuickDraw 3D Mathematical Utilities” for more information.

Q3RotateTransform_New 7

You can use the Q3RotateTransform_New function to create a new
rotate transform.

TQ3TransformObject Q3RotateTransform_New (

const TQ3RotateTransformData *data);

data A pointer to a rotate transform data structure.

DESCRIPTION

The Q3RotateTransform_New function returns, as its function result, a
reference to a new transform object of type kQ3TransformTypeRotate using
the data passed in the data parameter. The data you pass is copied into
internal QuickDraw 3D data structures. If QuickDraw 3D cannot allocate
memory for those structures, Q3RotateTransform_New returns the value NULL.

C H A P T E R 7

Transform Objects

7-24 Transform Objects Reference

Q3RotateTransform_Submit 7

You can use the Q3RotateTransform_Submit function to submit a rotate
transform without creating an object or allocating memory.

TQ3Status Q3RotateTransform_Submit (

const TQ3RotateTransformData *data,

TQ3ViewObject view);

data A pointer to a rotate transform data structure.

view A view.

DESCRIPTION

The Q3RotateTransform_Submit function pushes the rotate transform
specified by the data parameter onto the view transform stack of the
view specified by the view parameter. The function returns kQ3Success
if the operation succeeds and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3RotateTransform_GetData 7

You can use the Q3RotateTransform_GetData function to query the private
data stored in a rotate transform.

TQ3Status Q3RotateTransform_GetData (

TQ3TransformObject transform,

TQ3RotateTransformData *data);

transform A rotate transform.

data A pointer to a rotate transform data structure.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-25

DESCRIPTION

The Q3RotateTransform_GetData function returns, in the data parameter,
information about the rotate transform specified by the transform parameter.
You should use Q3RotateTransform_GetData only with transforms of type
kQ3TransformTypeRotate.

Q3RotateTransform_SetData 7

You can use the Q3RotateTransform_SetData function to set new private data
for a rotate transform.

TQ3Status Q3RotateTransform_SetData (

TQ3TransformObject transform,

const TQ3RotateTransformData *data);

transform A rotate transform.

data A pointer to a rotate transform data structure.

DESCRIPTION

The Q3RotateTransform_SetData function sets the rotate transform specified
by the transform parameter to the data passed in the data parameter. You
should use Q3RotateTransform_SetData only with transforms of type
kQ3TransformTypeRotate.

Q3RotateTransform_GetAxis 7

You can use the Q3RotateTransform_GetAxis function to get the axis of a
rotate transform.

TQ3Status Q3RotateTransform_GetAxis (

TQ3TransformObject transform,

TQ3Axis *axis);

C H A P T E R 7

Transform Objects

7-26 Transform Objects Reference

transform A rotate transform.

axis On exit, the axis of the specified rotate transform.

DESCRIPTION

The Q3RotateTransform_GetAxis function returns, in the axis parameter,
the current axis of rotation of the rotate transform specified by the
transform parameter.

Q3RotateTransform_SetAxis 7

You can use the Q3RotateTransform_SetAxis function to set the axis of a
rotate transform.

TQ3Status Q3RotateTransform_SetAxis (

TQ3TransformObject transform,

TQ3Axis axis);

transform A rotate transform.

axis The desired axis of the specified rotate transform.

DESCRIPTION

The Q3RotateTransform_SetAxis function sets the axis of rotation for the
rotate transform specified by the transform parameter to the value passed in
the axis parameter.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-27

Q3RotateTransform_GetAngle 7

You can use the Q3RotateTransform_GetAngle function to get the angle of a
rotate transform.

TQ3Status Q3RotateTransform_GetAngle (

TQ3TransformObject transform,

float *radians);

transform A rotate transform.

radians On exit, the angle, in radians, of the specified rotate transform.

DESCRIPTION

The Q3RotateTransform_GetAngle function returns, in the radians
parameter, the current angle of rotation (in radians) of the rotate transform
specified by the transform parameter.

Q3RotateTransform_SetAngle 7

You can use the Q3RotateTransform_SetAngle function to set the angle of a
rotate transform.

TQ3Status Q3RotateTransform_SetAngle (

TQ3TransformObject transform,

float radians);

transform A rotate transform.

radians The desired angle, in radians, of the specified rotate transform.

DESCRIPTION

The Q3RotateTransform_SetAngle function sets the angle of rotation for the
rotate transform specified by the transform parameter to the value passed in
the radians parameter.

C H A P T E R 7

Transform Objects

7-28 Transform Objects Reference

Creating and Manipulating Rotate-About-Point Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
rotate transforms about a point. A rotate-about-point transform rotates an
object about the x, y, or z axis by a specified number of radians at an arbitrary
point in space. You can use macros to convert radians to degrees if you prefer
to work with degrees instead of radians. See the chapter “QuickDraw 3D
Mathematical Utilities” for more information.

Q3RotateAboutPointTransform_New 7

You can use the Q3RotateAboutPointTransform_New function to create a new
rotate-about-point transform.

TQ3TransformObject Q3RotateAboutPointTransform_New (

const TQ3RotateAboutPointTransformData *data);

data A pointer to a TQ3RotateAboutPointTransformData structure.

DESCRIPTION

The Q3RotateAboutPointTransform_New function returns, as its
function result, a reference to a new transform object of type
kQ3TransformTypeRotateAboutPoint using the data passed in the
data parameter. The data you pass is copied into internal QuickDraw 3D
data structures. If QuickDraw 3D cannot allocate memory for those
structures, Q3RotateAboutPointTransform_New returns the value NULL.

Q3RotateAboutPointTransform_Submit 7

You can use the Q3RotateAboutPointTransform_Submit function to submit a
rotate-about-point transform without creating an object or allocating memory.

TQ3Status Q3RotateAboutPointTransform_Submit (

const TQ3RotateAboutPointTransformData *data,

TQ3ViewObject view);

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-29

data A pointer to a TQ3RotateAboutPointTransformData structure.

view A view.

DESCRIPTION

The Q3RotateAboutPointTransform_Submit function pushes the rotate-about-
point transform specified by the data parameter onto the view transform stack
of the view specified by the view parameter. The function returns kQ3Success
if the operation succeeds and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3RotateAboutPointTransform_GetData 7

You can use the Q3RotateAboutPointTransform_GetData function to query
the private data stored in a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_GetData (

TQ3TransformObject transform,

TQ3RotateAboutPointTransformData *data);

transform A transform.

data A pointer to a rotate-about-point data structure.

DESCRIPTION

The Q3RotateAboutPointTransform_GetData function returns, in
the data parameter, information about the rotate-about-point
transform specified by the transform parameter. You should use
Q3RotateAboutPointTransform_GetData only with transforms of type
kQ3TransformTypeRotateAboutPoint.

C H A P T E R 7

Transform Objects

7-30 Transform Objects Reference

Q3RotateAboutPointTransform_SetData 7

You can use the Q3RotateAboutPointTransform_SetData function to set new
private data for a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_SetData (

TQ3TransformObject transform,

const TQ3RotateAboutPointTransformData *data);

transform A transform.

data A pointer to a rotate-about-point data structure.

DESCRIPTION

The Q3RotateAboutPointTransform_SetData function sets the
rotate-about-point transform specified by the transform parameter
to the data passed in the data parameter. You should use
Q3RotateAboutPointTransform_SetData only with transforms of type
kQ3TransformTypeRotateAboutPoint.

Q3RotateAboutPointTransform_GetAxis 7

You can use the Q3RotateAboutPointTransform_GetAxis function to get the
axis of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_GetAxis (

TQ3TransformObject transform,

TQ3Axis *axis);

transform A rotate-about-point transform.

axis On exit, the axis of the specified rotate-about-point transform.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-31

DESCRIPTION

The Q3RotateAboutPointTransform_GetAxis function returns, in the axis
parameter, the current axis of rotation of the rotate-about-point transform
specified by the transform parameter.

Q3RotateAboutPointTransform_SetAxis 7

You can use the Q3RotateAboutPointTransform_SetAxis function to set the
axis of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_SetAxis (

TQ3TransformObject transform,

TQ3Axis axis);

transform A rotate-about-point transform.

axis The desired axis of the specified rotate-about-point transform.

DESCRIPTION

The Q3RotateAboutPointTransform_SetAxis function sets the axis of
rotation for the rotate-about-point transform specified by the transform
parameter to the value passed in the axis parameter.

Q3RotateAboutPointTransform_GetAngle 7

You can use the Q3RotateAboutPointTransform_GetAngle function to get the
angle of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_GetAngle (

TQ3TransformObject transform,

float *radians);

transform A rotate-about-point transform.

radians On exit, the angle, in radians, of the specified rotate-about-point
transform.

C H A P T E R 7

Transform Objects

7-32 Transform Objects Reference

DESCRIPTION

The Q3RotateAboutPointTransform_GetAngle function returns, in the
radians parameter, the current angle of rotation (in radians) of the
rotate-about-point transform specified by the transform parameter.

Q3RotateAboutPointTransform_SetAngle 7

You can use the Q3RotateAboutPointTransform_SetAngle function to set the
angle of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_SetAngle (

TQ3TransformObject transform,

float radians);

transform A rotate-about-point transform.

radians The desired angle, in radians, of the specified rotate-about-
point transform.

DESCRIPTION

The Q3RotateAboutPointTransform_SetAngle function sets the angle of
rotation for the rotate-about-point transform specified by the transform
parameter to the value passed in the radians parameter.

Q3RotateAboutPointTransform_GetAboutPoint 7

You can use the Q3RotateAboutPointTransform_GetAboutPoint function to
get the point of rotation of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_GetAboutPoint (

TQ3TransformObject transform,

TQ3Point3D *about);

transform A rotate-about-point transform.

about On exit, the point of rotation of the specified rotate-about-point
transform.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-33

DESCRIPTION

The Q3RotateAboutPointTransform_GetAboutPoint function returns, in the
about parameter, the current point of rotation of the rotate-about-point
transform specified by the transform parameter.

Q3RotateAboutPointTransform_SetAboutPoint 7

You can use the Q3RotateAboutPointTransform_SetAboutPoint function to
set the point of rotation of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_SetAboutPoint (

TQ3TransformObject transform,

const TQ3Point3D *about);

transform A rotate-about-point transform.

about The desired point of rotation of the specified rotate-about-point
transform.

DESCRIPTION

The Q3RotateAboutPointTransform_SetAboutPoint function sets the point
of rotation for the rotate-about-point transform specified by the transform
parameter to the value passed in the about parameter.

Creating and Manipulating Rotate-About-Axis Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
rotate-about-axis transforms. An rotate-about-axis transform rotates an object
about an arbitrary axis in space by a specified number of radians. You can use
macros to convert radians to degrees if you prefer to work with degrees instead
of radians. See the chapter “QuickDraw 3D Mathematical Utilities” for more
information.

C H A P T E R 7

Transform Objects

7-34 Transform Objects Reference

Q3RotateAboutAxisTransform_New 7

You can use the Q3RotateAboutAxisTransform_New function to create a new
rotate-about-axis transform.

TQ3TransformObject Q3RotateAboutAxisTransform_New (

const TQ3RotateAboutAxisTransformData *data);

data A pointer to a TQ3RotateAboutAxisTransformData structure.

DESCRIPTION

The Q3RotateAboutAxisTransform_New function returns, as its
function result, a reference to a new transform object of type
kQ3TransformTypeRotateAboutAxis using the data passed in the
data parameter. The data you pass is copied into internal QuickDraw 3D
data structures. If QuickDraw 3D cannot allocate memory for those
structures, Q3RotateAboutAxisTransform_New returns the value NULL.

Q3RotateAboutAxisTransform_Submit 7

You can use the Q3RotateAboutAxisTransform_Submit function to submit a
rotate-about-axis transform without creating an object or allocating memory.

TQ3Status Q3RotateAboutAxisTransform_Submit (

const TQ3RotateAboutAxisTransformData *data,

TQ3ViewObject view);

data A pointer to a TQ3RotateAboutAxisTransformData structure.

view A view.

DESCRIPTION

The Q3RotateAboutAxisTransform_Submit function pushes the rotate-about-
axis transform specified by the data parameter onto the view transform stack
of the view specified by the view parameter. The function returns kQ3Success
if the operation succeeds and kQ3Failure otherwise.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-35

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3RotateAboutAxisTransform_GetData 7

You can use the Q3RotateAboutAxisTransform_GetData function to query the
private data stored in a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_GetData (

TQ3TransformObject transform,

TQ3RotateAboutAxisTransformData *data);

transform A rotate-about-axis transform.

data A pointer to a rotate-about-axis data structure.

DESCRIPTION

The Q3RotateAboutAxisTransform_GetData function returns, in
the data parameter, information about the rotate-about-axis
transform specified by the transform parameter. You should use
Q3RotateAboutAxisTransform_GetData only with transforms of type
kQ3TransformTypeRotateAboutAxis.

Q3RotateAboutAxisTransform_SetData 7

You can use the Q3RotateAboutAxisTransform_SetData function to set new
private data for a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_SetData (

TQ3TransformObject transform,

const TQ3RotateAboutAxisTransformData *data);

transform A rotate-about-axis transform.

data A pointer to a rotate-about-axis data structure.

C H A P T E R 7

Transform Objects

7-36 Transform Objects Reference

DESCRIPTION

The Q3RotateAboutAxisTransform_SetData function sets the
rotate-about-axis transform specified by the transform parameter
to the data passed in the data parameter. You should use
Q3RotateAboutAxisTransform_SetData only with transforms of type
kQ3TransformTypeRotateAboutAxis.

Q3RotateAboutAxisTransform_GetOrigin 7

You can use the Q3RotateAboutAxisTransform_GetOrigin function to get the
origin of the axis of rotation of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_GetOrigin (

TQ3TransformObject transform,

TQ3Point3D *origin);

transform A rotate-about-axis transform.

origin On exit, the origin of the axis of rotation of the specified
rotate-about-axis transform.

DESCRIPTION

The Q3RotateAboutAxisTransform_GetOrigin function returns, in the
origin parameter, the current origin of the axis of rotation of the
rotate-about-axis transform specified by the transform parameter.

Q3RotateAboutAxisTransform_SetOrigin 7

You can use the Q3RotateAboutAxisTransform_SetOrigin function to set the
origin of the axis of rotation of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_SetOrigin (

TQ3TransformObject transform,

const TQ3Point3D *origin);

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-37

transform A rotate-about-axis transform.

origin The desired origin of the axis of rotation of the specified
rotate-about-axis transform.

DESCRIPTION

The Q3RotateAboutAxisTransform_SetOrigin function sets the origin of the
axis of rotation for the rotate-about-axis transform specified by the transform
parameter to the value passed in the origin parameter.

Q3RotateAboutAxisTransform_GetOrientation 7

You can use the Q3RotateAboutAxisTransform_GetOrientation function to
get the orientation of the axis of rotation of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_GetOrientation (

TQ3TransformObject transform,

TQ3Vector3D *axis);

transform A rotate-about-axis transform.

axis On exit, the orientation of the axis of the specified
rotate-about-axis transform. This vector is normalized.

DESCRIPTION

The Q3RotateAboutAxisTransform_GetOrientation function returns, in the
axis parameter, the current orientation of the axis of rotation of the
rotate-about-axis transform specified by the transform parameter.

C H A P T E R 7

Transform Objects

7-38 Transform Objects Reference

Q3RotateAboutAxisTransform_SetOrientation 7

You can use the Q3RotateAboutAxisTransform_SetOrientation function to
set the orientation of the axis of rotation of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_SetOrientation (

TQ3TransformObject transform,

const TQ3Vector3D *axis);

transform A rotate-about-axis transform.

axis The desired orientation of the axis of the specified
rotate-about-axis transform. This vector must be normalized.

DESCRIPTION

The Q3RotateAboutAxisTransform_SetOrientation function sets orientation
of the axis of rotation for the rotate-about-axis transform specified by the
transform parameter to the value passed in the axis parameter.

Q3RotateAboutAxisTransform_GetAngle 7

You can use the Q3RotateAboutAxisTransform_GetAngle function to get the
angle of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_GetAngle (

TQ3TransformObject transform,

float *radians);

transform A rotate-about-axis transform.

radians On exit, the angle, in radians, of the specified rotate-about-axis
transform.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-39

DESCRIPTION

The Q3RotateAboutAxisTransform_GetAngle function returns, in the
radians parameter, the current angle of rotation (in radians) of the
rotate-about-axis transform specified by the transform parameter.

Q3RotateAboutAxisTransform_SetAngle 7

You can use the Q3RotateAboutAxisTransform_SetAngle function to set the
angle of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_SetAngle (

TQ3TransformObject transform,

float radians);

transform A rotate-about-axis transform.

radians The desired angle, in radians, of the specified rotate-about-axis
transform.

DESCRIPTION

The Q3RotateAboutAxisTransform_SetAngle function sets the angle of
rotation for the rotate-about-axis transform specified by the transform
parameter to the value passed in the radians parameter.

Creating and Manipulating Scale Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
scale transforms. A scale transform scales an object along the x, y, and z axes by
specified values. You are responsible for ensuring that an object is at the correct
location and in the proper orientation for the scaling to have the desired effect.

IMPORTANT

A scale factor can be negative. You should, however,
exercise caution when using negative scale factors. In
addition, when two or three of the scale factors are 0,
nothing is drawn. ▲

C H A P T E R 7

Transform Objects

7-40 Transform Objects Reference

Q3ScaleTransform_New 7

You can use the Q3ScaleTransform_New function to create a new scale
transform.

TQ3TransformObject Q3ScaleTransform_New (

const TQ3Vector3D *scale);

scale A vector whose three fields specify the desired scaling along
each coordinate axis.

DESCRIPTION

The Q3ScaleTransform_New function returns, as its function result, a reference
to a new transform object of type kQ3TransformTypeScale using the data
passed in the scale parameter. The scale transform scales an object by the
values in scale->x, scale->y, and scale->z, respectively. The data you pass
in the scale parameter is copied into internal QuickDraw 3D data structures. If
QuickDraw 3D cannot allocate memory for those structures,
Q3ScaleTransform_New returns the value NULL.

Q3ScaleTransform_Submit 7

You can use the Q3ScaleTransform_Submit function to submit a scale
transform without creating an object or allocating memory.

TQ3Status Q3ScaleTransform_Submit (

TQ3Vector3D *scale,

TQ3ViewObject view);

scale A vector whose three fields specify the desired scaling along
each coordinate axis.

view A view.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-41

DESCRIPTION

The Q3ScaleTransform_Submit function pushes the scale transform specified
by the scale parameter on the view transform stack of the view specified by
the view parameter. The function returns kQ3Success if the operation succeeds
and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3ScaleTransform_Get 7

You can use the Q3ScaleTransform_Get function to query the private data
stored in a scale transform.

TQ3Status Q3ScaleTransform_Get (

TQ3TransformObject transform,

TQ3Vector3D *scale);

transform A transform.

scale A vector whose three fields specify the scaling along each
coordinate axis.

DESCRIPTION

The Q3ScaleTransform_Get function returns, in the scale parameter,
information about the scale transform specified by the transform parameter.
You should use Q3ScaleTransform_Get only with transforms of type
kQ3TransformTypeScale.

C H A P T E R 7

Transform Objects

7-42 Transform Objects Reference

Q3ScaleTransform_Set 7

You can use the Q3ScaleTransform_Set function to set new private data for a
scale transform.

TQ3Status Q3ScaleTransform_Set (

TQ3TransformObject transform,

const TQ3Vector3D *scale);

transform A transform.

scale A vector whose three fields specify the desired scaling along
each coordinate axis.

DESCRIPTION

The Q3ScaleTransform_Set function sets the scale transform specified by the
transform parameter to the data passed in the scale parameter. You should
use Q3ScaleTransform_Set only with transforms of type
kQ3TransformTypeScale.

Creating and Manipulating Translate Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
translate transforms. A translate transform translates an object along the x, y,
and z axes by specified values.

Q3TranslateTransform_New 7

You can use the Q3TranslateTransform_New function to create a new translate
transform.

TQ3TransformObject Q3TranslateTransform_New (

const TQ3Vector3D *translate);

translate A vector whose three fields specify the desired translation
along each coordinate axis.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-43

DESCRIPTION

The Q3TranslateTransform_New function returns, as its function result, a
reference to a new transform object of type kQ3TransformTypeTranslate
using the data passed in the translate parameter. The transform translates
an object by the values in translate->x, translate->y, and translate->z,
respectively. The data you pass in the translate parameter is copied into
internal QuickDraw 3D data structures. If QuickDraw 3D cannot allocate
memory for those structures, Q3TranslateTransform_New returns the
value NULL.

Q3TranslateTransform_Submit 7

You can use the Q3TranslateTransform_Submit function to submit a translate
transform without creating an object or allocating memory.

TQ3Status Q3TranslateTransform_Submit (

const TQ3Vector3D *translate,

TQ3ViewObject view);

translate A vector whose three fields specify the desired translation
along each coordinate axis.

view A view.

DESCRIPTION

The Q3TranslateTransform_Submit function pushes the translate transform
specified by the translate parameter on the view transform stack of the view
specified by the view parameter. The function returns kQ3Success if the
operation succeeds and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

C H A P T E R 7

Transform Objects

7-44 Transform Objects Reference

Q3TranslateTransform_Get 7

You can use the Q3TranslateTransform_Get function to query the private
data stored in a translate transform.

TQ3Status Q3TranslateTransform_Get (

TQ3TransformObject transform,

TQ3Vector3D *translate);

transform A transform.

translate On entry, a pointer to a vector. On exit, a pointer to a vector
whose three fields specify the current translation along each
coordinate axis.

DESCRIPTION

The Q3TranslateTransform_Get function returns, in the translate
parameter, information about the translate transform specified by the
transform parameter. You should use Q3TranslateTransform_Get only
with transforms of type kQ3TransformTypeTranslate.

Q3TranslateTransform_Set 7

You can use the Q3TranslateTransform_Set function to set new private data
for a translate transform.

TQ3Status Q3TranslateTransform_Set (

TQ3TransformObject transform,

const TQ3Vector3D *translate);

transform A transform.

translate A vector whose three fields specify the desired translation
along each coordinate axis.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-45

DESCRIPTION

The Q3TranslateTransform_Set function sets the translate transform
specified by the transform parameter to the data passed in the translate
parameter. You should use Q3TranslateTransform_Set only with transforms
of type kQ3TransformTypeTranslate.

Creating and Manipulating Quaternion Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
quaternion transforms. A quaternion transform rotates and twists an object
according to the mathematical properties of quaternions.

Q3QuaternionTransform_New 7

You can use the Q3QuaternionTransform_New function to create a new
quaternion transform.

TQ3TransformObject Q3QuaternionTransform_New (

TQ3Quaternion *quaternion);

quaternion A quaternion.

DESCRIPTION

The Q3QuaternionTransform_New function returns, as its function result, a
reference to a new transform object of type kQ3TransformTypeQuaternion
using the data passed in the quaternion parameter. The data you pass
in the quaternion parameter is copied into internal QuickDraw 3D data
structures. If QuickDraw 3D cannot allocate memory for those structures,
Q3QuaternionTransform_New returns the value NULL.

C H A P T E R 7

Transform Objects

7-46 Transform Objects Reference

Q3QuaternionTransform_Submit 7

You can use the Q3QuaternionTransform_Submit function to submit a
quaternion transform without creating an object or allocating memory.

TQ3Status Q3QuaternionTransform_Submit (

TQ3Quaternion *quaternion,

TQ3ViewObject view);

quaternion A quaternion.

view A view.

DESCRIPTION

The Q3QuaternionTransform_Submit function pushes the quaternion
transform specified by the quaternion parameter on the view transform stack
of the view specified by the view parameter. The function returns kQ3Success
if the operation succeeds and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3QuaternionTransform_Get 7

You can use the Q3QuaternionTransform_Get function to query the private
data stored in a quaternion transform.

TQ3Status Q3QuaternionTransform_Get (

TQ3TransformObject transform,

TQ3Quaternion *quaternion);

transform A transform.

quaternion A quaternion.

C H A P T E R 7

Transform Objects

Transform Objects Reference 7-47

DESCRIPTION

The Q3QuaternionTransform_Get function returns, in the quaternion
parameter, information about the quaternion transform specified by the
transform parameter. You should use Q3QuaternionTransform_Get only
with transforms of type kQ3TransformTypeQuaternion.

Q3QuaternionTransform_Set 7

You can use the Q3QuaternionTransform_Set function to set new private data
for a quaternion transform.

TQ3Status Q3QuaternionTransform_Set (

TQ3TransformObject transform,

TQ3Quaternion *quaternion);

transform A transform.

quaternion A quaternion.

DESCRIPTION

The Q3QuaternionTransform_Set function sets the quaternion transform
specified by the transform parameter to the data passed in the quaternion
parameter. You should use Q3QuaternionTransform_Set only with transforms
of type kQ3TransformTypeQuaternion.

C H A P T E R 7

Transform Objects

7-48 Summary of Transform Objects

Summary of Transform Objects 7

C Summary 7

Constants 7

#define kQ3TransformTypeMatrix Q3_OBJECT_TYPE('m','t','r','x')

#define kQ3TransformTypeQuaternion Q3_OBJECT_TYPE('q','t','r','n')

#define kQ3TransformTypeRotate Q3_OBJECT_TYPE('r','o','t','t')

#define kQ3TransformTypeRotateAboutAxis Q3_OBJECT_TYPE('r','t','a','a')

#define kQ3TransformTypeRotateAboutPoint Q3_OBJECT_TYPE('r','t','a','p')

#define kQ3TransformTypeScale Q3_OBJECT_TYPE('s','c','a','l')

#define kQ3TransformTypeTranslate Q3_OBJECT_TYPE('t','r','n','s')

Data Types 7

typedef struct TQ3RotateTransformData {

TQ3Axis axis;

float radians;

} TQ3RotateTransformData;

typedef struct TQ3RotateAboutPointTransformData {

TQ3Axis axis;

float radians;

TQ3Point3D about;

} TQ3RotateAboutPointTransformData;

C H A P T E R 7

Transform Objects

Summary of Transform Objects 7-49

typedef struct TQ3RotateAboutAxisTransformData {

TQ3Point3D origin;

TQ3Vector3D orientation;

float radians;

} TQ3RotateAboutAxisTransformData;

Transform Objects Routines 7

Managing Transforms

TQ3ObjectType Q3Transform_GetType (

TQ3TransformObject transform);

TQ3Matrix4x4 *Q3Transform_GetMatrix (

TQ3TransformObject transform,

TQ3Matrix4x4 *matrix);

TQ3Status Q3Transform_Submit (TQ3TransformObject transform,

TQ3ViewObject view);

Creating and Manipulating Matrix Transforms

TQ3TransformObject Q3MatrixTransform_New (

const TQ3Matrix4x4 *matrix);

TQ3Status Q3MatrixTransform_Submit (

const TQ3Matrix4x4 *matrix,

TQ3ViewObject view);

TQ3Status Q3MatrixTransform_Get (

TQ3TransformObject transform,

TQ3Matrix4x4 *matrix);

TQ3Status Q3MatrixTransform_Set (

TQ3TransformObject transform,

const TQ3Matrix4x4 *matrix);

C H A P T E R 7

Transform Objects

7-50 Summary of Transform Objects

Creating and Manipulating Rotate Transforms

TQ3TransformObject Q3RotateTransform_New (

const TQ3RotateTransformData *data);

TQ3Status Q3RotateTransform_Submit (

const TQ3RotateTransformData *data,

TQ3ViewObject view);

TQ3Status Q3RotateTransform_GetData (

TQ3TransformObject transform,

TQ3RotateTransformData *data);

TQ3Status Q3RotateTransform_SetData (

TQ3TransformObject transform,

const TQ3RotateTransformData *data);

TQ3Status Q3RotateTransform_GetAxis (

TQ3TransformObject transform,

TQ3Axis *axis);

TQ3Status Q3RotateTransform_SetAxis (

TQ3TransformObject transform,

TQ3Axis axis);

TQ3Status Q3RotateTransform_GetAngle (

TQ3TransformObject transform,

float *radians);

TQ3Status Q3RotateTransform_SetAngle (

TQ3TransformObject transform,

float radians);

Creating and Manipulating Rotate-About-Point Transforms

TQ3TransformObject Q3RotateAboutPointTransform_New (

const TQ3RotateAboutPointTransformData *data);

TQ3Status Q3RotateAboutPointTransform_Submit (

const TQ3RotateAboutPointTransformData *data,

TQ3ViewObject view);

C H A P T E R 7

Transform Objects

Summary of Transform Objects 7-51

TQ3Status Q3RotateAboutPointTransform_GetData (

TQ3TransformObject transform,

TQ3RotateAboutPointTransformData *data);

TQ3Status Q3RotateAboutPointTransform_SetData (

TQ3TransformObject transform,

const TQ3RotateAboutPointTransformData *data);

TQ3Status Q3RotateAboutPointTransform_GetAxis (

TQ3TransformObject transform,

TQ3Axis *axis);

TQ3Status Q3RotateAboutPointTransform_SetAxis (

TQ3TransformObject transform,

TQ3Axis axis);

TQ3Status Q3RotateAboutPointTransform_GetAngle (

TQ3TransformObject transform,

float *radians);

TQ3Status Q3RotateAboutPointTransform_SetAngle (

TQ3TransformObject transform,

float radians);

TQ3Status Q3RotateAboutPointTransform_GetAboutPoint (

TQ3TransformObject transform,

TQ3Point3D *about);

TQ3Status Q3RotateAboutPointTransform_SetAboutPoint (

TQ3TransformObject transform,

const TQ3Point3D *about);

Creating and Manipulating Rotate-About-Axis Transforms

TQ3TransformObject Q3RotateAboutAxisTransform_New (

const TQ3RotateAboutAxisTransformData *data);

TQ3Status Q3RotateAboutAxisTransform_Submit (

const TQ3RotateAboutAxisTransformData *data,

TQ3ViewObject view);

C H A P T E R 7

Transform Objects

7-52 Summary of Transform Objects

TQ3Status Q3RotateAboutAxisTransform_GetData (

TQ3TransformObject transform,

TQ3RotateAboutAxisTransformData *data);

TQ3Status Q3RotateAboutAxisTransform_SetData (

TQ3TransformObject transform,

const TQ3RotateAboutAxisTransformData *data);

TQ3Status Q3RotateAboutAxisTransform_GetOrigin (

TQ3TransformObject transform,

TQ3Point3D *origin);

TQ3Status Q3RotateAboutAxisTransform_SetOrigin (

TQ3TransformObject transform,

const TQ3Point3D *origin);

TQ3Status Q3RotateAboutAxisTransform_GetOrientation (

TQ3TransformObject transform,

TQ3Vector3D *axis);

TQ3Status Q3RotateAboutAxisTransform_SetOrientation (

TQ3TransformObject transform,

const TQ3Vector3D *axis);

TQ3Status Q3RotateAboutAxisTransform_GetAngle (

TQ3TransformObject transform,

float *radians);

TQ3Status Q3RotateAboutAxisTransform_SetAngle (

TQ3TransformObject transform,

float radians);

Creating and Manipulating Scale Transforms

TQ3TransformObject Q3ScaleTransform_New (

const TQ3Vector3D *scale);

TQ3Status Q3ScaleTransform_Submit (

TQ3Vector3D *scale, TQ3ViewObject view);

C H A P T E R 7

Transform Objects

Summary of Transform Objects 7-53

TQ3Status Q3ScaleTransform_Get(TQ3TransformObject transform,

TQ3Vector3D *scale);

TQ3Status Q3ScaleTransform_Set(TQ3TransformObject transform,

const TQ3Vector3D *scale);

Creating and Manipulating Translate Transforms

TQ3TransformObject Q3TranslateTransform_New (

const TQ3Vector3D *translate);

TQ3Status Q3TranslateTransform_Submit (

const TQ3Vector3D *translate,

TQ3ViewObject view);

TQ3Status Q3TranslateTransform_Get (

TQ3TransformObject transform,

TQ3Vector3D *translate);

TQ3Status Q3TranslateTransform_Set (

TQ3TransformObject transform,

const TQ3Vector3D *translate);

Creating and Manipulating Quaternion Transforms

TQ3TransformObject Q3QuaternionTransform_New (

const TQ3Quaternion *quaternion);

TQ3Status Q3QuaternionTransform_Submit (

const TQ3Quaternion *quaternion,

TQ3ViewObject view);

TQ3Status Q3QuaternionTransform_Get (

TQ3TransformObject transform,

TQ3Quaternion *quaternion);

TQ3Status Q3QuaternionTransform_Set (

TQ3TransformObject transform,

const TQ3Quaternion *quaternion);

C H A P T E R 7

Transform Objects

7-54 Summary of Transform Objects

Errors 7

kQ3ErrorScaleOfZero

C H A P T E R 8

Contents

8-1

Contents

Figure 8-0
Listing 8-0
Table 8-0

8 Light Objects

About Light Objects 8-3
Ambient Light 8-4
Directional Lights 8-5
Point Lights 8-5
Spot Lights 8-6

Using Light Objects 8-8
Creating a Light 8-8
Manipulating Lights 8-9

Light Objects Reference 8-9
Constants 8-9

Light Attenuation Values 8-10
Light Fall-Off Values 8-10

Data Structures 8-11
Light Data Structure 8-11
Directional Light Data Structure 8-12
Point Light Data Structure 8-13
Spot Light Data Structure 8-13

Light Objects Routines 8-14
Managing Lights 8-14
Managing Ambient Light 8-19
Managing Directional Lights 8-21
Managing Point Lights 8-25
Managing Spot Lights 8-30

Summary of Light Objects 8-41
C Summary 8-41

Constants 8-41

This document was created with FrameMaker 4.0.4

C H A P T E R 8

8-2

Contents

Data Types 8-42
Light Objects Routines 8-43

Notices 8-47

C H A P T E R 8

About Light Objects

8-3

Light Objects 8

This chapter describes light objects (or lights) and the functions you can use to
manipulate them. You use lights to provide illumination on the objects in a
model. A group of lights is associated with every view, along with camera
information and other settings that affect the rendering of a model.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about grouping lights into a light group, see the chapter
“Group Objects.” For information about associating a light group with a view,
see the chapter “View Objects.” You do not, however, need to know how to
create light groups or attach them to views to read this chapter.

For the lights associated with a view to have any effect, there must also be an
illumination shader associated with the view. See the chapter “Shader Objects”
for information on creating illumination shaders and attaching them to views.

This chapter begins by describing light objects and their features. Then it shows
how to create and manipulate lights. The section “Light Objects Reference,”
beginning on page 8-9 provides a complete description of light objects and the
routines you can use to create and manipulate them.

About Light Objects 8

A

light object

 (or, more briefly, a

light

) is a type of QuickDraw 3D object that
you can use to provide illumination to the surfaces in a scene. A light is of type

TQ3LightObject

.

In general, the illumination of a surface in a scene is affected by multiple light
sources. As a result, a view is associated with a

light group,

 which is simply a
group of lights. To illuminate the objects in the scene, you need to create a light
group and attach it to a view (for example, by calling

Q3LightGroup_New

 and

Q3View_SetLightGroup

).

Note

If you do not attach a group of lights to a view, the results
are renderer-specific.

◆

This document was created with FrameMaker 4.0.4

C H A P T E R 8

Light Objects

8-4

About Light Objects

QuickDraw 3D supports multiple light sources and multiple types of lights in a
given scene. QuickDraw 3D defines four types of lights:

■

ambient lights

■

directional lights

■

point lights

■

spot lights

All four types of lights share some basic properties, which are maintained in a

light data structure,

 defined by the

TQ3LightData

 data structure.

typedef struct TQ3LightData {

TQ3Boolean isOn;

float brightness;

TQ3ColorRGB color;

} TQ3LightData;

These fields specify the brightness (that is, the intensity) and color of the light
and the current state (active or inactive) of the light. You can turn a light on and
off by toggling the

isOn

 field of a light data structure.

As you will see, an ambient light is completely described by a light data
structure. All other types of lights contain additional information, such as the
location and direction of the light source. Those kinds of lights are defined by
data structures that include a light data structure.

Ambient Light 8

Ambient light

 is an amount of light of a specific color that is added to the
illumination of all surfaces in a scene. QuickDraw 3D supports at most

one

active source of ambient light per view, which is therefore called the ambient
light object (or the ambient light). An ambient light has no location and cannot
therefore cast shadows or become attenuated by distance of the light source
from a surface. In effect, ambient light is light that is applied equally
everywhere in a scene. In the absence of any other light sources, an ambient
light illuminates a scene with a flat, uniform light. An ambient light is defined
by the

TQ3LightData

 data structure.

C H A P T E R 8

Light Objects

About Light Objects

8-5

Directional Lights 8

A

directional light

 is a light source that emits parallel rays of light in a specific
direction. You can think of a directional light as a light source that is infinitely
far away from the surfaces it is illuminating. For example, for scenes on the
surface of the Earth, the sun is effectively a directional light.

Note

Directional lights are therefore sometimes
also called

infinite lights.

◆

A directional light has no location. As a result, you specify the direction of
the light as a vector equivalent to the direction of the light. In addition, a
directional light cannot suffer attenuation (that is, a loss of intensity over
distance). It can, however, cast shadows.

Point Lights 8

A

point light

 is a light source that emits rays of light in all directions from
a specific location. The illumination that a point light contributes to a surface
depends on the basic properties of the light source (its intensity and color)
together with the orientation of the surface and its distance from the
light source.

A point light can suffer attenuation, in which case objects closer to the light
source receive more illumination than objects farther away. QuickDraw 3D
allows you to specify one of several attenuation values that determine the
precise amount by which the intensity of a point light decays over distance. For
example, you can use the constant

kQ3AttenuationTypeInverseDistance

 to
have the intensity of a point light be inversely proportional to the distance
between the illuminated surface and the light source. See “Light Attenuation
Values” on page 8-10 for a complete list of the available attenuation values.

C H A P T E R 8

Light Objects

8-6

About Light Objects

Spot Lights 8

A

spot light

 is a light source that emits a circular cone of light in a specific
direction from a specific location. Figure 8-1 shows the geometry of a spot light.
Every spot light has a hot angle and an outer angle that together define the
shape of the cone of light and the amount of attenuation, if any, that occurs
from the center of the cone to the outer edge of the cone.

Figure 8-1

A spot light

A spot light’s

hot angle

 is the half-angle (specified in radians) from the center
of the cone of light within which the light remains at constant full intensity. In
Figure 8-1,

h

 is the hot angle. A spot light’s

outer angle

 is the half angle
(specified in radians) from the center of the cone to the edge of the cone. In
Figure 8-1,

o

 is the outer angle.

The attenuation of the light’s intensity from the edge of the hot angle to
the edge of the outer angle is determined by the light’s

fall-off value.

QuickDraw 3D allows you to specify no fall-off, a linear fall-off, an
exponential fall-off, and a fall-off that is proportional to the cosine of the
angle. The available fall-off algorithms are illustrated in Figure 8-2.

Hot angle

Outer angle
o

h

C H A P T E R 8

Light Objects

About Light Objects

8-7

Figure 8-2

Fall-off algorithms

See “Light Fall-Off Values” on page 8-10 for a description of the constants you
can use to specify a spot light’s fall-off value.

Intensity

Angle

0

None

Intensity

Angle

0

Linear

Intensity

Angle

0 o

Exponential

Intensity

Angle

0 h o

h

oh

oh

Cosine

C H A P T E R 8

Light Objects

8-8

Using Light Objects

Using Light Objects 8

QuickDraw 3D supplies routines that you can use to create and manipulate
light objects. This section describes how to accomplish these tasks.

Creating a Light 8

You create a light by filling in the fields of the data structure for the type of
light you want to create and then by calling a QuickDraw 3D function to create
the light. For example, to create a point light, you fill in a data structure of type

TQ3PointLightData

 and then call

Q3PointLight_New

, as shown in Listing 8-1.

Listing 8-1

Creating a new point light

TQ3LightObject MyNewPointLight (void)

{

TQ3LightData myLightData;

TQ3PointLightData myPointLightData;

TQ3LightObject myPointLight;

TQ3Point3D pointLocation = {-20.0, 0.0, 20.0};

TQ3ColorRGB WhiteLight = { 1.0, 1.0, 1.0 };

/*Set up light data for a point light.*/

myLightData.isOn = kQ3True;

myLightData.brightness = 1.0;

myLightData.color = WhiteLight;

myPointLightData.lightData = myLightData;

myPointLightData.castsShadows = kQ3False;

myPointLightData.attenuation = kQ3AttenuationTypeNone;

myPointLightData.location = pointLocation;

/*Create a point light.*/

myPointLight = Q3PointLight_New(&myPointLightData);

return (myPointLight);

}

C H A P T E R 8

Light Objects

Light Objects Reference

8-9

As you can see, the

MyNewPointLight

 function defined in Listing 8-1 simply
fills in the

myPointLight

 structure and then calls

Q3PointLight_New

.

MyNewPointLight

 returns to its caller either a reference to the new light (if

Q3PointLight_New

 succeeds) or the value

NULL

 (if

Q3PointLight_New

 fails).

Manipulating Lights 8

For a light to affect a model in a view, you need to insert the light into the light
group associated with the view. You call

Q3LightGroup_New

 to create a new
(empty) light group and

Q3Group_AddObject

 to add lights to that group. Then
you need to call

Q3View_SetLightGroup

 to attach the light group to a view.
Finally, you need to create an illumination shader that specifies the kind of
illumination model you want applied to objects in the model. For example, to
provide Phong illumination on the objects in a model, you can create an
illumination shader by calling

Q3PhongIllumination_New

. The illumination
shader is not explicitly associated with the view. Instead, you specify the
illumination shader by calling

Q3Shader_Submit

 in your rendering loop. See
the chapter “Shader Objects” for details.

Light Objects Reference 8

This section describes the constants, data structures, and routines you can use
to create and manipulate light objects.

Constants 8

This section describes the constants that you use to define light attenuation and
fall-off values.

Note

Some renderers might not support all the defined
attenuation or fall-off values.

◆

C H A P T E R 8

Light Objects

8-10

Light Objects Reference

Light Attenuation Values 8

Most types of lights have an attenuation value that determines how quickly, if
at all, the intensity of a light changes as a function of the distance of the
illuminated object from the light source. You can use these constants to specify
an attenuation value:

typedef enum TQ3AttenuationType {

kQ3AttenuationTypeNone,

kQ3AttenuationTypeInverseDistance,

kQ3AttenuationTypeInverseDistanceSquared

} TQ3AttenuationType;

Constant descriptions

kQ3AttenuationTypeNone

The intensity of the light is not affected by the distance
from the illuminated object.

kQ3AttenuationTypeInverseDistance

The intensity of the light is inversely proportional to the
distance from the illuminated object.

kQ3AttenuationTypeInverseDistanceSquared

The intensity of the light is inversely proportional to the
square of the distance from the illuminated object.

Light Fall-Off Values 8

Spot lights have a fall-off value that determines the attenuation of the light
from the edge of the hot angle to the edge of the outer angle. You can use these
constants to specify a fall-off value:

typedef enum TQ3FallOffType {

kQ3FallOffTypeNone,

kQ3FallOffTypeLinear,

kQ3FallOffTypeExponential,

kQ3FallOffTypeCosine

} TQ3FallOffType;

C H A P T E R 8

Light Objects

Light Objects Reference

8-11

Constant descriptions

kQ3FallOffTypeNone

The intensity of the light is not affected by the distance
from the center of the cone to the edge of the cone.

kQ3FallOffTypeLinear

The intensity of the light at the edge of the cone falls off
linearly from the intensity of the light at the center of
the cone.

kQ3FallOffTypeExponential

The intensity of the light at the edge of the cone falls off
exponentially from the intensity of the light at the center of
the cone.

kQ3FallOffTypeCosine

The intensity of the light at the edge of the cone falls off as
the cosine of the outer angle from the intensity of the light
at the center of the cone.

Data Structures 8

This section describes the data structures supplied by QuickDraw 3D for
managing lights. The data structures used to manage lights are all public.

Note

The locations and directions of lights are
always specified in world coordinates.

◆

Light Data Structure 8

You use a light data structure to get or set basic information about a light
source of any kind. A light data structure is defined by the TQ3LightData
data type.

typedef struct TQ3LightData {

TQ3Boolean isOn;

float brightness;

TQ3ColorRGB color;

} TQ3LightData;

C H A P T E R 8

Light Objects

8-12 Light Objects Reference

Field descriptions
isOn A Boolean value that indicates whether the light source is

active (kQ3True) or inactive (kQ3False).
brightness The brightness or intensity of the light source. The value in

this field is a floating-point number in the range 0.0 to 1.0,
inclusive. Some renderers may allow you to specify
overbright lights (where the value in this field is greater
than 1.0) or lights with negative brightness (where the
value in this field is less than 0.0); the effects produced by
out-of-range brightness values are renderer-specific.

color The color of the light emitted by a light source.

Directional Light Data Structure 8

You use a directional light data structure to get or set information about a
directional light source. A directional light data structure is defined by the
TQ3DirectionalLightData data type.

typedef struct TQ3DirectionalLightData {

TQ3LightData lightData;

TQ3Boolean castsShadows;

TQ3Vector3D direction;

} TQ3DirectionalLightData;

Field descriptions
lightData A light data structure specifying basic information about

the directional light.
castsShadows A Boolean value that indicates whether the directional

light casts shadows (kQ3True) or not (kQ3False).
direction The direction of the directional light. Note that the

direction is defined as a world-space vector away from the
light source. This vector does not need to be normalized,
but its length must be greater than 0.

C H A P T E R 8

Light Objects

Light Objects Reference 8-13

Point Light Data Structure 8

You use a point light data structure to get or set information about a point
light source. A point light data structure is defined by the TQ3PointLightData
data type.

typedef struct TQ3PointLightData {

TQ3LightData lightData;

TQ3Boolean castsShadows;

TQ3AttenuationType attenuation;

TQ3Point3D location;

} TQ3PointLightData;

Field descriptions
lightData A light data structure specifying basic information about

the point light.
castsShadows A Boolean value that indicates whether the point light

casts shadows (kQ3True) or not (kQ3False).
attenuation The type of attenuation of the point light. See “Light

Attenuation Values” on page 8-10 for a description of the
constants this field can contain.

location The location of the point light, in world coordinates.

Spot Light Data Structure 8

You use a spot light data structure to get or set information about a spot
light source. A spot light data structure is defined by the TQ3SpotLightData
data type.

typedef struct TQ3SpotLightData {

TQ3LightData lightData;

TQ3Boolean castsShadows;

TQ3AttenuationType attenuation;

TQ3Point3D location;

TQ3Vector3D direction;

float hotAngle;

float outerAngle;

TQ3FallOffType fallOff;

} TQ3SpotLightData;

C H A P T E R 8

Light Objects

8-14 Light Objects Reference

Field descriptions
lightData A light data structure specifying basic information about

the spot light.
castsShadows A Boolean value that indicates whether the spot light casts

shadows (kQ3True) or not (kQ3False).
attenuation The type of attenuation of the spot light. See “Light

Attenuation Values” on page 8-10 for a description of the
constants that can be used in this field.

location The location of the spot light, in world coordinates.
direction The direction of the spot light. Note that the direction is

defined as a world-space vector away from the light source.
This vector does not need to be normalized, but vectors
returned by QuickDraw 3D in this field might be
normalized.

hotAngle The hot angle of the spot light. The hot angle of a spot light
is the half-angle, measured in radians, from the center of
the cone of light within which the light remains at constant
full intensity. The value in this field is a floating-point
number in the range 0.0 to π/2, inclusive.

outerAngle The outer angle of the spot light. The outer angle of a spot
light is the half angle, measured in radians, from the center
of the cone of light to the edge of the light’s influence. The
value in this field is a floating-point number in the range
0.0 to π/2, inclusive, and should always be greater than or
equal to the value in the hotAngle field.

fallOff The fall-off value for the spot light. See “Light Fall-Off
Values” on page 8-10 for a description of the constants that
can be used in this field.

Light Objects Routines 8

This section describes routines you can use to manage lights.

Managing Lights 8

QuickDraw 3D provides a number of general routines for managing lights of
any kind.

C H A P T E R 8

Light Objects

Light Objects Reference 8-15

Q3Light_GetType 8

You can use the Q3Light_GetType function to get the type of a light object.

TQ3ObjectType Q3Light_GetType (TQ3LightObject light);

light A light object.

DESCRIPTION

The Q3Light_GetType function returns, as its function result, the type of the
light object specified by the light parameter. The types of light objects
currently supported by QuickDraw 3D are defined by these constants:

kQ3LightTypeAmbient

kQ3LightTypeDirectional

kQ3LightTypePoint

kQ3LightTypeSpot

If the specified light object is invalid or is not one of these types,
Q3Light_GetType returns the value kQ3ObjectTypeInvalid.

Q3Light_GetState 8

You can use the Q3Light_GetState function to get the current state of a light.

TQ3Status Q3Light_GetState (

TQ3LightObject light,

TQ3Boolean *isOn);

light A light object.

isOn On exit, the current state of the light specified by the light
parameter.

C H A P T E R 8

Light Objects

8-16 Light Objects Reference

DESCRIPTION

The Q3Light_GetState function returns, in the isOn parameter, a Boolean
value that indicates whether the light specified by the light parameter is
active (kQ3True) or inactive (kQ3False).

Q3Light_SetState 8

You can use the Q3Light_SetState function to set the state of a light.

TQ3Status Q3Light_SetState (

TQ3LightObject light,

TQ3Boolean isOn);

light A light object.

isOn The desired state of the specified light.

DESCRIPTION

The Q3Light_SetState function sets the state of the light specified by the
light parameter to the value specified by the isOn parameter. If isOn is set
to kQ3True, the light is made active; if isOn is set to kQ3False, the light is
made inactive.

Q3Light_GetBrightness 8

You can use the Q3Light_GetBrightness function to get the current brightness
of a light.

TQ3Status Q3Light_GetBrightness (

TQ3LightObject light,

float *brightness);

light A light object.

brightness On exit, the current brightness of the specified light.

C H A P T E R 8

Light Objects

Light Objects Reference 8-17

DESCRIPTION

The Q3Light_GetBrightness function returns, in the brightness parameter, a
value that indicates the current brightness of the light specified by the light
parameter. The value should be between 0.0 and 1.0, inclusive.

Q3Light_SetBrightness 8

You can use the Q3Light_SetBrightness function to set the brightness of
a light.

TQ3Status Q3Light_SetBrightness (

TQ3LightObject light,

float brightness);

light A light object.

brightness The desired brightness of the specified light.

DESCRIPTION

The Q3Light_SetBrightness function sets the brightness of the light specified
by the light parameter to the value specified by the brightness parameter.
The value should be between 0.0 and 1.0, inclusive.

Q3Light_GetColor 8

You can use the Q3Light_GetColor function to get the current color of a light.

TQ3Status Q3Light_GetColor (

TQ3LightObject light,

TQ3ColorRGB *color);

light A light object.

color On exit, a pointer to a TQ3ColorRGB structure specifying the
current color of the specified light.

C H A P T E R 8

Light Objects

8-18 Light Objects Reference

DESCRIPTION

The Q3Light_GetColor function returns, in the color parameter, the current
color of the light specified by the light parameter.

Q3Light_SetColor 8

You can use the Q3Light_SetColor function to set the color of a light.

TQ3Status Q3Light_SetColor (

TQ3LightObject light,

const TQ3ColorRGB *color);

light A light object.

color A pointer to a TQ3ColorRGB structure specifying the desired
color of the specified light.

DESCRIPTION

The Q3Light_SetColor function sets the color of the light specified by the
light parameter to the value specified by the color parameter.

Q3Light_GetData 8

You can use the Q3Light_GetData function to get the basic data associated
with a light.

TQ3Status Q3Light_GetData (

TQ3LightObject light,

TQ3LightData *lightData);

light A light object.

lightData On exit, a pointer to a light data structure.

C H A P T E R 8

Light Objects

Light Objects Reference 8-19

DESCRIPTION

The Q3Light_GetData function returns, through the lightData parameter,
basic information about the light specified by the light parameter. See “Light
Data Structure” on page 8-11 for a description of a light data structure.

Q3Light_SetData 8

You can use the Q3Light_SetData function to set the basic data associated
with a light.

TQ3Status Q3Light_SetData (

TQ3LightObject light,

const TQ3LightData *lightData);

light A light object.

lightData A pointer to a light data structure.

DESCRIPTION

The Q3Light_SetData function sets the data associated with the light specified
by the light parameter to the data specified by the lightData parameter.

Managing Ambient Light 8

QuickDraw 3D provides routines that you can use to create and edit the
ambient light of a view.

Q3AmbientLight_New 8

You can use the Q3AmbientLight_New function to create a new ambient light.

TQ3LightObject Q3AmbientLight_New (

const TQ3LightData *lightData);

lightData A pointer to a light data structure.

C H A P T E R 8

Light Objects

8-20 Light Objects Reference

DESCRIPTION

The Q3AmbientLight_New function returns, as its function result, a new
ambient light having the characteristics specified by the lightData parameter.

Q3AmbientLight_GetData 8

You can use the Q3AmbientLight_GetData function to get the data that defines
an ambient light.

TQ3Status Q3AmbientLight_GetData (

TQ3LightObject light,

TQ3LightData *lightData);

light An ambient light object.

lightData On exit, a pointer to a light data structure.

DESCRIPTION

The Q3AmbientLight_GetData function returns, through the lightData
parameter, information about the ambient light specified by the light
parameter. See “Light Data Structure” on page 8-11 for a description of a light
data structure.

Q3AmbientLight_SetData 8

You can use the Q3AmbientLight_SetData function to set the data that defines
an ambient light.

TQ3Status Q3AmbientLight_SetData (

TQ3LightObject light,

const TQ3LightData *lightData);

light An ambient light object.

lightData A pointer to a light data structure.

C H A P T E R 8

Light Objects

Light Objects Reference 8-21

DESCRIPTION

The Q3AmbientLight_SetData function sets the data associated with the
ambient light specified by the light parameter to the data specified by the
lightData parameter.

Managing Directional Lights 8

QuickDraw 3D provides routines that you can use to create and edit
directional lights.

Q3DirectionalLight_New 8

You can use the Q3DirectionalLight_New function to create a new
directional light.

TQ3LightObject Q3DirectionalLight_New (

const TQ3DirectionalLightData

*directionalLightData);

directionalLightData

A pointer to a directional light data structure.

DESCRIPTION

The Q3DirectionalLight_New function returns, as its function result,
a new directional light having the characteristics specified by the
directionalLightData parameter.

C H A P T E R 8

Light Objects

8-22 Light Objects Reference

Q3DirectionalLight_GetCastShadowsState 8

You can use the Q3DirectionalLight_GetCastShadowsState function to get
the shadow-casting state of a directional light.

TQ3Status Q3DirectionalLight_GetCastShadowsState (

TQ3LightObject light,

TQ3Boolean *castsShadows);

light A directional light object.

castsShadows

On exit, a Boolean value that indicates whether the specified
light casts shadows (kQ3True) or does not cast shadows
(kQ3False).

DESCRIPTION

The Q3DirectionalLight_GetCastShadowsState function returns, in the
castsShadows parameter, a Boolean value that indicates whether the light
specified by the light parameter casts shadows (kQ3True) or does not cast
shadows (kQ3False).

Q3DirectionalLight_SetCastShadowsState 8

You can use the Q3DirectionalLight_SetCastShadowsState function to set
the shadow-casting state of a directional light.

TQ3Status Q3DirectionalLight_SetCastShadowsState (

TQ3LightObject light,

TQ3Boolean castsShadows);

light A directional light object.

castsShadows

A Boolean value that indicates whether the specified light casts
shadows (kQ3True) or does not cast shadows (kQ3False).

C H A P T E R 8

Light Objects

Light Objects Reference 8-23

DESCRIPTION

The Q3DirectionalLight_SetCastShadowsState function sets the shadow-
casting state of the directional light specified by the light parameter to the
Boolean value specified in the castsShadows parameter.

Q3DirectionalLight_GetDirection 8

You can use the Q3DirectionalLight_GetDirection function to get the
direction of a directional light.

TQ3Status Q3DirectionalLight_GetDirection (

TQ3LightObject light,

TQ3Vector3D *direction);

light A directional light object.

direction On exit, the direction of the specified light.

DESCRIPTION

The Q3DirectionalLight_GetDirection function returns, in the direction
parameter, the current direction of the directional light specified by the light
parameter.

Q3DirectionalLight_SetDirection 8

You can use the Q3DirectionalLight_SetDirection function to set the
direction of a directional light.

TQ3Status Q3DirectionalLight_SetDirection (

TQ3LightObject light,

const TQ3Vector3D *direction);

light A directional light object.

direction The desired direction of the specified light.

C H A P T E R 8

Light Objects

8-24 Light Objects Reference

DESCRIPTION

The Q3DirectionalLight_SetDirection function sets the direction of the
directional light specified by the light parameter to the value passed in the
direction parameter.

Q3DirectionalLight_GetData 8

You can use the Q3DirectionalLight_GetData function to get the data that
defines a directional light.

TQ3Status Q3DirectionalLight_GetData (

TQ3LightObject light,

TQ3DirectionalLightData

*directionalLightData);

light A directional light object.

directionalLightData

On exit, a pointer to a directional light data structure.

DESCRIPTION

The Q3DirectionalLight_GetData function returns, through the
directionalLightData parameter, information about the directional light
specified by the light parameter. See “Directional Light Data Structure” on
page 8-12 for a description of a directional light data structure.

C H A P T E R 8

Light Objects

Light Objects Reference 8-25

Q3DirectionalLight_SetData 8

You can use the Q3DirectionalLight_SetData function to set the data that
defines a directional light.

TQ3Status Q3DirectionalLight_SetData (

TQ3LightObject light,

const TQ3DirectionalLightData

*directionalLightData);

light A directional light object.

directionalLightData

A pointer to a directional light data structure.

DESCRIPTION

The Q3DirectionalLight_SetData function sets the data associated with the
directional light specified by the light parameter to the data specified by the
directionalLightData parameter.

Managing Point Lights 8

QuickDraw 3D provides routines that you can use to create and edit
point lights.

Q3PointLight_New 8

You can use the Q3PointLight_New function to create a new point light.

TQ3LightObject Q3PointLight_New (

const TQ3PointLightData *pointLightData);

pointLightData

A pointer to a point light data structure.

C H A P T E R 8

Light Objects

8-26 Light Objects Reference

DESCRIPTION

The Q3PointLight_New function returns, as its function result, a new point
light having the characteristics specified by the pointLightData parameter.

Q3PointLight_GetCastShadowsState 8

You can use the Q3PointLight_GetCastShadowsState function to get the
shadow-casting state of a point light.

TQ3Status Q3PointLight_GetCastShadowsState (

TQ3LightObject light,

TQ3Boolean *castsShadows);

light A point light object.

castsShadows

On exit, a Boolean value that indicates whether the specified
light casts shadows (kQ3True) or does not cast shadows
(kQ3False).

DESCRIPTION

The Q3PointLight_GetCastShadowsState function returns, in the
castsShadows parameter, a Boolean value that indicates whether the light
specified by the light parameter casts shadows (kQ3True) or does not cast
shadows (kQ3False).

Q3PointLight_SetCastShadowsState 8

You can use the Q3PointLight_SetCastShadowsState function to set the
shadow-casting state of a point light.

TQ3Status Q3PointLight_SetCastShadowsState (

TQ3LightObject light,

TQ3Boolean castsShadows);

C H A P T E R 8

Light Objects

Light Objects Reference 8-27

light A point light object.

castsShadows

A Boolean value that indicates whether the specified light casts
shadows (kQ3True) or does not cast shadows (kQ3False).

DESCRIPTION

The Q3PointLight_SetCastShadowsState function sets the shadow-casting
state of the point light specified by the light parameter to the Boolean value
specified in the castsShadows parameter.

Q3PointLight_GetAttenuation 8

You can use the Q3PointLight_GetAttenuation function to get the
attenuation of a point light.

TQ3Status Q3PointLight_GetAttenuation (

TQ3LightObject light,

TQ3AttenuationType *attenuation);

light A point light object.

attenuation On exit, the type of attenuation of the light. See “Light
Attenuation Values” on page 8-10 for a description of the
constants that can be returned in this parameter.

DESCRIPTION

The Q3PointLight_GetAttenuation function returns, in the attenuation
parameter, the current attenuation value of the point light specified by the
light parameter.

C H A P T E R 8

Light Objects

8-28 Light Objects Reference

Q3PointLight_SetAttenuation 8

You can use the Q3PointLight_SetAttenuation function to set the attenuation
of a point light.

TQ3Status Q3PointLight_SetAttenuation (

TQ3LightObject light,

TQ3AttenuationType attenuation);

light A point light object.

attenuation The desired type of attenuation of the light. See “Light
Attenuation Values” on page 8-10 for a description of the
constants that can be passed in this parameter.

DESCRIPTION

The Q3PointLight_SetAttenuation function sets the attenuation value of the
point light specified by the light parameter to the value passed in the
attenuation parameter.

Q3PointLight_GetLocation 8

You can use the Q3PointLight_GetLocation function to get the location of a
point light.

TQ3Status Q3PointLight_GetLocation (

TQ3LightObject light,

TQ3Point3D *location);

light A point light object.

location On exit, the location of the point light, in world coordinates.

C H A P T E R 8

Light Objects

Light Objects Reference 8-29

DESCRIPTION

The Q3PointLight_GetLocation function returns, in the location parameter,
the current location of the point light specified by the light parameter.

Q3PointLight_SetLocation 8

You can use the Q3PointLight_SetLocation function to set the location of a
point light.

TQ3Status Q3PointLight_SetLocation (

TQ3LightObject light,

const TQ3Point3D *location);

light A point light object.

location The desired location of the point light, in world coordinates.

DESCRIPTION

The Q3PointLight_SetLocation function sets the location of the point light
specified by the light parameter to the value passed in the location
parameter.

Q3PointLight_GetData 8

You can use the Q3PointLight_GetData function to get the data that defines a
point light.

TQ3Status Q3PointLight_GetData (

TQ3LightObject light,

TQ3PointLightData *pointLightData);

light A point light object.

pointLightData

On exit, a pointer to a point light data structure.

C H A P T E R 8

Light Objects

8-30 Light Objects Reference

DESCRIPTION

The Q3PointLight_GetData function returns, through the pointLightData
parameter, information about the point light specified by the light parameter.
See “Point Light Data Structure” on page 8-13 for a description of a point light
data structure.

Q3PointLight_SetData 8

You can use the Q3PointLight_SetData function to set the data that defines a
point light.

TQ3Status Q3PointLight_SetData (

TQ3LightObject light,

const TQ3PointLightData *pointLightData);

light A point light object.

pointLightData

A pointer to a point light data structure.

DESCRIPTION

The Q3PointLight_SetData function sets the data associated with the point
light specified by the light parameter to the data specified by the
pointLightData parameter.

Managing Spot Lights 8

QuickDraw 3D provides routines that you can use to create and edit spot lights.

C H A P T E R 8

Light Objects

Light Objects Reference 8-31

Q3SpotLight_New 8

You can use the Q3SpotLight_New function to create a new spot light.

TQ3LightObject Q3SpotLight_New (

const TQ3SpotLightData *spotLightData);

spotLightData

A pointer to a spot light data structure.

DESCRIPTION

The Q3SpotLight_New function returns, as its function result, a new spot light
having the characteristics specified by the spotLightData parameter.

Q3SpotLight_GetCastShadowsState 8

You can use the Q3SpotLight_GetCastShadowsState function to get the
shadow-casting state of a spot light.

TQ3Status Q3SpotLight_GetCastShadowsState (

TQ3LightObject light,

TQ3Boolean *castsShadows);

light A spot light object.

castsShadows

On exit, a Boolean value that indicates whether the specified
light casts shadows (kQ3True) or does not cast shadows
(kQ3False).

DESCRIPTION

The Q3SpotLight_GetCastShadowsState function returns, in the
castsShadows parameter, a Boolean value that indicates whether the light
specified by the light parameter casts shadows (kQ3True) or does not cast
shadows (kQ3False).

C H A P T E R 8

Light Objects

8-32 Light Objects Reference

Q3SpotLight_SetCastShadowsState 8

You can use the Q3SpotLight_SetCastShadowsState function to set the
shadow-casting state of a spot light.

TQ3Status Q3SpotLight_SetCastShadowsState (

TQ3LightObject light,

TQ3Boolean castsShadows);

light A spot light object.

castsShadows

A Boolean value that indicates whether the specified light casts
shadows (kQ3True) or does not cast shadows (kQ3False).

DESCRIPTION

The Q3SpotLight_SetCastShadowsState function sets the shadow-casting
state of the spot light specified by the light parameter to the Boolean value
specified in the castsShadows parameter.

Q3SpotLight_GetAttenuation 8

You can use the Q3SpotLight_GetAttenuation function to get the attenuation
of a spot light.

TQ3Status Q3SpotLight_GetAttenuation (

TQ3LightObject light,

TQ3AttenuationType *attenuation);

light A spot light object.

attenuation On exit, the type of attenuation of the light. See “Light
Attenuation Values” on page 8-10 for a description of the
constants that can be returned in this parameter.

C H A P T E R 8

Light Objects

Light Objects Reference 8-33

DESCRIPTION

The Q3SpotLight_GetAttenuation function returns, in the attenuation
parameter, the current attenuation value of the spot light specified by the
light parameter.

Q3SpotLight_SetAttenuation 8

You can use the Q3SpotLight_SetAttenuation function to set the attenuation
of a spot light.

TQ3Status Q3SpotLight_SetAttenuation (

TQ3LightObject light,

TQ3AttenuationType attenuation);

light A spot light object.

attenuation The desired type of attenuation of the light. See “Light
Attenuation Values” on page 8-10 for a description of the
constants that can be passed in this parameter.

DESCRIPTION

The Q3SpotLight_SetAttenuation function sets the attenuation value of the
spot light specified by the light parameter to the value passed in the
attenuation parameter.

Q3SpotLight_GetLocation 8

You can use the Q3SpotLight_GetLocation function to get the location of a
spot light.

TQ3Status Q3SpotLight_GetLocation (

TQ3LightObject light,

TQ3Point3D *location);

C H A P T E R 8

Light Objects

8-34 Light Objects Reference

light A spot light object.

location On exit, the location of the spot light, in world coordinates.

DESCRIPTION

The Q3SpotLight_GetLocation function returns, in the location parameter,
the current location of the spot light specified by the light parameter.

Q3SpotLight_SetLocation 8

You can use the Q3SpotLight_SetLocation function to set the location of a
spot light.

TQ3Status Q3SpotLight_SetLocation (

TQ3LightObject light,

const TQ3Point3D *location);

light A spot light object.

location The desired location of the spot light, in world coordinates.

DESCRIPTION

The Q3SpotLight_SetLocation function sets the location of the spot light
specified by the light parameter to the value passed in the location
parameter.

Q3SpotLight_GetDirection 8

You can use the Q3SpotLight_GetDirection function to get the direction of a
spot light.

TQ3Status Q3SpotLight_GetDirection (

TQ3LightObject light,

TQ3Vector3D *direction);

C H A P T E R 8

Light Objects

Light Objects Reference 8-35

light A spot light object.

direction On exit, the direction of the specified light.

DESCRIPTION

The Q3SpotLight_GetDirection function returns, in the direction
parameter, the current direction of the spot light specified by the light
parameter.

Q3SpotLight_SetDirection 8

You can use the Q3SpotLight_SetDirection function to set the direction of a
spot light.

TQ3Status Q3SpotLight_SetDirection (

TQ3LightObject light,

const TQ3Vector3D *direction);

light A spot light object.

direction The desired direction of the specified light.

DESCRIPTION

The Q3SpotLight_SetDirection function sets the direction of the spot light
specified by the light parameter to the value passed in the direction
parameter.

C H A P T E R 8

Light Objects

8-36 Light Objects Reference

Q3SpotLight_GetHotAngle 8

You can use the Q3SpotLight_GetHotAngle function to get the hot angle of a
spot light.

TQ3Status Q3SpotLight_GetHotAngle (

TQ3LightObject light,

float *hotAngle);

light A spot light object.

hotAngle On exit, the hot angle of the specified light, in radians.

DESCRIPTION

The Q3SpotLight_GetHotAngle function returns, in the hotAngle parameter,
the current hot angle of the spot light specified by the light parameter.

Q3SpotLight_SetHotAngle 8

You can use the Q3SpotLight_SetHotAngle function to set the hot angle of a
spot light.

TQ3Status Q3SpotLight_SetHotAngle (

TQ3LightObject light,

float hotAngle);

light A spot light object.

hotAngle The desired hot angle of the specified light, in radians.

DESCRIPTION

The Q3SpotLight_SetHotAngle function sets the hot angle of the spot light
specified by the light parameter to the value passed in the hotAngle
parameter.

C H A P T E R 8

Light Objects

Light Objects Reference 8-37

Q3SpotLight_GetOuterAngle 8

You can use the Q3SpotLight_GetOuterAngle function to get the outer angle
of a spot light.

TQ3Status Q3SpotLight_GetOuterAngle (

TQ3LightObject light,

float *outerAngle);

light A spot light object.

outerAngle On exit, the outer angle of the specified light, in radians.

DESCRIPTION

The Q3SpotLight_GetOuterAngle function returns, in the outerAngle
parameter, the current outer angle of the spot light specified by the
light parameter.

Q3SpotLight_SetOuterAngle 8

You can use the Q3SpotLight_SetOuterAngle function to set the outer angle
of a spot light.

TQ3Status Q3SpotLight_SetOuterAngle (

TQ3LightObject light,

float outerAngle);

light A spot light object.

outerAngle The desired outer angle of the specified light, in radians.

DESCRIPTION

The Q3SpotLight_SetOuterAngle function sets the outer angle of the spot
light specified by the light parameter to the value passed in the outerAngle
parameter.

C H A P T E R 8

Light Objects

8-38 Light Objects Reference

Q3SpotLight_GetFallOff 8

You can use the Q3SpotLight_GetFallOff function to get the fall-off value of a
spot light.

TQ3Status Q3SpotLight_GetFallOff (

TQ3LightObject light,

TQ3FallOffType *fallOff);

light A spot light object.

fallOff On exit, the fall-off value of the specified spot light. See “Light
Fall-Off Values” on page 8-10 for a description of the constants
that can be returned in this parameter.

DESCRIPTION

The Q3SpotLight_GetFallOff function returns, in the fallOff parameter, the
current fall-off value of the spot light specified by the light parameter.

Q3SpotLight_SetFallOff 8

You can use the Q3SpotLight_SetFallOff function to set the fall-off value of a
spot light.

TQ3Status Q3SpotLight_SetFallOff (

TQ3LightObject light,

TQ3FallOffType fallOff);

light A spot light object.

fallOff The desired fall-off value of the specified spot light. See “Light
Fall-Off Values” on page 8-10 for a description of the constants
that can be passed in this parameter.

C H A P T E R 8

Light Objects

Light Objects Reference 8-39

DESCRIPTION

The Q3SpotLight_SetFallOff function sets the fall-off value of the spot light
specified by the light parameter to the value passed in the fallOff parameter.

Q3SpotLight_GetData 8

You can use the Q3SpotLight_GetData function to get the data that defines a
spot light.

TQ3Status Q3SpotLight_GetData (

TQ3LightObject light,

TQ3SpotLightData *spotLightData);

light A spot light object.

spotLightData

On exit, a pointer to a spot light data structure.

DESCRIPTION

The Q3SpotLight_GetData function returns, through the spotLightData
parameter, information about the spot light specified by the light parameter.
See “Spot Light Data Structure” on page 8-13 for a description of a spot light
data structure.

Q3SpotLight_SetData 8

You can use the Q3SpotLight_SetData function to set the data that defines a
spot light.

TQ3Status Q3SpotLight_SetData (

TQ3LightObject light,

const TQ3SpotLightData *spotLightData);

C H A P T E R 8

Light Objects

8-40 Light Objects Reference

light A spot light object.

spotLightData

A pointer to a spot light data structure.

DESCRIPTION

The Q3SpotLight_SetData function sets the data associated with the spot light
specified by the light parameter to the data specified by the spotLightData
parameter.

C H A P T E R 8

Light Objects

Summary of Light Objects 8-41

Summary of Light Objects 8

C Summary 8

Constants 8

Light Types

#define kQ3LightTypeAmbient Q3_OBJECT_TYPE('a','m','b','n')

#define kQ3LightTypeDirectional Q3_OBJECT_TYPE('d','r','c','t')

#define kQ3LightTypePoint Q3_OBJECT_TYPE('p','n','t','l')

#define kQ3LightTypeSpot Q3_OBJECT_TYPE('s','p','o','t')

Light Attenuation Values

typedef enum TQ3AttenuationType {

kQ3AttenuationTypeNone,

kQ3AttenuationTypeInverseDistance,

kQ3AttenuationTypeInverseDistanceSquared

} TQ3AttenuationType;

Light Fall-Off Values

typedef enum TQ3FallOffType {

kQ3FallOffTypeNone,

kQ3FallOffTypeLinear,

kQ3FallOffTypeExponential,

kQ3FallOffTypeCosine

} TQ3FallOffType;

C H A P T E R 8

Light Objects

8-42 Summary of Light Objects

Data Types 8

Light Data Structure

typedef struct TQ3LightData {

TQ3Boolean isOn;

float brightness;

TQ3ColorRGB color;

} TQ3LightData;

Directional Light Data Structure

typedef struct TQ3DirectionalLightData {

TQ3LightData lightData;

TQ3Boolean castsShadows;

TQ3Vector3D direction;

} TQ3DirectionalLightData;

Point Light Data Structure

typedef struct TQ3PointLightData {

TQ3LightData lightData;

TQ3Boolean castsShadows;

TQ3AttenuationType attenuation;

TQ3Point3D location;

} TQ3PointLightData;

Spot Light Data Structure

typedef struct TQ3SpotLightData {

TQ3LightData lightData;

TQ3Boolean castsShadows;

TQ3AttenuationType attenuation;

TQ3Point3D location;

TQ3Vector3D direction;

float hotAngle;

C H A P T E R 8

Light Objects

Summary of Light Objects 8-43

float outerAngle;

TQ3FallOffType fallOff;

} TQ3SpotLightData;

Light Objects Routines 8

Managing Lights

TQ3ObjectType Q3Light_GetType (TQ3LightObject light);

TQ3Status Q3Light_GetState (TQ3LightObject light, TQ3Boolean *isOn);

TQ3Status Q3Light_SetState (TQ3LightObject light, TQ3Boolean isOn);

TQ3Status Q3Light_GetBrightness (

TQ3LightObject light, float *brightness);

TQ3Status Q3Light_SetBrightness (

TQ3LightObject light, float brightness);

TQ3Status Q3Light_GetColor (TQ3LightObject light, TQ3ColorRGB *color);

TQ3Status Q3Light_SetColor (TQ3LightObject light,

const TQ3ColorRGB *color);

TQ3Status Q3Light_GetData (TQ3LightObject light,

TQ3LightData *lightData);

TQ3Status Q3Light_SetData (TQ3LightObject light,

const TQ3LightData *lightData);

Managing Ambient Light

TQ3LightObject Q3AmbientLight_New (

const TQ3LightData *lightData);

TQ3Status Q3AmbientLight_GetData (

TQ3LightObject light,

TQ3LightData *lightData);

C H A P T E R 8

Light Objects

8-44 Summary of Light Objects

TQ3Status Q3AmbientLight_SetData (

TQ3LightObject light,

const TQ3LightData *lightData);

Managing Directional Lights

TQ3LightObject Q3DirectionalLight_New (

const TQ3DirectionalLightData

*directionalLightData);

TQ3Status Q3DirectionalLight_GetCastShadowsState (

TQ3LightObject light,

TQ3Boolean *castsShadows);

TQ3Status Q3DirectionalLight_SetCastShadowsState (

TQ3LightObject light,

TQ3Boolean castsShadows);

TQ3Status Q3DirectionalLight_GetDirection (

TQ3LightObject light,

TQ3Vector3D *direction);

TQ3Status Q3DirectionalLight_SetDirection (

TQ3LightObject light,

const TQ3Vector3D *direction);

TQ3Status Q3DirectionalLight_GetData (

TQ3LightObject light,

TQ3DirectionalLightData

*directionalLightData);

TQ3Status Q3DirectionalLight_SetData (

TQ3LightObject light,

const TQ3DirectionalLightData

*directionalLightData);

C H A P T E R 8

Light Objects

Summary of Light Objects 8-45

Managing Point Lights

TQ3LightObject Q3PointLight_New(const TQ3PointLightData *pointLightData);

TQ3Status Q3PointLight_GetCastShadowsState (

TQ3LightObject light,

TQ3Boolean *castsShadows);

TQ3Status Q3PointLight_SetCastShadowsState (

TQ3LightObject light,

TQ3Boolean castsShadows);

TQ3Status Q3PointLight_GetAttenuation (

TQ3LightObject light,

TQ3AttenuationType *attenuation);

TQ3Status Q3PointLight_SetAttenuation (

TQ3LightObject light,

TQ3AttenuationType attenuation);

TQ3Status Q3PointLight_GetLocation (

TQ3LightObject light,

TQ3Point3D *location);

TQ3Status Q3PointLight_SetLocation (

TQ3LightObject light,

const TQ3Point3D *location);

TQ3Status Q3PointLight_GetData(TQ3LightObject light,

TQ3PointLightData *pointLightData);

TQ3Status Q3PointLight_SetData(TQ3LightObject light,

const TQ3PointLightData *pointLightData);

Managing Spot Lights

TQ3LightObject Q3SpotLight_New(const TQ3SpotLightData *spotLightData);

TQ3Status Q3SpotLight_GetCastShadowsState (

TQ3LightObject light,

TQ3Boolean *castsShadows);

C H A P T E R 8

Light Objects

8-46 Summary of Light Objects

TQ3Status Q3SpotLight_SetCastShadowsState (

TQ3LightObject light,

TQ3Boolean castsShadows);

TQ3Status Q3SpotLight_GetAttenuation (

TQ3LightObject light,

TQ3AttenuationType *attenuation);

TQ3Status Q3SpotLight_SetAttenuation (

TQ3LightObject light,

TQ3AttenuationType attenuation);

TQ3Status Q3SpotLight_GetLocation (

TQ3LightObject light,

TQ3Point3D *location);

TQ3Status Q3SpotLight_SetLocation (

TQ3LightObject light,

const TQ3Point3D *location);

TQ3Status Q3SpotLight_GetDirection (

TQ3LightObject light,

TQ3Vector3D *direction);

TQ3Status Q3SpotLight_SetDirection (

TQ3LightObject light,

const TQ3Vector3D *direction);

TQ3Status Q3SpotLight_GetHotAngle (

TQ3LightObject light, float *hotAngle);

TQ3Status Q3SpotLight_SetHotAngle (

TQ3LightObject light, float hotAngle);

TQ3Status Q3SpotLight_GetOuterAngle (

TQ3LightObject light, float *outerAngle);

TQ3Status Q3SpotLight_SetOuterAngle (

TQ3LightObject light, float outerAngle);

C H A P T E R 8

Light Objects

Summary of Light Objects 8-47

TQ3Status Q3SpotLight_GetFallOff (

TQ3LightObject light,

TQ3FallOffType *fallOff);

TQ3Status Q3SpotLight_SetFallOff (

TQ3LightObject light,

TQ3FallOffType fallOff);

TQ3Status Q3SpotLight_GetData (TQ3LightObject light,

TQ3SpotLightData *spotLightData);

TQ3Status Q3SpotLight_SetData (TQ3LightObject light,

const TQ3SpotLightData *spotLightData);

Notices 8

kQ3NoticeInvalidAttenuationTypeUsingInternalDefaults Attenuation type is
invalid

C H A P T E R 9

Contents

9-1

Contents

Figure 9-0
Listing 9-0
Table 9-0

9 Camera Objects

About Camera Objects 9-3
Camera Placements 9-4
Camera Ranges 9-6
View Planes and View Ports 9-7
Orthographic Cameras 9-11
View Plane Cameras 9-13
Aspect Ratio Cameras 9-15

Using Camera Objects 9-17
Camera Objects Reference 9-17

Data Structures 9-17
Camera Placement Structure 9-18
Camera Range Structure 9-18
Camera View Port Structure 9-19
Camera Data Structure 9-19
Orthographic Camera Data Structure 9-20
View Plane Camera Data Structure 9-20
Aspect Ratio Camera Data Structure 9-21

Camera Objects Routines 9-22
Managing Cameras 9-22
Managing Orthographic Cameras 9-29
Managing View Plane Cameras 9-35
Managing Aspect Ratio Cameras 9-42

Summary of Camera Objects 9-47
C Summary 9-47

Constants 9-47

This document was created with FrameMaker 4.0.4

C H A P T E R 9

9-2

Contents

Data Types 9-47
Camera Objects Routines 9-49

Errors 9-53

C H A P T E R 9

About Camera Objects

9-3

Camera Objects 9

This chapter describes camera objects (or cameras) and the functions you can
use to manipulate them. You use cameras to specify the location of the viewer,
the direction of viewing, the portion of the view plane to be rendered, and
other information about a scene. A single camera is associated with a view,
along with a list of lights and other settings that affect the rendering of a model.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about associating a camera with a view, see the chapter
“View Objects.”

This chapter begins by describing camera objects and their features. Then it
shows how to create and manipulate cameras. The section “Camera Objects
Reference,” beginning on page 9-17 provides a complete description of camera
objects and the routines you can use to create and manipulate them.

About Camera Objects 9

A

camera object

 (or, more briefly, a

camera

) is a type of QuickDraw 3D object
that you use to define a point of view, a range of visible objects, and a method
of projection for generating a two-dimensional image of those objects from a
three-dimensional model. A camera is of type

TQ3CameraObject

, which is a
type of shape object.

QuickDraw 3D defines three types of cameras:

■

orthographic cameras

■

view plane cameras

■

aspect ratio cameras

This document was created with FrameMaker 4.0.4

C H A P T E R 9

Camera Objects

9-4

About Camera Objects

These types of cameras differ in their methods of projection, as explained more
fully later in this section. All three types of cameras share some basic
properties, which are maintained in a camera data structure, defined by the

TQ3CameraData

 data structure.

typedef struct TQ3CameraData {

TQ3CameraPlacement placement;

TQ3CameraRange range;

TQ3CameraViewPort viewPort;

} TQ3CameraData;

These fields specify the location and orientation of the camera, the visible range
of interest, and the camera’s view port and projection method. The following
sections explain these concepts in greater detail.

Camera Placements 9

A

camera location

 is the position, in the world coordinate system, of a camera.
A

camera placement

 is a camera location together with an orientation and a
direction. You specify a camera’s orientation by indicating its

up vector,

 the
vector that defines which direction is up. You specify a camera’s direction by
indicating a

point of interest,

 the point at which the camera is aimed. The
vector that is the result of subtracting the camera location from the point of
interest is the

viewing direction

 or

 camera vector.

In general, a camera’s up
vector should be perpendicular to its viewing direction and should be
normalized. You can, however, specify any up vector that isn’t colinear with
the viewing direction. Figure 9-1 shows the placement of a camera.

Note

Because a camera defines a point of view onto a model,
the camera location is also called the

eye point

.

◆

C H A P T E R 9

Camera Objects

About Camera Objects

9-5

Figure 9-1

A camera’s placement

In QuickDraw 3D, you specify a camera’s placement by filling in the fields of a

camera placement structure,

 defined by the

TQ3CameraPlacement

 data type.

typedef struct TQ3CameraPlacement {

TQ3Point3D cameraLocation;

TQ3Point3D pointOfInterest;

TQ3Vector3D upVector;

} TQ3CameraPlacement;

See “Camera Placement Structure” on page 9-18 for complete information
about the camera placement structure.

Up vector

Viewing direction

Point of
interest

Camera location
1239om a34098

Todaisu
dr lk

jasd
f

C H A P T E R 9

Camera Objects

9-6

About Camera Objects

Camera Ranges 9

Often, you’re not interested in all the objects in a model that are visible from
the current placement of a camera. Some objects may be too far away from the
camera location to create a useful image when projected onto the two-
dimensional view plane, and some objects may be so close to the camera that
they obscure other important objects. QuickDraw 3D, like most 3D graphics
systems, provides a mechanism for ignoring objects that lie outside your
current range of interest. You do this by defining two

clipping planes

that
delimit the part of a model that is rendered. The

hither plane

 is a plane
perpendicular to the viewing direction that indicates the clipping range closest
to the camera. Any objects or parts of objects that lie between the camera and
the hither plane do not appear in a rendered image. Similarly, the

yon plane

 is
a plane perpendicular to the viewing direction that indicates the clipping range
farthest from the camera. Any objects or parts of objects that lie beyond the yon
plane do not appear in a rendered image. In short, only objects or parts of
objects that lie between the hither and yon planes appear in a rendered image,
as shown in Figure 9-2.

Figure 9-2

The hither and yon planes

Imageable part
of model

Viewing direction

Hither plane

Yon plane

Point of
interest

Camera location
1239om a34098

Todaisu
dr lk

jasd
f

C H A P T E R 9

Camera Objects

About Camera Objects

9-7

Note

The hither and yon planes are sometimes called
the

near

 and

far

 planes, respectively.

◆

The extent between the hither and yon planes of a camera is the

camera range,

defined by the

TQ3CameraRange

 data structure.

typedef struct TQ3CameraRange {

float hither;

float yon;

} TQ3CameraRange;

The clipping planes are specified by distances along the viewing direction from
the camera location. The distance to the yon plane should always be greater
than the distance to the hither plane, and the distance to the hither plane
should always be greater than 0.0.

View Planes and View Ports 9

As you’ve learned, QuickDraw 3D provides three different types of cameras,
which are distinguished from one another by their method of

projection

—that
is, by their method of generating a two-dimensional image of the objects in a
three-dimensional model. A projection of an object is the set of points in which
rays emanating from the object (called

projectors

) intersect a plane (called the

view plane

). The projection created when the projectors are all parallel to one
another is called a

parallel projection,

 and the projection created when the
projectors all intersect in a point is called a

perspective projection.

 The point at
which the projectors in a perspective projection intersect one another is the

center of projection.

Note

Currently, QuickDraw 3D provides only normal view
planes, where the view plane is perpendicular to the
viewing direction.

◆

C H A P T E R 9

Camera Objects

9-8

About Camera Objects

Figure 9-3 illustrates a parallel projection of an object. Notice that, because the
projectors are parallel, the size of the two-dimensional image corresponds
exactly to the size of the three-dimensional object being projected, no matter
where the view plane is located. As a result, you do not need to specify the
location of the view plane when using parallel projections. See “Orthographic
Cameras” on page 9-11 for details on how to specify a parallel projection.

Figure 9-3

A parallel projection of an object

View plane

Projectors

C H A P T E R 9

Camera Objects

About Camera Objects

9-9

Figure 9-4 illustrates a perspective projection of an object. As you can see, the
location of the view plane is very important in a perspective projection. When
the view plane is close to the camera, the projectors are close together and the
image they create is small. Conversely, when the view plane is farther away
from the camera, the projectors are farther apart and the image they create is
larger. Similarly, no matter where the view plane is located, the size of the
projected image of an object is inversely proportional to the distance of the
object from the view plane. Objects farther away from the view plane appear
smaller than objects of the same size closer to the view plane. This effect is

perspective foreshortening.

Figure 9-4

A perspective projection of an object

View plane

Projectors

Center of projection = eye point

Camera

12
39

om
 a

34
09

8
T

od
ai

su
dr

 lk
ja

sd
f

C H A P T E R 9

Camera Objects

9-10

About Camera Objects

When using perspective projection, you therefore need to specify the location
of the view plane. QuickDraw 3D provides two types of perspective cameras,
which specify the location of the view plane in different ways. See “View Plane
Cameras” on page 9-13 and “Aspect Ratio Cameras” on page 9-15 for complete
details on these two types of perspective cameras.

A

camera view port

 is the rectangular portion of the view plane that is to be
mapped into the area specified by the current draw context. A draw context
is usually just a window, so the view port defines the portion of the view
plane that appears in the window. By default, a camera’s view port is the
entire square portion of the view plane that is bounded by the view
volume (either a view box, for parallel projections, or a view frustum, for
perspective projections). Figure 9-5 shows the default camera view port
for a perspective camera.

Figure 9-5

The default camera view port

Camera

Hither plane

View plane

Yon plane
1

1

-1

-1
(0,0)

1239om a34098

Todaisu
dr lk

jasd
f

C H A P T E R 9

Camera Objects

About Camera Objects

9-11

You can select a smaller portion of the view plane by filling in a camera view
port structure, defined by the

TQ3CameraViewPort

 data type.

typedef struct TQ3CameraViewPort {

TQ3Point2D origin;

float width;

float height;

} TQ3CameraViewPort;

For example, to display only the right side of the view plane, you would set the

origin

 field to the point (0, 1), the

width

 field to the value 1.0, and the

height

field to the value 2.0.

Note

The image displayed in a draw context is not necessarily
the image drawn on the view port. The view port image is
scaled to fit into the draw context pane and then clipped
with the draw context mask. See the chapter “Draw
Context Objects” for information about draw context
panes and masks, and for further details on the
relationship between a view port and a draw context.

◆

Orthographic Cameras 9

An

orthographic camera

 is a camera that uses parallel projection to generate a
two-dimensional image of the objects in a three-dimensional model. In
particular, an orthographic camera uses

orthographic projection,

 in which the
view plane is perpendicular to the viewing direction. Parallel projections are in
general less realistic than perspective projections, but they have the advantage
that parallel lines in a model remain parallel in the projection, and distances are
not distorted by perspective foreshortening.

C H A P T E R 9

Camera Objects

9-12

About Camera Objects

The two most common types of orthographic projection are isometric
projection and elevation projection. An

isometric projection

 is an orthographic
projection in which the viewing direction makes equal angles with each of the
three principal axes of an object. An

elevation projection

 is an orthographic
projection in which the view plane is perpendicular to one of the principal axes
of the object being projected. Figure 9-6 shows isometric and elevation
projections of an object.

Figure 9-6

Isometric and elevation projections

The view volume associated with an orthographic camera is determined by a
box aligned with the viewing direction, as shown in Figure 9-7. To specify the
box, you provide the left side, top side, right side, and bottom side. The values
you use to specify these sides are relative to the

camera coordinate system

defined by the camera location and the viewing direction. The box defines the
four horizontal and vertical clipping planes.

Isometric Top
Side

elevation
Front

elevation

C H A P T E R 9

Camera Objects

About Camera Objects

9-13

Figure 9-7

An orthographic camera

See “Orthographic Camera Data Structure” on page 9-20 for details on the data
you need to provide to define an orthographic camera. See “Managing
Orthographic Cameras,” beginning on page 9-29 for a description of the
routines you can use to create and manipulate orthographic cameras.

View Plane Cameras 9

A

view plane camera

 is a type of perspective camera defined in terms of an
arbitrary view plane. In general, you’ll use a view plane camera to create a
perspective image of a specific object in a scene. The view plane camera is the

Camera location
(eye point) Camera vector

Hither plane

Yon plane

View plane

Up vector

Top

Bottom

Right

Left

C H A P T E R 9

Camera Objects

9-14

About Camera Objects

only type of perspective camera provided by QuickDraw 3D that allows

off-axis viewing

 (that is, viewing where the center of the projected object on
the view plane is not on the camera vector), which is convenient when scrolling
an image up or down, or left to right.

The view frustum associated with a view plane camera is determined by a
view plane (located at a specified distance from the camera) and the
rectangular cross section of an object, as shown in Figure 9-8. The point at
which the camera vector intersects the view plane defines the origin of the

view plane coordinate system.

 You specify a rectangular cross section of an
object by specifying its center (in the view plane coordinate system) and the
half-width and half-height of the cross section. In Figure 9-8, the center of the
cross section is the point (

c

x

,

c

y

), and the half-width and half-height are the
distances

d

x

 and

d

y

, respectively.

Figure 9-8

A view plane camera

(cx,cy)

dy

dx

Camera location
(eye point)

Up vector

Point of interest

View plane

Origin of view plane
coordinate system

Distance to
view plane

1239om a34098

Todaisu
dr lk

jasd
f

C H A P T E R 9

Camera Objects

About Camera Objects 9-15

See “View Plane Camera Data Structure” on page 9-20 for complete details on
the data you need to provide to define a view plane camera. See “Managing
View Plane Cameras,” beginning on page 9-35 for a description of the routines
you can use to create and manipulate view plane cameras.

Aspect Ratio Cameras 9

An aspect ratio camera is a type of perspective camera defined in terms of a
viewing angle and a horizontal-to-vertical aspect ratio, as shown in Figure 9-9.
With an aspect ratio camera, you don’t specify the distance to the view plane
directly (as you do with a view plane camera).

Figure 9-9 An aspect ratio camera

The orientation of the field of view is determined by the specified aspect ratio.
If the aspect ratio is greater than 1.0, the field of view is vertical. If the aspect
ratio is less than 1.0, the field of view is horizontal. In general, to avoid

Camera location
(eye point)

View
plane

Field of view

Origin of view plane
coordinate system

C H A P T E R 9

Camera Objects

9-16 About Camera Objects

distortion, the aspect ratio should be the same as the aspect ratio of the
camera’s view port.

You can easily see that as the field of view increases, the view plane must move
closer to camera location for the view port to fit within the field of view, in
which case the image size decreases (because of perspective foreshortening).
Conversely, as the field of view decreases, the view plane must move away
from the camera location, and the image size increases.

Note that you can always find a view plane camera that is projectively identical
to any aspect ratio camera. (The converse is not true: it’s not always possible to
find an aspect ratio camera that is projectively identical to an arbitrary view
plane camera.) Consider the aspect ratio camera shown in Figure 9-10. It’s easy
to specify a view plane camera that creates the same image as that aspect ratio
camera. To do this, set the center of the cross section (cx, cy) to be the origin
(0, 0), and set the half-width dx to be the quantity d tan(α/2), where d is the
distance from the camera to the view plane and α is the horizontal field of
view. (The half-angle applies to the smaller of the two view port dimensions.)

Figure 9-10 The relation between aspect ratio cameras and view plane cameras

Camera location
(eye point)

View port

(0,0)

dx

d

dy

C H A P T E R 9

Camera Objects

Using Camera Objects 9-17

See “Aspect Ratio Camera Data Structure” on page 9-21 for more details on the
data you need to provide to define an aspect ratio camera. See “Managing
Aspect Ratio Cameras,” beginning on page 9-42 for a description of the
routines you can use to create and manipulate aspect ratio cameras.

Using Camera Objects 9

You create a camera object by filling in the fields of the appropriate data
structure (for example, a structure of type TQ3ViewAngleAspectCameraData
for an aspect ratio camera) and calling an appropriate constructor function (for
example, Q3ViewAngleAspectCamera_New for an aspect ratio camera). Then,
no matter what kind of camera you’ve created, you need to attach the camera
to a view object, by calling the Q3View_SetCamera function. See Listing 1-8 on
page 1-28 and Listing 1-9 on page 1-30 for complete code samples that create a
camera and attach it to a view object.

You can change the characteristics of a view’s camera by calling camera object
editing routines. For example, you can change the aspect ratio of an aspect ratio
camera by calling the Q3ViewAngleAspectCamera_SetAspectRatio function.

Camera Objects Reference 9

This section describes the QuickDraw 3D data structures and routines that you
can use to create and manage camera objects.

Data Structures 9

This section describes the data structures supplied by QuickDraw 3D for
managing cameras. The data structures used to manage cameras are all public.

C H A P T E R 9

Camera Objects

9-18 Camera Objects Reference

Camera Placement Structure 9

You use a camera placement structure to get or set information about the
location and orientation of a camera. A camera placement structure is defined
by the TQ3CameraPlacement data type.

typedef struct TQ3CameraPlacement {

TQ3Point3D cameraLocation;

TQ3Point3D pointOfInterest;

TQ3Vector3D upVector;

} TQ3CameraPlacement;

Field descriptions
cameraLocation The location of the camera, in world-space coordinates.
pointOfInterest The camera’s point of interest (that is, the point at which

the camera is aimed), in world-space coordinates.
upVector The up-vector of the camera. A camera’s up-vector

specifies the orientation of the camera. This vector must be
normalized and perpendicular to the viewing direction.
The up-vector of a camera is mapped to the y axis of the
view plane.

Camera Range Structure 9

You use a camera range structure to get or set the hither and yon
clipping planes for a camera. A camera range structure is defined by
the TQ3CameraRange data type.

typedef struct TQ3CameraRange {

float hither;

float yon;

} TQ3CameraRange;

Field descriptions
hither The distance (measured along the camera vector) from the

camera’s location to the near clipping plane. The value in
this field should always be greater than 0.

yon The distance (measured along the camera vector) from the
camera’s location to the far clipping plane. The value in
this field should always be greater than the value in the
hither field.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-19

Camera View Port Structure 9

You use a camera view port structure to get or set information about the view
port of a camera. A camera’s view port defines the rectangular portion of the
view plane that is to be mapped into the area specified by the current draw
context. The default settings for a view port describe the entire view plane,
where the origin (–1.0, 1.0) is the upper-left corner and the width and height of
the plane are both 2.0. A camera view port structure is defined by the
TQ3CameraViewPort data type.

typedef struct TQ3CameraViewPort {

TQ3Point2D origin;

float width;

float height;

} TQ3CameraViewPort;

Field descriptions
origin The origin of the view port. The values of the x and y fields

of this point should be between –1.0 and 1.0.
width The width of the view port. The value in this field should

be greater than 0.0 and less than 2.0.
height The height of the view port. The value in this field should

be greater than 0.0 and less than 2.0.

Camera Data Structure 9

You use a camera data structure to get or set basic information about a
camera of any kind. A camera data structure is defined by the
TQ3CameraData data type.

typedef struct TQ3CameraData {

TQ3CameraPlacement placement;

TQ3CameraRange range;

TQ3CameraViewPort viewPort;

} TQ3CameraData;

Field descriptions
placement A camera placement structure that specifies the current

placement and orientation of the camera.

C H A P T E R 9

Camera Objects

9-20 Camera Objects Reference

range A camera range structure that specifies the current hither
and yon clipping planes for the camera.

viewPort A camera view port structure that specifies the current
view port of the camera.

Orthographic Camera Data Structure 9

You use an orthographic camera data structure to get or set information about
an orthographic camera. An orthographic camera data structure is defined by
the TQ3OrthographicCameraData data type.

typedef struct TQ3OrthographicCameraData {

TQ3CameraData cameraData;

float left;

float top;

float right;

float bottom;

} TQ3OrthographicCameraData;

Field descriptions
cameraData A camera data structure specifying basic information

about the orthographic camera.
left The left side of the orthographic camera. The value of this

field (and the following three fields) is relative to the
camera coordinate system.

top The top side of the orthographic camera.
right The right side of the orthographic camera.
bottom The bottom side of the orthographic camera.

View Plane Camera Data Structure 9

You use a view plane camera data structure to get or set information about a
view plane camera. A view plane camera data structure is defined by the
TQ3ViewPlaneCameraData data type.

typedef struct TQ3ViewPlaneCameraData {

TQ3CameraData cameraData;

float viewPlane;

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-21

float halfWidthAtViewPlane;

float halfHeightAtViewPlane;

float centerXOnViewPlane;

float centerYOnViewPlane;

} TQ3ViewPlaneCameraData;

Field descriptions
cameraData A camera data structure specifying basic information

about the view plane camera.
viewPlane The distance to the view plane from the location of the

camera. The value in this field must be greater than 0.0.
The view plane should be set at the object whose
dimensions and location are specified by the following
four fields.

halfWidthAtViewPlane

One half the width of the cross section of an object.
halfHeightAtViewPlane

The value in the halfWidthAtViewPlane field divided by
the aspect ratio of the view port.

centerXOnViewPlane

The x coordinate of the center of the object in the
view plane.

centerYOnViewPlane

The y coordinate of the center of the object in the
view plane.

Aspect Ratio Camera Data Structure 9

You use an aspect ratio camera data structure to get or set information about
an aspect ratio camera. An aspect ratio camera data structure is defined by the
TQ3ViewAngleAspectCameraData data type.

typedef struct TQ3ViewAngleAspectCameraData {

TQ3CameraData cameraData;

float fov;

float aspectRatioXToY;

} TQ3ViewAngleAspectCameraData;

C H A P T E R 9

Camera Objects

9-22 Camera Objects Reference

Field descriptions
cameraData A camera data structure specifying basic information

about the aspect ratio camera.
fov The camera’s maximum field of view. This parameter

should contain a positive floating-point value specified in
radians. If the value in the aspectRatioXToY field is
greater than 1.0, the field of view is vertical; if the value in
the aspectRatioXToY field is less than 1.0, the field of
view is horizontal.

aspectRatioXToY The camera’s horizontal-to-vertical aspect ratio. To avoid
distortion, this ratio should be the same as the ratio of the
width to the height of the camera’s view port.

Camera Objects Routines 9

This section describes the routines you can use to manage cameras.

Managing Cameras 9

QuickDraw 3D provides a number of general routines for managing cameras of
any kind.

Q3Camera_GetType 9

You can use the Q3Camera_GetType function to get type of a camera.

TQ3ObjectType Q3Camera_GetType (TQ3CameraObject camera);

camera A camera object.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-23

DESCRIPTION

The Q3Camera_GetType function returns, as its function result, the type of the
camera specified by the camera parameter. The types of camera currently
supported by QuickDraw 3D are defined by these constants:

kQ3CameraTypeOrthographic

kQ3CameraTypeViewAngleAspect

kQ3CameraTypeViewPlane

If Q3Camera_GetType cannot determine the type of the specified camera, it
returns kQ3ObjectTypeInvalid.

Q3Camera_GetData 9

You can use the Q3Camera_GetData function to get the basic data associated
with a camera.

TQ3Status Q3Camera_GetData (

TQ3CameraObject camera,

TQ3CameraData *cameraData);

camera A camera object.

cameraData On exit, a pointer to a camera data structure.

DESCRIPTION

The Q3Camera_GetData function returns, through the cameraData parameter,
basic information about the camera specified by the camera parameter. See
“Camera Data Structure” on page 9-19 for a description of a camera data
structure.

C H A P T E R 9

Camera Objects

9-24 Camera Objects Reference

Q3Camera_SetData 9

You can use the Q3Camera_SetData function to set the basic data associated
with a camera.

TQ3Status Q3Camera_SetData (

TQ3CameraObject camera,

const TQ3CameraData *cameraData);

camera A camera object.

cameraData A pointer to a camera data structure.

DESCRIPTION

The Q3Camera_SetData function sets the data associated with the camera
specified by the camera parameter to the data specified by the cameraData
parameter.

Q3Camera_GetPlacement 9

You can use the Q3Camera_GetPlacement function to get the current placement
of a camera.

TQ3Status Q3Camera_GetPlacement (

TQ3CameraObject camera,

TQ3CameraPlacement *placement);

camera A camera object.

placement On exit, a pointer to a camera placement structure.

DESCRIPTION

The Q3Camera_GetPlacement function returns, in the placement parameter, a
pointer to a camera placement structure that describes the current placement of
the camera specified by the camera parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-25

Q3Camera_SetPlacement 9

You can use the Q3Camera_SetPlacement function to set the placement of
a camera.

TQ3Status Q3Camera_SetPlacement (

TQ3CameraObject camera,

const TQ3CameraPlacement *placement);

camera A camera object.

placement A pointer to a camera placement structure.

DESCRIPTION

The Q3Camera_SetPlacement function sets the placement of the camera
specified by the camera parameter to the position specified by the placement
parameter.

Q3Camera_GetRange 9

You can use the Q3Camera_GetRange function to get the current range of
a camera.

TQ3Status Q3Camera_GetRange (

TQ3CameraObject camera,

TQ3CameraRange *range);

camera A camera object.

range On exit, a pointer to a camera range structure.

DESCRIPTION

The Q3Camera_GetRange function returns, in the range parameter, a pointer to
a camera range structure that describes the current range of the camera
specified by the camera parameter.

C H A P T E R 9

Camera Objects

9-26 Camera Objects Reference

Q3Camera_SetRange 9

You can use the Q3Camera_SetRange function to set the range of a camera.

TQ3Status Q3Camera_SetRange (

TQ3CameraObject camera,

const TQ3CameraRange *range);

camera A camera object.

range A pointer to a camera range structure.

DESCRIPTION

The Q3Camera_SetRange function sets the range of the camera specified by the
camera parameter to the range specified by the range parameter.

Q3Camera_GetViewPort 9

You can use the Q3Camera_GetViewPort function to get the current view port
of a camera.

TQ3Status Q3Camera_GetViewPort (

TQ3CameraObject camera,

TQ3CameraViewPort *viewPort);

camera A camera object.

viewPort On exit, a pointer to a camera view port structure.

DESCRIPTION

The Q3Camera_GetViewPort function returns, in the viewPort parameter, a
pointer to a camera view port structure that describes the current view port of
the camera specified by the camera parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-27

Q3Camera_SetViewPort 9

You can use the Q3Camera_SetViewPort function to set the view port of
a camera.

TQ3Status Q3Camera_SetViewPort (

TQ3CameraObject camera,

const TQ3CameraViewPort *viewPort);

camera A camera object.

viewPort A pointer to a camera view port structure.

DESCRIPTION

The Q3Camera_SetViewPort function sets the view port of the camera specified
by the camera parameter to the view port specified by the viewPort parameter.

Q3Camera_GetWorldToView 9

You can use the Q3Camera_GetWorldToView function to get the current world-
to-view space transform.

TQ3Status Q3Camera_GetWorldToView (

TQ3CameraObject camera,

TQ3Matrix4x4 *worldToView);

camera A camera object.

worldToView On output, a pointer to a 4-by-4 matrix.

DESCRIPTION

The Q3Camera_GetWorldToView function returns, in the worldToView
parameter, a pointer to a 4-by-4 matrix that describes the current world-to-view
space transform defined by the camera specified by the camera parameter. The
world-to-view space transform is defined only by the placement of the camera;

C H A P T E R 9

Camera Objects

9-28 Camera Objects Reference

it establishes the camera location as the origin of the view space, with the view
vector (that is, the vector from the camera’s eye toward the point of interest)
placed along the –z axis and the up vector placed along the y axis.

Q3Camera_GetViewToFrustum 9

You can use the Q3Camera_GetViewToFrustum function to get the current view-
to-frustum transform.

TQ3Status Q3Camera_GetViewToFrustum (

TQ3CameraObject camera,

TQ3Matrix4x4 *viewToFrustum);

camera A camera object.

viewToFrustum

On output, a pointer to a 4-by-4 matrix.

DESCRIPTION

The Q3Camera_GetViewToFrustum function returns, in the viewToFrustum
parameter, a pointer to a 4-by-4 matrix that describes the current view-to-
frustum transform defined by the camera specified by the camera parameter.

Q3Camera_GetWorldToFrustum 9

You can use the Q3Camera_GetWorldToFrustum function to get the current
world-to-frustum transform.

TQ3Status Q3Camera_GetWorldToFrustum (

TQ3CameraObject camera,

TQ3Matrix4x4 *worldToFrustum);

camera A camera object.

worldToFrustum

On output, a pointer to a 4-by-4 matrix.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-29

DESCRIPTION

The Q3Camera_GetWorldToFrustum function returns, in the worldToFrustum
parameter, a pointer to a 4-by-4 matrix that describes the current world-to-
frustum transform defined by the camera specified by the camera parameter.

Managing Orthographic Cameras 9

QuickDraw 3D provides routines that you can use to create and edit
orthographic cameras.

Q3OrthographicCamera_New 9

You can use the Q3OrthographicCamera_New function to create a new
orthographic camera.

TQ3CameraObject Q3OrthographicCamera_New (

const TQ3OrthographicCameraData

*orthographicData);

orthographicData

A pointer to an orthographic camera data structure.

DESCRIPTION

The Q3OrthographicCamera_New function returns, as its function result, a new
orthographic camera having the camera characteristics specified by the
orthographicData parameter.

C H A P T E R 9

Camera Objects

9-30 Camera Objects Reference

Q3OrthographicCamera_GetData 9

You can use the Q3OrthographicCamera_GetData function to get the data that
defines an orthographic camera.

TQ3Status Q3OrthographicCamera_GetData (

TQ3CameraObject camera,

TQ3OrthographicCameraData *cameraData);

camera An orthographic camera object.

cameraData On exit, a pointer to an orthographic camera data structure.

DESCRIPTION

The Q3OrthographicCamera_GetData function returns, through the
cameraData parameter, information about the orthographic camera specified
by the camera parameter. See “Orthographic Camera Data Structure” on
page 9-20 for the structure of an orthographic camera data structure.

Q3OrthographicCamera_SetData 9

You can use the Q3OrthographicCamera_SetData function to set the data that
defines an orthographic camera.

TQ3Status Q3OrthographicCamera_SetData (

TQ3CameraObject camera,

const TQ3OrthographicCameraData *cameraData);

camera An orthographic camera object.

cameraData A pointer to an orthographic camera data structure.

DESCRIPTION

The Q3OrthographicCamera_SetData function sets the data associated with
the orthographic camera specified by the camera parameter to the data
specified by the cameraData parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-31

Q3OrthographicCamera_GetLeft 9

You can use the Q3OrthographicCamera_GetLeft function to get the left side
of an orthographic camera.

TQ3Status Q3OrthographicCamera_GetLeft (

TQ3CameraObject camera,

float *left);

camera An orthographic camera object.

left On exit, the left side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_GetLeft function returns, in the left parameter,
a value that specifies the left side of the orthographic camera specified by the
camera parameter.

Q3OrthographicCamera_SetLeft 9

You can use the Q3OrthographicCamera_SetLeft function to set the left side
of an orthographic camera.

TQ3Status Q3OrthographicCamera_SetLeft (

TQ3CameraObject camera,

float left);

camera An orthographic camera object.

left The desired left side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_SetLeft function sets the left side of the
orthographic camera specified by the camera parameter to the value specified
by the left parameter.

C H A P T E R 9

Camera Objects

9-32 Camera Objects Reference

Q3OrthographicCamera_GetTop 9

You can use the Q3OrthographicCamera_GetTop function to get the top side of
an orthographic camera.

TQ3Status Q3OrthographicCamera_GetTop (

TQ3CameraObject camera,

float *top);

camera An orthographic camera object.

top On exit, the top side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_GetTop function returns, in the top parameter, a
value that specifies the top side of the orthographic camera specified by the
camera parameter.

Q3OrthographicCamera_SetTop 9

You can use the Q3OrthographicCamera_SetTop function to set the top side of
an orthographic camera.

TQ3Status Q3OrthographicCamera_SetTop (

TQ3CameraObject camera,

float top);

camera An orthographic camera object.

top The desired top side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_SetTop function sets the top side of the
orthographic camera specified by the camera parameter to the value specified
by the top parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-33

Q3OrthographicCamera_GetRight 9

You can use the Q3OrthographicCamera_GetRight function to get the right
side of an orthographic camera.

TQ3Status Q3OrthographicCamera_GetRight (

TQ3CameraObject camera,

float *right);

camera An orthographic camera object.

right On exit, the right side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_GetRight function returns, in the right
parameter, a value that specifies the right side of the orthographic camera
specified by the camera parameter.

Q3OrthographicCamera_SetRight 9

You can use the Q3OrthographicCamera_SetRight function to set the right
side of an orthographic camera.

TQ3Status Q3OrthographicCamera_SetRight (

TQ3CameraObject camera,

float right);

camera An orthographic camera object.

right The desired right side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_SetRight function sets the right side of the
orthographic camera specified by the camera parameter to the value specified
by the right parameter.

C H A P T E R 9

Camera Objects

9-34 Camera Objects Reference

Q3OrthographicCamera_GetBottom 9

You can use the Q3OrthographicCamera_GetBottom function to get the bottom
side of an orthographic camera.

TQ3Status Q3OrthographicCamera_GetBottom (

TQ3CameraObject camera,

float *bottom);

camera An orthographic camera object.

bottom On exit, the bottom side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_GetBottom function returns, in the bottom
parameter, a value that specifies the bottom side of the orthographic camera
specified by the camera parameter.

Q3OrthographicCamera_SetBottom 9

You can use the Q3OrthographicCamera_SetBottom function to set the bottom
side of an orthographic camera.

TQ3Status Q3OrthographicCamera_SetBottom (

TQ3CameraObject camera,

float bottom);

camera An orthographic camera object.

bottom The desired bottom side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_SetBottom function sets the bottom side of the
orthographic camera specified by the camera parameter to the value specified
by the bottom parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-35

Managing View Plane Cameras 9

QuickDraw 3D provides routines that you can use to create and edit view
plane cameras.

Q3ViewPlaneCamera_New 9

You can use the Q3ViewPlaneCamera_New function to create a new view
plane camera.

TQ3CameraObject Q3ViewPlaneCamera_New (

const TQ3ViewPlaneCameraData *cameraData);

cameraData A pointer to a view plane camera data structure.

DESCRIPTION

The Q3ViewPlaneCamera_New function returns, as its function result, a new
view plane camera having the camera characteristics specified by the
cameraData parameter.

Q3ViewPlaneCamera_GetData 9

You can use the Q3ViewPlaneCamera_GetData function to get the data that
defines a view plane camera.

TQ3Status Q3ViewPlaneCamera_GetData (

TQ3CameraObject camera,

TQ3ViewPlaneCameraData *cameraData);

camera A view plane camera object.

cameraData On exit, a pointer to a view plane camera data structure.

C H A P T E R 9

Camera Objects

9-36 Camera Objects Reference

DESCRIPTION

The Q3ViewPlaneCamera_GetData function returns, through the cameraData
parameter, information about the view plane camera specified by the camera
parameter. See “View Plane Camera Data Structure” on page 9-20 for the
structure of a view plane camera data structure.

Q3ViewPlaneCamera_SetData 9

You can use the Q3ViewPlaneCamera_SetData function to set the data that
defines a view plane camera.

TQ3Status Q3ViewPlaneCamera_SetData (

TQ3CameraObject camera,

const TQ3ViewPlaneCameraData *cameraData);

camera A view plane camera object.

cameraData A pointer to a view plane camera data structure.

DESCRIPTION

The Q3ViewPlaneCamera_SetData function sets the data associated with the
view plane camera specified by the camera parameter to the data specified by
the cameraData parameter.

Q3ViewPlaneCamera_GetViewPlane 9

You can use the Q3ViewPlaneCamera_GetViewPlane function to get the current
distance of the view plane from a view plane camera.

TQ3Status Q3ViewPlaneCamera_GetViewPlane (

TQ3CameraObject camera,

float *viewPlane);

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-37

camera A view plane camera object.

viewPlane On exit, the distance of the view plane from the specified
camera.

DESCRIPTION

The Q3ViewPlaneCamera_GetViewPlane function returns, in the viewPlane
parameter, the distance of the view plane from the camera specified by the
camera parameter.

Q3ViewPlaneCamera_SetViewPlane 9

You can use the Q3ViewPlaneCamera_SetViewPlane function to set the
distance of the view plane from a view plane camera.

TQ3Status Q3ViewPlaneCamera_SetViewPlane (

TQ3CameraObject camera,

float viewPlane);

camera A view plane camera object.

viewPlane The desired distance of the view plane from the specified
camera.

DESCRIPTION

The Q3ViewPlaneCamera_SetViewPlane function sets the distance from the
camera specified by the camera parameter to its view plane to the value
specified in the viewPlane parameter.

C H A P T E R 9

Camera Objects

9-38 Camera Objects Reference

Q3ViewPlaneCamera_GetHalfWidth 9

You can use the Q3ViewPlaneCamera_GetHalfWidth function to get the
half-width of the object specifying a view plane camera.

TQ3Status Q3ViewPlaneCamera_GetHalfWidth (

TQ3CameraObject camera,

float *halfWidthAtViewPlane);

camera A view plane camera object.

halfWidthAtViewPlane

On exit, the half-width of the cross section of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_GetHalfWidth function returns, in the
halfWidthAtViewPlane parameter, the half-width of the cross section of
the viewed object of the camera specified by the camera parameter.

Q3ViewPlaneCamera_SetHalfWidth 9

You can use the Q3ViewPlaneCamera_SetHalfWidth function to set the half-
width of the object specifying a view plane camera.

TQ3Status Q3ViewPlaneCamera_SetHalfWidth (

TQ3CameraObject camera,

float halfWidthAtViewPlane);

camera A view plane camera object.

halfWidthAtViewPlane

The desired half-width of the cross section of the viewed object
of the specified camera.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-39

DESCRIPTION

The Q3ViewPlaneCamera_SetHalfWidth function sets the half-width of the
cross section of the viewed object of the camera specified by the camera
parameter to the value specified in the halfWidthAtViewPlane parameter.

Q3ViewPlaneCamera_GetHalfHeight 9

You can use the Q3ViewPlaneCamera_GetHalfHeight function to get the half-
height of the object specifying a view plane camera.

TQ3Status Q3ViewPlaneCamera_GetHalfHeight (

TQ3CameraObject camera,

float *halfHeightAtViewPlane);

camera A view plane camera object.

halfHeightAtViewPlane

On exit, the half-height of the cross section of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_GetHalfHeight function returns, in the
halfHeightAtViewPlane parameter, the half-height of the cross section
of the viewed object of the camera specified by the camera parameter.

Q3ViewPlaneCamera_SetHalfHeight 9

You can use the Q3ViewPlaneCamera_SetHalfHeight function to set the half-
height of the object specifying a view plane camera.

TQ3Status Q3ViewPlaneCamera_SetHalfHeight (

TQ3CameraObject camera,

float halfHeightAtViewPlane);

C H A P T E R 9

Camera Objects

9-40 Camera Objects Reference

camera A view plane camera object.

halfHeightAtViewPlane

The desired half-height of the cross section of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_SetHalfHeight function sets the half-height of the
cross section of the viewed object of the camera specified by the camera
parameter to the value specified in the halfHeightAtViewPlane parameter.

Q3ViewPlaneCamera_GetCenterX 9

You can use the Q3ViewPlaneCamera_GetCenterX function to get the
horizontal center of the viewed object.

TQ3Status Q3ViewPlaneCamera_GetCenterX (

TQ3CameraObject camera,

float *centerXOnViewPlane);

camera A view plane camera object.

centerXOnViewPlane

On exit, the x coordinate of the center of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_GetCenterX function returns, in the
centerXOnViewPlane parameter, the x coordinate of the center of
the viewed object of the camera specified by the camera parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-41

Q3ViewPlaneCamera_SetCenterX 9

You can use the Q3ViewPlaneCamera_SetCenterX function to set the
horizontal center of the viewed object.

TQ3Status Q3ViewPlaneCamera_SetCenterX (

TQ3CameraObject camera,

float centerXOnViewPlane);

camera A view plane camera object.

centerXOnViewPlane

The desired x coordinate of the center of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_SetCenterX function sets the x coordinate of the
center of the viewed object of the camera specified by the camera parameter to
the value specified in the centerXOnViewPlane parameter.

Q3ViewPlaneCamera_GetCenterY 9

You can use the Q3ViewPlaneCamera_GetCenterY function to get the vertical
center of the viewed object.

TQ3Status Q3ViewPlaneCamera_GetCenterY (

TQ3CameraObject camera,

float *centerYOnViewPlane);

camera A view plane camera object.

centerYOnViewPlane

On exit, the y coordinate of the center of the viewed object.

C H A P T E R 9

Camera Objects

9-42 Camera Objects Reference

DESCRIPTION

The Q3ViewPlaneCamera_GetCenterY function returns, in the
centerYOnViewPlane parameter, the y coordinate of the center of
the viewed object of the camera specified by the camera parameter.

Q3ViewPlaneCamera_SetCenterY 9

You can use the Q3ViewPlaneCamera_SetCenterY function to set the vertical
center of the viewed object.

TQ3Status Q3ViewPlaneCamera_SetCenterY (

TQ3CameraObject camera,

float centerYOnViewPlane);

camera A view plane camera object.

centerYOnViewPlane

The desired y coordinate of the center of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_SetCenterY function sets the y coordinate of the
center of the viewed object of the camera specified by the camera parameter to
the value specified in the centerYOnViewPlane parameter.

Managing Aspect Ratio Cameras 9

QuickDraw 3D provides routines that you can use to create and edit aspect
ratio cameras.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-43

Q3ViewAngleAspectCamera_New 9

You can use the Q3ViewAngleAspectCamera_New function to create a new
aspect ratio camera.

TQ3CameraObject Q3ViewAngleAspectCamera_New (

const TQ3ViewAngleAspectCameraData

*cameraData);

cameraData A pointer to an aspect ratio camera data structure.

DESCRIPTION

The Q3ViewAngleAspectCamera_New function returns, as its function result, a
new aspect ratio camera having the camera characteristics specified by the
cameraData parameter.

Q3ViewAngleAspectCamera_GetData 9

You can use the Q3ViewAngleAspectCamera_GetData function to get the data
that defines an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_GetData (

TQ3CameraObject camera,

TQ3ViewAngleAspectCameraData *cameraData);

camera An aspect ratio camera object.

cameraData On exit, a pointer to an aspect ratio camera data structure.

DESCRIPTION

The Q3ViewAngleAspectCamera_GetData function returns, through the
cameraData parameter, information about the aspect ratio camera specified by
the camera parameter. See “Aspect Ratio Camera Data Structure” on page 9-21
for a description of an aspect ratio camera data structure.

C H A P T E R 9

Camera Objects

9-44 Camera Objects Reference

Q3ViewAngleAspectCamera_SetData 9

You can use the Q3ViewAngleAspectCamera_SetData function to set the data
that defines an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_SetData (

TQ3CameraObject camera,

const TQ3ViewAngleAspectCameraData

*cameraData);

camera An aspect ratio camera object.

cameraData A pointer to an aspect ratio camera data structure.

DESCRIPTION

The Q3ViewAngleAspectCamera_SetData function sets the data associated
with the aspect ratio camera specified by the camera parameter to the data
specified by the cameraData parameter.

Q3ViewAngleAspectCamera_GetFOV 9

You can use the Q3ViewAngleAspectCamera_GetFOV function to get the
maximum field of view of an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_GetFOV (

TQ3CameraObject camera,

float *fov);

camera An aspect ratio camera object.

fov On exit, the maximum field of view, in radians, of the
specified camera.

C H A P T E R 9

Camera Objects

Camera Objects Reference 9-45

DESCRIPTION

The Q3ViewAngleAspectCamera_GetFOV function returns, in the fov
parameter, the maximum field of view of the aspect ratio camera specified
by the camera parameter.

Q3ViewAngleAspectCamera_SetFOV 9

You can use the Q3ViewAngleAspectCamera_SetFOV function to set the
maximum field of view of an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_SetFOV (

TQ3CameraObject camera,

float fov);

camera An aspect ratio camera object.

fov The desired maximum field of view, in radians, of the
specified camera.

DESCRIPTION

The Q3ViewAngleAspectCamera_SetFOV function sets the maximum field of
view of the camera specified by the camera parameter to the value specified in
the fov parameter.

Q3ViewAngleAspectCamera_GetAspectRatio 9

You can use the Q3ViewAngleAspectCamera_GetAspectRatio function to get
the aspect ratio of an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_GetAspectRatio (

TQ3CameraObject camera,

float *aspectRatioXToY);

C H A P T E R 9

Camera Objects

9-46 Camera Objects Reference

camera An aspect ratio camera object.

aspectRatioXToY

On exit, the horizontal-to-vertical aspect ratio of the
specified camera.

DESCRIPTION

The Q3ViewAngleAspectCamera_GetAspectRatio function returns, in the
aspectRatioXToY parameter, the horizontal-to-vertical aspect ratio of the
aspect ratio camera specified by the camera parameter.

Q3ViewAngleAspectCamera_SetAspectRatio 9

You can use the Q3ViewAngleAspectCamera_SetAspectRatio function to set
the aspect ratio of an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_SetAspectRatio (

TQ3CameraObject camera,

float aspectRatioXToY);

camera An aspect ratio camera object.

aspectRatioXToY

The desired horizontal-to-vertical aspect ratio of the specified
camera.

DESCRIPTION

The Q3ViewAngleAspectCamera_SetAspectRatio function sets the horizontal-
to-vertical aspect ratio of the camera specified by the camera parameter to the
value specified in the aspectRatioXToY parameter.

C H A P T E R 9

Camera Objects

Summary of Camera Objects 9-47

Summary of Camera Objects 9

C Summary 9

Constants 9

Camera Types

#define kQ3CameraTypeOrthographic Q3_OBJECT_TYPE('o','r','t','h')

#define kQ3CameraTypeViewAngleAspect Q3_OBJECT_TYPE('v','a','n','a')

#define kQ3CameraTypeViewPlane Q3_OBJECT_TYPE('v','w','p','l')

Data Types 9

Camera Placement Structure

typedef struct TQ3CameraPlacement {

TQ3Point3D cameraLocation;

TQ3Point3D pointOfInterest;

TQ3Vector3D upVector;

} TQ3CameraPlacement;

Camera Range Structure

typedef struct TQ3CameraRange {

float hither;

float yon;

} TQ3CameraRange;

C H A P T E R 9

Camera Objects

9-48 Summary of Camera Objects

Camera View Port

typedef struct TQ3CameraViewPort {

TQ3Point2D origin;

float width;

float height;

} TQ3CameraViewPort;

Camera Data Structure

typedef struct TQ3CameraData {

TQ3CameraPlacement placement;

TQ3CameraRange range;

TQ3CameraViewPort viewPort;

} TQ3CameraData;

Orthographic Camera Data Structure

typedef struct TQ3OrthographicCameraData {

TQ3CameraData cameraData;

float left;

float top;

float right;

float bottom;

} TQ3OrthographicCameraData;

View Plane Camera Data Structure

typedef struct TQ3ViewPlaneCameraData {

TQ3CameraData cameraData;

float viewPlane;

float halfWidthAtViewPlane;

float halfHeightAtViewPlane;

float centerXOnViewPlane;

float centerYOnViewPlane;

} TQ3ViewPlaneCameraData;

C H A P T E R 9

Camera Objects

Summary of Camera Objects 9-49

Aspect Ratio Camera Data Structure

typedef struct TQ3ViewAngleAspectCameraData {

TQ3CameraData cameraData;

float fov;

float aspectRatioXToY;

} TQ3ViewAngleAspectCameraData;

Camera Objects Routines 9

Managing Cameras

TQ3ObjectType Q3Camera_GetType(TQ3CameraObject camera);

TQ3Status Q3Camera_GetData (TQ3CameraObject camera,

TQ3CameraData *cameraData);

TQ3Status Q3Camera_SetData (TQ3CameraObject camera,

const TQ3CameraData *cameraData);

TQ3Status Q3Camera_GetPlacement (

TQ3CameraObject camera,

TQ3CameraPlacement *placement);

TQ3Status Q3Camera_SetPlacement (

TQ3CameraObject camera,

const TQ3CameraPlacement *placement);

TQ3Status Q3Camera_GetRange (TQ3CameraObject camera,

TQ3CameraRange *range);

TQ3Status Q3Camera_SetRange (TQ3CameraObject camera,

const TQ3CameraRange *range);

TQ3Status Q3Camera_GetViewPort(TQ3CameraObject camera,

TQ3CameraViewPort *viewPort);

TQ3Status Q3Camera_SetViewPort(TQ3CameraObject camera,

const TQ3CameraViewPort *viewPort);

C H A P T E R 9

Camera Objects

9-50 Summary of Camera Objects

TQ3Status Q3Camera_GetWorldToView (

TQ3CameraObject camera,

TQ3Matrix4x4 *worldToView);

TQ3Status Q3Camera_GetViewToFrustum (

TQ3CameraObject camera,

TQ3Matrix4x4 *viewToFrustum);

TQ3Status Q3Camera_GetWorldToFrustum (

TQ3CameraObject camera,

TQ3Matrix4x4 *worldToFrustum);

Managing Orthographic Cameras

TQ3CameraObject Q3OrthographicCamera_New (

const TQ3OrthographicCameraData

*orthographicData);

TQ3Status Q3OrthographicCamera_GetData (

TQ3CameraObject camera,

TQ3OrthographicCameraData *cameraData);

TQ3Status Q3OrthographicCamera_SetData (

TQ3CameraObject camera,

const TQ3OrthographicCameraData *cameraData);

TQ3Status Q3OrthographicCamera_GetLeft (

TQ3CameraObject camera, float *left);

TQ3Status Q3OrthographicCamera_SetLeft (

TQ3CameraObject camera, float left);

TQ3Status Q3OrthographicCamera_GetTop (

TQ3CameraObject camera, float *top);

TQ3Status Q3OrthographicCamera_SetTop (

TQ3CameraObject camera, float top);

TQ3Status Q3OrthographicCamera_GetRight (

TQ3CameraObject camera, float *right);

C H A P T E R 9

Camera Objects

Summary of Camera Objects 9-51

TQ3Status Q3OrthographicCamera_SetRight (

TQ3CameraObject camera, float right);

TQ3Status Q3OrthographicCamera_GetBottom (

TQ3CameraObject camera, float *bottom);

TQ3Status Q3OrthographicCamera_SetBottom (

TQ3CameraObject camera, float bottom);

Managing View Plane Cameras

TQ3CameraObject Q3ViewPlaneCamera_New (

const TQ3ViewPlaneCameraData *cameraData);

TQ3Status Q3ViewPlaneCamera_GetData (

TQ3CameraObject camera,

TQ3ViewPlaneCameraData *cameraData);

TQ3Status Q3ViewPlaneCamera_SetData (

TQ3CameraObject camera,

const TQ3ViewPlaneCameraData *cameraData);

TQ3Status Q3ViewPlaneCamera_GetViewPlane (

TQ3CameraObject camera, float *viewPlane);

TQ3Status Q3ViewPlaneCamera_SetViewPlane (

TQ3CameraObject camera, float viewPlane);

TQ3Status Q3ViewPlaneCamera_GetHalfWidth (

TQ3CameraObject camera,

float *halfWidthAtViewPlane);

TQ3Status Q3ViewPlaneCamera_SetHalfWidth (

TQ3CameraObject camera,

float halfWidthAtViewPlane);

TQ3Status Q3ViewPlaneCamera_GetHalfHeight (

TQ3CameraObject camera,

float *halfHeightAtViewPlane);

C H A P T E R 9

Camera Objects

9-52 Summary of Camera Objects

TQ3Status Q3ViewPlaneCamera_SetHalfHeight (

TQ3CameraObject camera,

float halfHeightAtViewPlane);

TQ3Status Q3ViewPlaneCamera_GetCenterX (

TQ3CameraObject camera,

float *centerXOnViewPlane);

TQ3Status Q3ViewPlaneCamera_SetCenterX (

TQ3CameraObject camera,

float centerXOnViewPlane);

TQ3Status Q3ViewPlaneCamera_GetCenterY (

TQ3CameraObject camera,

float *centerYOnViewPlane);

TQ3Status Q3ViewPlaneCamera_SetCenterY (

TQ3CameraObject camera,

float centerYOnViewPlane);

Managing Aspect Ratio Cameras

TQ3CameraObject Q3ViewAngleAspectCamera_New (

const TQ3ViewAngleAspectCameraData

*cameraData);

TQ3Status Q3ViewAngleAspectCamera_GetData (

TQ3CameraObject camera,

TQ3ViewAngleAspectCameraData *cameraData);

TQ3Status Q3ViewAngleAspectCamera_SetData (

TQ3CameraObject camera,

const TQ3ViewAngleAspectCameraData

*cameraData);

TQ3Status Q3ViewAngleAspectCamera_GetFOV (

TQ3CameraObject camera, float *fov);

TQ3Status Q3ViewAngleAspectCamera_SetFOV (

TQ3CameraObject camera, float fov);

C H A P T E R 9

Camera Objects

Summary of Camera Objects 9-53

TQ3Status Q3ViewAngleAspectCamera_GetAspectRatio (

TQ3CameraObject camera,

float *aspectRatioXToY);

TQ3Status Q3ViewAngleAspectCamera_SetAspectRatio (

TQ3CameraObject camera,

float aspectRatioXToY);

Errors 9

kQ3ErrorInvalidCameraValues Some camera values are invalid

C H A P T E R 1 0

Contents

10-1

Contents

Figure 10-0
Listing 10-0
Table 10-0

10 Group Objects

About Group Objects 10-3
Group Types 10-3
Group Positions 10-5
Group State Flags 10-6

Using Group Objects 10-7
Creating Groups 10-7
Accessing Objects by Position 10-8

Group Objects Reference 10-11
Constants 10-11

Group State Flags 10-11
Group Objects Routines 10-13

Creating Groups 10-13
Managing Groups 10-16
Managing Display Groups 10-24
Getting Group Positions 10-27
Getting Object Positions 10-34

Summary of Group Objects 10-38
C Summary 10-38

Constants 10-38
Data Types 10-38
Group Objects Routines 10-39

Errors 10-42

This document was created with FrameMaker 4.0.4

C H A P T E R 1 0

About Group Objects

10-3

Group Objects 10

This chapter describes group objects and the functions you can use to
manipulate them. You can use groups to collect objects into lists or hierarchical
models, which you can draw or otherwise manipulate with group object
routines.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in
this book.

This chapter begins by describing group objects and their features. Then it
shows how to create and manipulate groups. The section “Group Objects
Reference,” beginning on page 10-11 provides a complete description of the
group objects and the routines you can use to create and manipulate them.

About Group Objects 10

A

group object

 (or, more briefly, a

group

) is a type of QuickDraw 3D object
that you can use to collect objects together into lists or hierarchical models. A
group object is an instance of the

TQ3GroupObject

 class. As you’ve seen, the

TQ3GroupObject

 class is a subclass of the

TQ3ShapeObject

, which is itself a
subclass of the

TQ3SharedObject

 class. As a result, a group object is associated
with a reference count, which is incremented or decremented whenever you
create or dispose of an instance of that group.

The objects you put into in a group are not copied into the group. Instead,
references to the objects are maintained in the group. Accordingly, you can
include in a group only shared objects (that is, the types of objects that have
reference counts). A group can contain other groups, because groups are shared
objects. QuickDraw 3D provides functions that you can use to add objects to a
group or remove objects from a group. It also provides functions that you can
use to access objects by their position in the group.

Group Types 10

The base class of group object is of type

kQ3ShapeTypeGroup

, a type of shape
object. You can create a group of that type (by calling the

Q3Group_New

function) and you can put any kinds of shared objects into it (for example, by
calling the

Q3Group_AddObject

 function). In addition, QuickDraw 3D provides

This document was created with FrameMaker 4.0.4

C H A P T E R 1 0

Group Objects

10-4

About Group Objects

three subclasses of groups: light groups, display groups, and information
groups. These subclasses are distinguished from one another by the kinds of
objects you can put into them.

■

A

light group

 is a group that contains one or more lights (and no other types
of QuickDraw 3D objects). You’ll typically create light groups to provide
illumination on the objects in a model. The light group is attached to a view
object by calling the

Q3View_SetLightGroup

 function. See the chapter
“View Objects” for complete details on attaching light groups to views.

■

A

display group

 is a group of objects that are drawable. Drawable objects
include geometric objects, styles, transforms, attributes and attribute sets,
and other display groups. When you draw a display group into a view, each
object in the group is executed (that is, drawn) in the order in which it
appears in the group (which is determined by the order in which the objects
were inserted into the group). You can create a display group, or you can
create one of two subclasses of display groups: ordered display groups and
I/O proxy display groups.

n

An

ordered display group

 is a display group in which the objects in the
group are sorted by their type. Ordered groups are sometimes more
useful than unordered groups because the order of object execution is
always the same. During rendering, QuickDraw 3D executes objects in
this order:

1. transforms

2. styles

3. attribute sets

4. shaders

5. geometric objects

6. groups

7. unknown objects

This order of execution ensures that all transforms, styles, attribute
sets, and shaders in a group are applied to the geometric objects,
groups, and unknown objects that form the hierarchy below the
ordered display group.

n

An

I/O proxy display group

 (or sometimes

proxy display group

) is a
display group that contains several representations of a single geometric
object. You can use I/O proxy display groups to encapsulate, in a

C H A P T E R 1 0

Group Objects

About Group Objects

10-5

metafile, two or more descriptions of an object. This is useful when
an application reading the file is unable to understand some of those
descriptions. For example, you might know that some other applications
cannot handle NURB patches but do handle meshes. As a result, you can
create an I/O proxy display group that contains two descriptions of a
surface (one as a NURB patch and one as a mesh) and write that group
into a metafile. Any application reading the metafile can select from the
display group the representation of the surface that it can work with. You
should put objects into the I/O proxy display group in the order you
deem to be preferable. (In other words, the first object in the group should
be the representation you deem most useful, and the last object should be
the one that you deem least useful.) In this way, an application reading
the metafile can simply use the first object in the proxy display group
whose type is not

kQ3SharedTypeUnknown

.

■

An

information group

 is a group that contains one or more strings (and no
other types of QuickDraw 3D objects). You’ll typically create information
groups to provide human-readable information in a metafile. For example, if
you want to include a copyright notice in a metafile, you can simply create
an information group that contains a string of the appropriate data and then
write that group to the metafile.

Group Positions 10

You access an object within a group (for example, to remove the object from the
group or to replace it with some other object) by referring to the object’s group
position. A

group position

 is a pointer to a private (that is, opaque) data
structure maintained internally by QuickDraw 3D. A group position is defined
by the

TQ3GroupPosition

 data type.

typedef struct TQ3GroupPositionPrivate *TQ3GroupPosition;

You receive a group position for an object when you first insert the object into
the group (for example, by calling

Q3Group_AddObject

). In general, however,
you don’t need to maintain that information, because you can use
QuickDraw 3D routines to walk through a group. For instance, you can get
the group position of the first object in a group by calling

Q3Group_GetFirstPosition

. Then you can retrieve the positions of all
subsequent objects in the group by calling

Q3Group_GetNextPosition

.

C H A P T E R 1 0

Group Objects

10-6

About Group Objects

IMPORTANT

An object’s group position is valid only as long as that
object is in the group. When you remove an object from a
group, the corresponding group position becomes invalid.
Similarly, when you remove all objects from a group (for
example, by calling

Q3Group_EmptyObjects

), the group
positions of those objects become invalid.

▲

See “Accessing Objects by Position,” beginning on page 10-8 for sample code
that illustrates how to traverse a group using group positions.

Group State Flags 10

Every display group has

group state value

 (built out of a set of

group state
flags

) that determine how the group is traversed during rendering or picking,
or during the computation of a bounding box or sphere. Here are the currently
defined group state flags:

typedef enum TQ3DisplayGroupStateMasks {

kQ3DisplayGroupStateNone = 0,

kQ3DisplayGroupStateMaskIsDrawn = 1 << 0,

kQ3DisplayGroupStateMaskIsInline = 1 << 1,

kQ3DisplayGroupStateMaskUseBoundingBox = 1 << 2,

kQ3DisplayGroupStateMaskUseBoundingSphere = 1 << 3,

kQ3DisplayGroupStateMaskIsPicked = 1 << 4,

kQ3DisplayGroupStateMaskIsWritten = 1 << 5

} TQ3DisplayGroupStateMasks;

A group state value contains a flag, called the

drawable flag,

 that determines
whether the group is to be drawn when it is passed to a view for rendering or
picking. By default, the drawable flag of a group state value is set, indicating
that the group is to be drawn to a view. If the drawable flag is clear, the group
is not traversed when it is encountered in a hierarchical model. This allows you
to place “invisible” objects in a model that assist you in bounding complex
geometric objects, for example.

An ordered display group can be constructed in such a way that the group has
a hierarchical structure. This allows properties (such as attributes, styles, and
transforms) to be inherited by child nodes from their parent nodes in the
hierarchy. Occasionally, however, you might want to override this inheritance
and allow a group contained in a hierarchical model to define its own graphics

C H A P T E R 1 0

Group Objects

Using Group Objects

10-7

state independently of any other objects or groups in the model. To allow this
feature, a group state value contains an

inline flag

 that specifies whether or not
the group should be executed inline. A group is executed

inline

 if it does not
push and pop the graphics state stack before and after it is executed (that is, if
it is simply executed as a bundle of objects). By default, the inline flag of a
group is not set, indicating that the group pushes and pops its graphics state.

Note

For more information on pushing and popping the
graphics state, see the descriptions of the functions

Q3Push_Submit

 and

Q3Pop_Submit

 in the chapter “View
Objects.”

◆

A group state value contains a

picking flag

 that determines whether the group
can be picked. In general, you’ll want all groups in a model to be eligible for
picking. In some cases, however, you can clear the picking flag of a group’s
group state value in order to establish the group as a decoration in the model
that cannot be picked.

Using Group Objects 10

QuickDraw 3D provides functions that you can use to create a group, add
objects to a group, remove objects from a group, and dispose of a group. It also
provides functions that you can use to count the number of objects in a group,
access objects by their position in the group, draw a group, pick objects in a
group, and perform other operations on group objects. This section illustrates
how to use some of these functions. In particular, it shows:

■

how to create groups and add objects to them

■

how to operate on all objects in a group, or on all objects of a particular type
in a group

Creating Groups 10

You create a new light group, for example, by calling the

Q3LightGroup_New

function. If there is sufficient memory to create the group,

Q3LightGroup_New

returns to your application a reference to a group object, which you pass to
other group routines. The new group is initially empty, and you add objects to

C H A P T E R 1 0

Group Objects

10-8

Using Group Objects

the group by calling QuickDraw 3D routines (such as

Q3Group_AddObject

).
When an object is added to a group, its reference count is incremented.
(QuickDraw 3D uses the reference count to ensure that an object is not
prematurely disposed.) If you don’t want to maintain references to all the
objects inside a group, you can use the technique illustrated in Listing 10-1.

Listing 10-1

Creating a group

myGroup = Q3LightGroup_New();

myLight = Q3SpotLight_New(mySpotLightData);

Q3Group_AddObject(myGroup, myLight);

Q3Object_Dispose(myLight);

By calling

Q3Object_Dispose

, you decrement the light’s reference count once
it’s been added to the light group. When the group itself is later disposed of,
QuickDraw 3D decrements the light’s reference count, which may cause it also
to be disposed of.

Accessing Objects by Position 10

You can iterate through a group by getting the position of its first object and
then getting the positions of any subsequent objects. All groups, regardless of
type, are stored in a single list which you can step through only by calling
QuickDraw 3D routines.

Listing 10-2 shows how to access all the lights in a light group. The

MyTurnOnOrOffAllLights

 function takes a view parameter and an on/off state
value. It turns all the lights in the view’s light group on or off, as specified by
the state value.

Listing 10-2

Accessing all the lights in a light group

TQ3Status MyTurnOnOrOffViewLights (TQ3ViewObject myView, TQ3Boolean myState)

{

TQ3GroupObject myGroup; /*the view's light group*/

TQ3GroupPosition myPos; /*a group position*/

TQ3Object myLight; /*a light*/

TQ3Status myResult; /*a result code*/

C H A P T E R 1 0

Group Objects

Using Group Objects

10-9

myResult = Q3View_GetLightGroup(myView, &myGroup);

if (myResult == kQ3Failure)

goto bail;

for (Q3Group_GetFirstPosition(myGroup, &myPos);

 myPos != NULL;

 Q3Group_GetNextPosition(myGroup, &myPos))

{

myResult = Q3Group_GetPositionObject(myGroup, myPos, myLight);

if (myResult == kQ3Failure)

goto bail;

myResult = Q3Light_SetState(myLight, myState);

Q3Object_Dispose(myLight); /*balance reference count of light*/

}

return(kQ3Success);

bail:

return(kQ3Failure);

}

You can use the looping technique illustrated in Listing 10-2 to traverse ordered
display groups as well, as shown in Listing 10-3. The function

MyToggleOrderedGroupLights

 traverses an ordered display group and
toggles any lights it finds. Notice that

MyToggleOrderedGroupLights

 calls the

Q3Group_GetFirstPositionOfType

 function to find the position of the first
light in the group.

Listing 10-3

Accessing all the lights in an ordered display group

TQ3Status MyToggleOrderedGroupLights (TQ3GroupObject myGroup)

{

TQ3GroupPosition myPos; /*a group position*/

TQ3Object myLight; /*a light*/

TQ3Boolean myState; /*a light state*/

TQ3Status myResult; /*a result code*/

C H A P T E R 1 0

Group Objects

10-10

Using Group Objects

for (Q3Group_GetFirstPositionOfType(myGroup, kQ3ShapeTypeLight, &myPos);

 myPos != NULL;

 Q3Group_GetNextPositionOfType(myGroup, kQ3ShapeTypeLight, &myPos))

{

myResult = Q3Group_GetPositionObject(myGroup, myPos, myLight);

if (myResult == kQ3Failure)

goto bail;

myResult = Q3Light_GetState(myLight, &myState);

myState = !myState; /*toggle the light state*/

myResult = Q3Light_SetState(myLight, myState);

Q3Object_Dispose(myLight); /*balance reference count of light*/

}

return(kQ3Success);

bail:

return(kQ3Failure);

}

It’s also possible to find the position of the next object in an ordered display
group by calling the

Q3Group_GetNextPosition

 function.

Q3Group_GetNextPosition

 is not, however, guaranteed to return a position of
an object that is of the same type as the object immediately before it. If you use

Q3Group_GetNextPosition

 to iterate through an ordered display group, you
must therefore make sure not to step past the part of the list that contains
objects of the type you’re interested in. Listing 10-4 shows, in outline, how to
call

Q3Group_GetNextPosition

 to iterate safely through an object type in an
ordered display group.

Listing 10-4

Accessing all the lights in an ordered display group using

Q3Group_GetNextPosition

TQ3GroupPosition myFirst; /*group position of first light*/

TQ3GroupPosition myLast; /*group position of last light*/

TQ3Object myLight; /*a light*/

TQ3Status myResult; /*a result code*/

C H A P T E R 1 0

Group Objects

Group Objects Reference

10-11

Q3Group_GetFirstPositionOfType(myGroup, kQ3ShapeTypeLight, &myFirst);

if (myFirst) {

Q3Group_GetLastPositionOfType(myGroup, kQ3ShapeTypeLight, &myLast);

do

{

myResult = Q3Group_GetPositionObject(myGroup, myFirst, myLight);

if (myResult == kQ3Failure)

goto bail;

myResult = Q3Light_GetState(myLight, &myState);

myState = !myState; /*toggle the light state*/

myResult = Q3Light_SetState(myLight, myState);

Q3Object_Dispose(myLight); /*balance reference count of light*/

Q3Group_GetNextPosition(myGroup, &myFirst);

} while (myFirst != myLast);

}

Group Objects Reference 10

This section describes the QuickDraw 3D constants and routines that you can
use to manage groups.

Constants 10

QuickDraw 3D provides constants that define group state values.

Group State Flags 10

QuickDraw 3D defines a set of

group state flags for constructing a group state
value. You pass a group state value to the Q3DisplayGroup_SetState function
to set the state of a display group. The state value is a set of flags that

C H A P T E R 1 0

Group Objects

10-12 Group Objects Reference

determine how a group is traversed during rendering or picking, or when you
want to compute a bounding box or sphere. Here are the currently-defined
group state flags:

typedef enum TQ3DisplayGroupStateMasks {

kQ3DisplayGroupStateNone = 0,

kQ3DisplayGroupStateMaskIsDrawn = 1 << 0,

kQ3DisplayGroupStateMaskIsInline = 1 << 1,

kQ3DisplayGroupStateMaskUseBoundingBox = 1 << 2,

kQ3DisplayGroupStateMaskUseBoundingSphere = 1 << 3,

kQ3DisplayGroupStateMaskIsPicked = 1 << 4,

kQ3DisplayGroupStateMaskIsWritten = 1 << 5

} TQ3DisplayGroupStateMasks;

Constant descriptions

kQ3DisplayGroupStateNone

No mask.
kQ3DisplayGroupStateMaskIsDrawn

If this flag is set, the group and the objects it contains are
drawn to a view during rendering or picking.

kQ3DisplayGroupStateMaskIsInline

If this flag is set, the group is executed inline (that is,
without pushing the graphics state onto a stack before
group execution and popping it off after execution).

kQ3DisplayGroupStateMaskUseBoundingBox

If this flag is set, the bounding box of a display group is
used for rendering.

kQ3DisplayGroupStateMaskUseBoundingSphere

If this flag is set, the bounding sphere of a display group is
used for rendering.

kQ3DisplayGroupStateMaskIsPicked

If this flag is set, the display group is eligible for inclusion
in the hit list of a pick object.

kQ3DisplayGroupStateMaskIsWritten

If this flag is set, the group and the objects it contains are
written to a file object during writing.

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-13

IMPORTANT

By default, all group state flags are set except
for the kQ3DisplayGroupStateMaskIsInline flag,
which is clear. ▲

Group Objects Routines 10

This section describes routines you can use to create and manage groups and
group positions.

Creating Groups 10

QuickDraw 3D provides a number of routines for creating group objects.

Q3Group_New 10

You can use the Q3Group_New function to create a new group.

TQ3GroupObject Q3Group_New (void);

DESCRIPTION

The Q3Group_New function returns, as its function result, a new group. The new
group is initially empty. If an error occurs, Q3Group_New returns NULL.

ERRORS

kQ3ErrorOutOfMemory

C H A P T E R 1 0

Group Objects

10-14 Group Objects Reference

Q3LightGroup_New 10

You can use the Q3LightGroup_New function to create a new light group.

TQ3GroupObject Q3LightGroup_New (void);

DESCRIPTION

The Q3LightGroup_New function returns, as its function result, a new light
group. The new group is initially empty. If an error occurs, Q3LightGroup_New
returns NULL.

Note
See the chapter “Light Objects” in this book
for information on creating and manipulating
individual lights. ◆

ERRORS

kQ3ErrorOutOfMemory

Q3DisplayGroup_New 10

You can use the Q3DisplayGroup_New function to create a new display group.

TQ3GroupObject Q3DisplayGroup_New (void);

DESCRIPTION

The Q3DisplayGroup_New function returns, as its function result, a new
display group. The new group is initially empty. If an error occurs,
Q3DisplayGroup_New returns NULL.

ERRORS

kQ3ErrorOutOfMemory

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-15

Q3InfoGroup_New 10

You can use the Q3InfoGroup_New function to create a new information group.

TQ3GroupObject Q3InfoGroup_New (void);

DESCRIPTION

The Q3InfoGroup_New function returns, as its function result, a new
information group. The new group is initially empty. If an error occurs,
Q3InfoGroup_New returns NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3OrderedDisplayGroup_New 10

You can use the Q3OrderedDisplayGroup_New function to create a new
ordered display group.

TQ3GroupObject Q3OrderedDisplayGroup_New (void);

DESCRIPTION

The Q3OrderedDisplayGroup_New function returns, as its function result, a
new ordered display group. The new group is initially empty. If an error
occurs, Q3OrderedDisplayGroup_New returns NULL.

ERRORS

kQ3ErrorOutOfMemory

C H A P T E R 1 0

Group Objects

10-16 Group Objects Reference

Q3IOProxyDisplayGroup_New 10

You can use the Q3IOProxyDisplayGroup_New function to create a new I/O
proxy display group.

TQ3GroupObject Q3IOProxyDisplayGroup_New (void);

DESCRIPTION

The Q3IOProxyDisplayGroup_New function returns, as its function result, a
new I/O proxy display group. The new group is initially empty. If an error
occurs, Q3IOProxyDisplayGroup_New returns NULL.

ERRORS

kQ3ErrorOutOfMemory

Managing Groups 10

QuickDraw 3D provides a number of general routines for managing group
objects. Unless otherwise indicated, you can use these functions with groups
of any type.

Q3Group_GetType 10

You can use the Q3Group_GetType function to determine the type of a group.

TQ3ObjectType Q3Group_GetType (TQ3GroupObject group);

group A group.

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-17

DESCRIPTION

The Q3Group_GetType function returns, as its function result, the type of
the group specified by the group parameter. Q3Group_GetType returns one
of these values:

kQ3GroupTypeDisplay

kQ3GroupTypeInfo

kQ3GroupTypeLight

If Q3Group_GetType cannot determine the type of a group or an error occurs, it
returns kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_CountObjects 10

You can use the Q3Group_CountObjects function to determine how many
objects a group contains.

TQ3Status Q3Group_CountObjects (

TQ3GroupObject group,

unsigned long *nObjects);

group A group.

nObjects On exit, a pointer to the number of objects in the
specified group.

DESCRIPTION

The Q3Group_CountObjects function returns, in the nObjects parameter, the
number of objects contained in the group specified by the group parameter. If
that group contains other groups, each contained group is counted only once.

C H A P T E R 1 0

Group Objects

10-18 Group Objects Reference

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_CountObjectsOfType 10

You can use the Q3Group_CountObjectsOfType function to determine how
many objects of a particular type a group contains.

TQ3Status Q3Group_CountObjectsOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

unsigned long *nObjects);

group A group.

isType An object type.

nObjects On exit, a pointer to the number of objects in the specified
group that have the specified type.

DESCRIPTION

The Q3Group_CountObjectsOfType function returns, in the nObjects
parameter, the number of objects contained in the group specified by the group
parameter that have the object type specified by the isType parameter. The
object type can be either a parent class (for example, kQ3SharedType_Shape) or
a leaf class (for example, EcGeometryType_Box).

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-19

Q3Group_AddObject 10

You can use the Q3Group_AddObject function to add an object to a group.

TQ3GroupPosition Q3Group_AddObject (

TQ3GroupObject group,

TQ3Object object);

group A group.

object An object.

DESCRIPTION

The Q3Group_AddObject function inserts the object specified by the object
parameter into the group specified by the group parameter. If group is a
unordered group, the object is appended to the list of objects in the group. If
group is an ordered group, the object is appended to the part of the list of
objects in the group that are of the same type as object. Q3Group_AddObject
returns the new position of the object in the group. If an error occurs as an
object is inserted into the group, Q3Group_AddObject returns NULL.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorOutOfMemory

Q3Group_AddObjectBefore 10

You can use the Q3Group_AddObjectBefore function to add an object to a
group, positioning it before a certain object already in the group.

TQ3GroupPosition Q3Group_AddObjectBefore (

TQ3GroupObject group,

TQ3GroupPosition position,

TQ3Object object);

C H A P T E R 1 0

Group Objects

10-20 Group Objects Reference

group A group.

position A group position.

object An object.

DESCRIPTION

The Q3Group_AddObjectBefore function inserts the object specified by
the object parameter into the group specified by the group parameter,
before the group position specified by the position parameter.
Q3Group_AddObjectBefore returns, as its function result, the new position
of the object in the group. If an error occurs during the insertion of the
object into the group, Q3Group_AddObjectBefore returns NULL.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorOutOfMemory

Q3Group_AddObjectAfter 10

You can use the Q3Group_AddObjectAfter function to add an object to a
group, positioning it after a certain object already in the group.

TQ3GroupPosition Q3Group_AddObjectAfter (

TQ3GroupObject group,

TQ3GroupPosition position,

TQ3Object object);

group A group.

position A group position.

object An object.

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-21

DESCRIPTION

The Q3Group_AddObjectAfter function inserts the object specified
by the object parameter into the group specified by the group parameter,
after the group position specified by the position parameter.
Q3Group_AddObjectAfter returns, as its function result, the new position
of the object in the group. If an error occurs during the insertion of the
object into the group, Q3Group_AddObjectAfter returns NULL.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorOutOfMemory

Q3Group_GetPositionObject 10

You can use the Q3Group_GetPositionObject function to get the object
located at a certain position in a group.

TQ3Status Q3Group_GetPositionObject (

TQ3GroupObject group,

TQ3GroupPosition position,

TQ3Object *object);

group A group.

position A group position.

object On exit, a reference to a QuickDraw 3D object.

DESCRIPTION

The Q3Group_GetPositionObject function returns, in the object parameter, a
reference to the object having the position specified by the position parameter
in the group specified by the group parameter. The reference count of the
returned object is incremented. If an error occurs when getting the object,
Q3Group_GetPositionObject returns NULL.

C H A P T E R 1 0

Group Objects

10-22 Group Objects Reference

ERRORS

kQ3ErrorInvalidObject
kQ3Error_InvalidPositionForGroup
kQ3Error_NULLParameter

Q3Group_SetPositionObject 10

You can use the Q3Group_SetPositionObject function to set the object located
at a certain position in a group.

TQ3Status Q3Group_SetPositionObject (

TQ3GroupObject group,

TQ3GroupPosition position,

TQ3Object object);

group A group.

position A group position.

object An object.

DESCRIPTION

The Q3Group_SetPositionObject function sets the object having the position
specified by the position parameter in the group specified by the group
parameter to the object specified by the object parameter. The object
previously occupying that position is disposed of. The reference count of
object is incremented.

Q3GroupPosition_SetObject returns, as its function result, either a pointer to
the object installed in the specified position, or NULL if an error occurs.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidObjectForGroup
kQ3ErrorInvalidObjectForPosition
kQ3ErrorInvalidPositionForGroup

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-23

Q3Group_RemovePosition 10

You can use the Q3Group_RemovePosition function to remove an object from
a group.

TQ3Object Q3Group_RemovePosition (

TQ3GroupObject group,

TQ3GroupPosition position);

group A group.

position A group position.

DESCRIPTION

The Q3Group_RemovePosition function removes the object having the group
position specified by the position parameter from the group specified by the
group parameter. After you call Q3Group_RemovePosition, the position
specified by the position parameter is invalid. Q3Group_RemovePosition
returns, as its function result, the object removed from the group. If an error
occurs when removing the object from the group, Q3Group_RemovePosition
returns NULL.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup

Q3Group_EmptyObjects 10

You can use the Q3Group_EmptyObjects function to remove all objects from
a group.

TQ3Status Q3Group_EmptyObjects (TQ3GroupObject group);

group A group.

C H A P T E R 1 0

Group Objects

10-24 Group Objects Reference

DESCRIPTION

The Q3Group_EmptyObjects function disposes of every object contained in the
group specified by the group parameter, thereby effectively emptying the
contents of the group. The group itself is not disposed of.

ERRORS

kQ3ErrorInvalidObject

Q3Group_EmptyObjectsOfType 10

You can use the Q3Group_EmptyObjectsOfType function to remove all objects
of a particular type from a group.

TQ3Status Q3Group_EmptyObjectsOfType (

TQ3GroupObject group,

TQ3ObjectType isType);

group A group.

isType An object type.

DESCRIPTION

The Q3Group_EmptyObjectsOfType function disposes of every object
contained in the group specified by the group parameter that has the type
specified by the isType parameter.

ERRORS

kQ3ErrorInvalidObject

Managing Display Groups 10

QuickDraw 3D provides routines that you can use to manage display groups
in general.

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-25

Q3DisplayGroup_GetType 10

You can use the Q3DisplayGroup_GetType function to determine the type of a
display group.

TQ3ObjectType Q3DisplayGroup_GetType (TQ3GroupObject group);

group A group.

DESCRIPTION

The Q3DisplayGroup_GetType function returns, as its function result,
the type of the display group specified by the group parameter.
Q3DisplayGroup_GetType returns one of these values:

kQ3DisplayGroupTypeIOProxy

kQ3DisplayGroupTypeOrdered

If Q3DisplayGroup_GetType cannot determine the type of a group or an error
occurs, it returns kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorInvalidObject

Q3DisplayGroup_GetState 10

You can use the Q3DisplayGroup_GetState function to get the current state of
a display group.

TQ3Status Q3DisplayGroup_GetState (

TQ3GroupObject group,

TQ3DisplayGroupState *state);

group A display group.

state On exit, a pointer to the current state value for the specified
display group.

C H A P T E R 1 0

Group Objects

10-26 Group Objects Reference

DESCRIPTION

The Q3DisplayGroup_GetState function returns, in the state parameter, a
pointer to a state value for the display group specified by the group parameter.
The state value is a set of flags that determine how a display group is traversed
during rendering or picking, or during computation of a bounding box or
sphere. See “Group State Flags” on page 10-11 for a description of the flags
currently defined for a group state value.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3DisplayGroup_SetState 10

You can use the Q3DisplayGroup_SetState function to set the state of a
display group.

TQ3Status Q3DisplayGroup_SetState (

TQ3GroupObject group,

TQ3DisplayGroupState state);

group A display group.

state The desired state value for the specified display group.

DESCRIPTION

The Q3DisplayGroup_SetState function sets the state value of the display
group specified by the group parameter to the value pointed to by the state
parameter. See “Group State Flags” on page 10-11 for a description of the flags
currently defined for a group state value.

ERRORS

kQ3ErrorInvalidObject

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-27

Q3DisplayGroup_Submit 10

You can use the Q3DisplayGroup_Submit function to submit a display group
for drawing, picking, bounding, or writing.

TQ3Status Q3DisplayGroup_Submit (

TQ3GroupObject group,

TQ3ViewObject view);

group A group.

view A view.

DESCRIPTION

The Q3DisplayGroup_Submit function submits the display group specified by
the group parameter for drawing, picking, bounding, or writing in the view
specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorOutOfMemory
kQ3ErrorViewNotStarted

Getting Group Positions 10

QuickDraw 3D provides routines that you can use to move forward and
backward through the objects in a group. You do so by finding the currently
occupied group positions in the group and then determining which objects
occupy those positions. This section describes the routines you can use to find
the valid positions in a group.

C H A P T E R 1 0

Group Objects

10-28 Group Objects Reference

Q3Group_GetFirstPosition 10

You can use the Q3Group_GetFirstPosition function to get the position of the
first object in a group.

TQ3Status Q3Group_GetFirstPosition (

TQ3GroupObject group,

TQ3GroupPosition *position);

group A group.

position On exit, a group position.

DESCRIPTION

The Q3Group_GetFirstPosition function returns, in the position parameter,
the position of the first object in the group specified by the group parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetFirstPositionOfType 10

You can use the Q3Group_GetFirstPositionOfType function to get the
position of the first object of a particular type in a group.

TQ3Status Q3Group_GetFirstPositionOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

TQ3GroupPosition *position);

group A group.

isType An object type.

position On exit, a group position.

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-29

DESCRIPTION

The Q3Group_GetFirstPositionOfType function returns, in the position
parameter, the position of the first object in the group specified by the group
parameter that has the type specified by the isType parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetLastPosition 10

You can use the Q3Group_GetLastPosition function to get the position of the
last object in a group.

TQ3Status Q3Group_GetLastPosition (

TQ3GroupObject group,

TQ3GroupPosition *position);

group A group.

position On exit, a group position.

DESCRIPTION

The Q3Group_GetLastPosition function returns, in the position parameter,
the position of the last object in the group specified by the group parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

10-30 Group Objects Reference

Q3Group_GetLastPositionOfType 10

You can use the Q3Group_GetLastPositionOfType function to get the position
of the last object of a particular type in a group.

TQ3Status Q3Group_GetLastPositionOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

TQ3GroupPosition *position);

group A group.

isType An object type.

position On exit, a group position.

DESCRIPTION

The Q3Group_GetLastPositionOfType function returns, in the position
parameter, the position of the last object in the group specified by the group
parameter that has the type specified by the isType parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetNextPosition 10

You can use the Q3Group_GetNextPosition function to get the position of the
next object in a group.

TQ3Status Q3Group_GetNextPosition (

TQ3GroupObject group,

TQ3GroupPosition *position);

group A group.

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-31

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the object that
immediately follows the object in that position.

DESCRIPTION

The Q3Group_GetNextPosition function returns, in the position parameter,
the position in the group specified by the group parameter of the object that
immediately follows the object having the position specified on entry in the
position parameter. If the object specified on entry is the last object in the
group, Q3Group_GetNextPosition returns the value NULL in the position
parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

Q3Group_GetNextPositionOfType 10

You can use the Q3Group_GetNextPositionOfType function to get the position
of the next object of a particular type in a group.

TQ3Status Q3Group_GetNextPositionOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

TQ3GroupPosition *position);

group A group.

isType An object type.

position On entry, a pointer to a valid group position. On exit, a
pointer to the position in the specified group of the next
object that follows the object in that position and that has
the specified type.

C H A P T E R 1 0

Group Objects

10-32 Group Objects Reference

DESCRIPTION

The Q3Group_GetNextPositionOfType function returns, in the position
parameter, the position in the group specified by the group parameter of the
next object that follows the object having the position specified on entry in the
position parameter and that has the type specified by the isType parameter.
If the object specified on entry is the last object of that type in the group,
Q3Group_GetNextPositionOfType returns the value NULL in the position
parameter. Note that the type of the object in the position specified by the
position parameter on entry to Q3Group_GetNextPositionOfType does not
have to be the same as the type specified by the isType parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

Q3Group_GetPreviousPosition 10

You can use the Q3Group_GetPreviousPosition function to get the position of
the previous object in a group.

TQ3Status Q3Group_GetPreviousPosition (

TQ3GroupObject group,

TQ3GroupPosition *position);

group A group.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the object that
immediately precedes the object in that position.

DESCRIPTION

The Q3Group_GetPreviousPosition function returns, in the position
parameter, the position in the group specified by the group parameter of the
object that immediately precedes the object having the position specified on
entry in the position parameter. If the object specified on entry is the first

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-33

object in the group, Q3Group_GetPreviousPosition returns the value NULL in
the position parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

Q3Group_GetPreviousPositionOfType 10

You can use the Q3Group_GetPreviousPositionOfType function to get the
position of the previous object of a particular type in a group.

TQ3Status Q3Group_GetPreviousPositionOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

TQ3GroupPosition *position);

group A group.

isType An object type.

position On entry, a pointer to a valid group position. On exit, a
pointer to the position in the specified group of the next
object that follows the object in that position and that has
the specified type.

DESCRIPTION

The Q3Group_GetPreviousPositionOfType function returns, in the position
parameter, the position in the group specified by the group parameter of
the previous object that precedes the object having the position specified
on entry in the position parameter and that has the type specified by
the isType parameter. If the object specified on entry is the first object of
that type in the group, Q3Group_GetNextPositionOfType returns the
value NULL in the position parameter. Note that the type of the object
in the position specified by the position parameter on entry to
Q3Group_GetPreviousPositionOfType does not have to be the same as the
type specified by the isType parameter.

C H A P T E R 1 0

Group Objects

10-34 Group Objects Reference

ERRORS

kQ3ErrorInvalidObject

kQ3ErrorInvalidPositionForGroup

kQ3ErrorNULLParameter

Getting Object Positions 10

QuickDraw 3D provides routines that you can use to find instances of objects
in groups.

Q3Group_GetFirstObjectPosition 10

You can use the Q3Group_GetFirstObjectPosition function to get the
position of the first instance of an object in a group.

TQ3Status Q3Group_GetFirstObjectPosition (

TQ3GroupObject group,

TQ3Object object,

TQ3GroupPosition *position);

group A group.

object An object.

position On exit, a group position.

DESCRIPTION

The Q3Group_GetFirstObjectPosition function returns, in the position
parameter, the position of the first instance in the group specified by the group
parameter of the object specified by the object parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-35

Q3Group_GetLastObjectPosition 10

You can use the Q3Group_GetLastObjectPosition function to get the position
of the last instance of an object in a group.

TQ3Status Q3Group_GetLastObjectPosition (

TQ3GroupObject group,

TQ3Object object,

TQ3GroupPosition *position);

group A group.

object An object.

position On exit, a group position.

DESCRIPTION

The Q3Group_GetLastObjectPosition function returns, in the position
parameter, the position of the last instance in the group specified by the group
parameter of the object specified by the object parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetNextObjectPosition 10

You can use the Q3Group_GetNextObjectPosition function to get the position
of the next instance of an object in a group.

TQ3Status Q3Group_GetNextObjectPosition (

TQ3GroupObject group,

TQ3Object object,

TQ3GroupPosition *position);

C H A P T E R 1 0

Group Objects

10-36 Group Objects Reference

group A group.

object An object.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the next instance of the
specified object.

DESCRIPTION

The Q3Group_GetNextObjectPosition function returns, in the position
parameter, the position of the next instance in the group specified by the group
parameter of the object specified by the object parameter. If the position
specified on entry is the last instance of that object in the group,
Q3Group_GetNextObjectPosition returns the value NULL in the position
parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

Q3Group_GetPreviousObjectPosition 10

You can use the Q3Group_GetPreviousObjectPosition function to get the
position of the previous instance of an object in a group.

TQ3Status Q3Group_GetPreviousObjectPosition (

TQ3GroupObject group,

TQ3Object object,

TQ3GroupPosition *position);

group A group.

object An object.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the previous instance of
the specified object.

C H A P T E R 1 0

Group Objects

Group Objects Reference 10-37

DESCRIPTION

The Q3Group_GetPreviousObjectPosition function returns, in the position
parameter, the position of the previous instance in the group specified by the
group parameter of the object specified by the object parameter. If the
position specified on entry is the first instance of that object in the group,
Q3Group_GetPreviousObjectPosition returns the value NULL in the
position parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

10-38 Summary of Group Objects

Summary of Group Objects 10

C Summary 10

Constants 10

#define kQ3GroupTypeDisplay Q3_OBJECT_TYPE('d','s','p','g')

#define kQ3GroupTypeInfo Q3_OBJECT_TYPE('i','n','f','o')

#define kQ3GroupTypeLight Q3_OBJECT_TYPE('l','g','h','g')

#define kQ3DisplayGroupTypeIOProxy Q3_OBJECT_TYPE('i','o','p','x')

#define kQ3DisplayGroupTypeOrdered Q3_OBJECT_TYPE('o','r','d','g')

typedef enum TQ3DisplayGroupStateMasks {

kQ3DisplayGroupStateNone = 0,

kQ3DisplayGroupStateMaskIsDrawn = 1 << 0,

kQ3DisplayGroupStateMaskIsInline = 1 << 1,

kQ3DisplayGroupStateMaskUseBoundingBox = 1 << 2,

kQ3DisplayGroupStateMaskUseBoundingSphere = 1 << 3,

kQ3DisplayGroupStateMaskIsPicked = 1 << 4,

kQ3DisplayGroupStateMaskIsWritten = 1 << 5

} TQ3DisplayGroupStateMasks;

Data Types 10

typedef struct TQ3GroupPositionPrivate *TQ3GroupPosition;

typedef unsigned long TQ3DisplayGroupState;

C H A P T E R 1 0

Group Objects

Summary of Group Objects 10-39

Group Objects Routines 10

Creating Groups

TQ3GroupObject Q3Group_New (void);

TQ3GroupObject Q3LightGroup_New (

void);

TQ3GroupObject Q3DisplayGroup_New (

void);

TQ3GroupObject Q3InfoGroup_New(void);

TQ3GroupObject Q3OrderedDisplayGroup_New (

void);

TQ3GroupObject Q3IOProxyDisplayGroup_New (

void);

Managing Groups

TQ3ObjectType Q3Group_GetType (TQ3GroupObject group);

TQ3Status Q3Group_CountObjects(TQ3GroupObject group,

unsigned long *nObjects);

TQ3Status Q3Group_CountObjectsOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

unsigned long *nObjects);

TQ3GroupPosition Q3Group_AddObject (

TQ3GroupObject group, TQ3Object object);

TQ3GroupPosition Q3Group_AddObjectBefore (

TQ3GroupObject group,

TQ3GroupPosition position,

TQ3Object object);

C H A P T E R 1 0

Group Objects

10-40 Summary of Group Objects

TQ3GroupPosition Q3Group_AddObjectAfter (

TQ3GroupObject group,

TQ3GroupPosition position,

TQ3Object object);

TQ3Status Q3Group_GetPositionObject (

TQ3GroupObject group,

TQ3GroupPosition position,

TQ3Object *object);

TQ3Status Q3Group_SetPositionObject (

TQ3GroupObject group,

TQ3GroupPosition position,

TQ3Object object);

TQ3Object Q3Group_RemovePosition (

TQ3GroupObject group,

TQ3GroupPosition position);

TQ3Status Q3Group_EmptyObjects(TQ3GroupObject group);

TQ3Status Q3Group_EmptyObjectsOfType (

TQ3GroupObject group, TQ3ObjectType isType);

Managing Display Groups

TQ3ObjectType Q3DisplayGroup_GetType (

TQ3GroupObject group);

TQ3Status Q3DisplayGroup_GetState (

TQ3GroupObject group,

TQ3DisplayGroupState *state);

TQ3Status Q3DisplayGroup_SetState (

TQ3GroupObject group,

TQ3DisplayGroupState state);

TQ3Status Q3DisplayGroup_Submit (

TQ3GroupObject group, TQ3ViewObject view);

C H A P T E R 1 0

Group Objects

Summary of Group Objects 10-41

Getting Group Positions

TQ3Status Q3Group_GetFirstPosition (

TQ3GroupObject group,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetFirstPositionOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetLastPosition (

TQ3GroupObject group,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetLastPositionOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetNextPosition (

TQ3GroupObject group,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetNextPositionOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetPreviousPosition (

TQ3GroupObject group,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetPreviousPositionOfType (

TQ3GroupObject group,

TQ3ObjectType isType,

TQ3GroupPosition *position);

C H A P T E R 1 0

Group Objects

10-42 Summary of Group Objects

Getting Object Positions

TQ3Status Q3Group_GetFirstObjectPosition (

TQ3GroupObject group,

TQ3Object object,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetLastObjectPosition (

TQ3GroupObject group,

TQ3Object object,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetNextObjectPosition (

TQ3GroupObject group,

TQ3Object object,

TQ3GroupPosition *position);

TQ3Status Q3Group_GetPreviousObjectPosition (

TQ3GroupObject group,

TQ3Object object,

TQ3GroupPosition *position);

Errors 10

kQ3ErrorInvalidPositionForGroup No such position in the group
kQ3ErrorInvalidObjectForGroup No such object in the group
kQ3ErrorInvalidObjectForPosition No such object in the position

C H A P T E R 1 1

Contents

11-1

Contents

Figure 11-0
Listing 11-0
Table 11-0

11 Renderer Objects

About Renderer Objects 11-3
Types of Renderers 11-4
Constructive Solid Geometry 11-6
Transparency 11-9

Using Renderer Objects 11-9
Renderer Objects Reference 11-10

Constants 11-10
Vendor IDs 11-11
Engine IDs 11-11
CSG Object IDs 11-12
CSG Equations 11-12

Renderer Objects Routines 11-13
Creating and Managing Renderers 11-13
Managing Interactive Renderers 11-17

Summary of Renderer Objects 11-22
C Summary 11-22

Constants 11-22
Renderer Objects Routines 11-23

Errors and Warnings 11-24

This document was created with FrameMaker 4.0.4

C H A P T E R 1 1

About Renderer Objects

11-3

Renderer Objects 11

This chapter describes renderer objects (or renderers) and the functions you can
use to manipulate them. You use renderers to specify the various aspects of the
kind of image you want to create. A single renderer is associated with a view,
along with a list of lights, a camera, and other settings that affect the drawing
of a model. QuickDraw 3D supplies several kinds of renderers.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about associating a renderer with a view, see the chapter
“View Objects.”

This chapter begins by describing renderer objects and their features. Then it
shows how to create and manipulate renderers. The section “Renderer Objects
Reference,” beginning on page 11-10 provides a complete description of the
routines you can use to create and manipulate renderer objects.

About Renderer Objects 11

A

renderer object

 (or, more briefly, a

renderer

) is a type of QuickDraw 3D
object that you can use to

render

 a model—that is, to create an image from a
view and a model. A renderer controls various aspects of the model and the
resulting image, including:

■

the kinds of geometric objects the renderer can draw without decomposing
them into simpler objects

■

the parts of objects to be drawn (for example, only the edges or filled faces)

■

the types of lights that are available and the illumination model to be applied

■

the types of shaders that are available and kinds of interpolation that can be
performed

To render an image of a model, you first need to create an instance of a
renderer object. Once you’ve decided which renderer you want to use, you
then create an instance of that renderer and attach it to a view. You can do
this in several, ways, by calling

Q3Renderer_NewFromType

 and then

Q3View_SetRenderer

, or by calling the function

Q3View_SetRendererByType

.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 1

Renderer Objects

11-4

About Renderer Objects

Types of Renderers 11

QuickDraw 3D currently supplies three types of renderers, a wireframe
renderer, an interactive renderer, and a generic renderer. Only the wireframe
and interactive renderers can actually draw images; the

generic renderer

 is
available for you to collect a view’s state without actually rendering an image.

The

wireframe renderer

 creates line drawings of models; it operates extremely
quickly and with comparatively little memory. Figure 11-1 shows an example
of a model drawn by QuickDraw 3D’s wireframe renderer (see also Color Plate
1 at the beginning of this book).

Because a wireframe image is simply a line drawing, there is no way to
illuminate or shade surfaces. The wireframe renderer ignores the group of
lights associated with a view and invokes none of the standard shaders
supplied by QuickDraw 3D.

Figure 11-1

An image drawn by the wireframe renderer

The

interactive renderer

 uses a fast and accurate depth-sorting algorithm for
drawing solid, shaded surfaces as well as vectors. It is usually slower and
requires more memory than the wireframe renderer. When the size of a model
is reasonable and only very simple shadings are required, however, the
interactive renderer is usually fast enough to provide acceptable interactive
performance. The interactive renderer is also capable of rendering highly
detailed, complex models with very realistic surface illumination and shading,

C H A P T E R 1 1

Renderer Objects

About Renderer Objects

11-5

but at the expense of time and memory. On machines with small amounts of
memory, the interactive renderer may need to traverse a model in multiple
passes to render the image completely. Figure 11-2 shows an image created by
QuickDraw 3D’s interactive renderer.

Figure 11-2

An image drawn by the interactive renderer

The interactive renderer is capable of driving either a software-only rasterizer
or a hardware accelerator. In general, the interactive renderer uses a hardware
accelerator if one is available, to provide maximum performance. You can,
however, set the renderer preferences to indicate whether the interactive
renderer should operate in software only or whether it should take advantage
of a hardware accelerator. (See the “Using Renderer Objects” for details on
setting a renderer’s preferences.)

The interactive renderer supports all three available illumination shaders
(Phong, Lambert, and null). Some rendering capabilities, however, are available
only when the interactive renderer is using the hardware accelerator supplied
by Apple Computer, Inc., including transparency, shadows, and constructive
solid geometry (CSG). In addition, the interactive renderer always ignores the

clearImageMethod

 field of a draw context data structure, whether using
software-only rasterization or a hardware accelerator. The screen is always
cleared with the clear image color specified in the

clearImageColor

 field.

C H A P T E R 1 1

Renderer Objects

11-6

About Renderer Objects

Constructive Solid Geometry 11

When the hardware accelerator provided by Apple Computer, Inc., is available,
the interactive renderer can support

constructive solid geometry (CSG),

a method of modeling solid objects constructed from the union, intersection, or
difference of other solid objects. For instance, you can define two cubes and
then render the solid object that is the intersection of those two cubes. Similarly,
you can define three cubes and render the solid object that is the union of two
of them minus the third. For example, Figure 11-3 shows three cubes (

A

,

B

, and

C

) together with the result of using CSG to create the solid object defined by
the function (

A

∪

C

)

∩

¬

B

.

Note

In this chapter, CSG operations are described using
standard set operators: the operation

A

∩

B

 is the set of all
points that are in both

A

 and

B

 (that is, the

intersection

 of

A

 and

B

);

A

∪

B

 is the set of all points that are in either

A

or

B

 (that is, the

union

 of

A

 and

B

);

¬

A

 is the set of all
points that are not in

A

 (that is, the

complement

 of

A

).

◆

Figure 11-3

A constructed CSG object

A

B

A

CC

C H A P T E R 1 1

Renderer Objects

About Renderer Objects

11-7

The interactive renderer supports CSG operations on up to five objects
in a model. You select the objects to operate on by assigning a

CSG
object ID

 to an object, as an attribute of type

kQ3AttributeType_ConstructiveSolidGeometryID

. There are five CSG
object IDs:

kQ3SolidGeometryObjA

kQ3SolidGeometryObjB

kQ3SolidGeometryObjC

kQ3SolidGeometryObjD

kQ3SolidGeometryObjE

You specify the CSG operations to perform by passing a

CSG equation

 to the

Q3InteractiveRenderer_SetCSGEquation

 function. A CSG equation is a
32-bit value that encodes which CSG operations are to be performed on which
CSG objects. QuickDraw 3D provides constants for some common CSG
operations:

typedef enum TQ3CSGEquation {

kQ3CSGEquationAandB = (int) 0x88888888,

kQ3CSGEquationAandnotB = 0x22222222,

kQ3CSGEquationAanBonCad = 0x2F222F22,

kQ3CSGEquationnotAandB = 0x44444444,

kQ3CSGEquationnAaBorCanD = 0x74747474

} TQ3CSGEquation;

For instance, the constant

kQ3CSGEquationAandB

 indicates that the interactive
renderer should render only the intersecting portion of the objects with CSG
object IDs

kQ3SolidGeometryObjA

 and

kQ3SolidGeometryObjB

. There are 2

32

CSG equations for the five possible CSG objects. You calculate a CSG equation
for a particular configuration of objects

A

,

B

,

C

,

D

, and

E

 by using Table 11-1.

C H A P T E R 1 1

Renderer Objects

11-8

About Renderer Objects

Table 11-1

Calculating CSG equations

E D C B A Object

4 3 2 1 0 Bit position

0 0 0 0 0 0 LSB
0 0 0 0 1 1
0 0 0 1 0 2
0 0 0 1 1 3
0 0 1 0 0 4
0 0 1 0 1 5
0 0 1 1 0 6
0 0 1 1 1 7
0 1 0 0 0 8
0 1 0 0 1 9
0 1 0 1 0 10
0 1 0 1 1 11
0 1 1 0 0 12
0 1 1 0 1 13
0 1 1 1 0 14
0 1 1 1 1 15
1 0 0 0 0 16
1 0 0 0 1 17
1 0 0 1 0 18
1 0 0 1 1 19
1 0 1 0 0 20
1 0 1 0 1 21
1 0 1 1 0 22
1 0 1 1 1 23
1 1 0 0 0 24
1 1 0 0 1 25
1 1 0 1 0 26
1 1 0 1 1 27
1 1 1 0 0 28
1 1 1 0 1 29
1 1 1 1 0 30
1 1 1 1 1 31 MSB

C H A P T E R 1 1

Renderer Objects

Using Renderer Objects

11-9

You calculate a CSG equation by determining which of the rows in the table
satisfy the desired CSG construction. Then you set the indicated bit positions in
a 32-bit value and clear the remaining bit positions. For instance, the value 1
appears in both of the columns for objects

A

 and

B

 for bit positions 3, 7, 11, 15,
19, 23, 27, and 31. The CSG equation, then, for the operation

A

∩

B

 is
10001000100010001000100010001000, or 0x88888888 (

kQ3CSGEquationAandB

).
Similarly, the value 1 appears in the column for object

A

 and the
value 0 appears in the column for object

B

 for bit positions 1, 5, 9, 13, 17,
21, 25, and 29. The CSG equation, then, for the operation

A

∩

¬

B

 is
00100010001000100010001000100010, or 0x22222222
(

kQ3CSGEquationAandnotB

). Finally, the CSG equation used to construct the
composite object shown in Figure 11-3 on page 11-6, drawn using the operation
(

A

∪

C

)

∩

¬

B

, is 00110010001100100011001000110010, or 0x32323232.

Transparency 11

Transparency

 is the ability of an object to transmit light, possibly permitting a
viewer to see objects behind it. The interactive renderer allows you to draw
objects with varying degrees of transparency. You specify how much light can
pass through an object by setting its

transparency color.

 A transparency color is
an attribute of type TQ3ColorRGB, where the value (0, 0, 0) indicates complete
transparency, and (1, 1, 1) indicates complete opacity. By default, objects are
rendered opaque.

You specify an object’s transparency color by adding an attribute of type
kQ3AttributeTypeTransparencyColor to the object’s attribute set.
QuickDraw 3D multiplies that transparency color by the object’s diffuse
color whenever a transparency color attribute is attached to the object.

Using Renderer Objects 11

A renderer is of type TQ3RendererObject, which is a type of shared object.
You create an instance of a renderer by calling Q3Renderer_New or
Q3Renderer_NewFromType. Once you’ve created a new renderer, you need to
associate it with a particular view, for example by calling Q3View_SetRenderer.

You’ve already seen (in the section “Creating a View,” beginning on page 1-29)
how to create a renderer object and attach it to a view object. As indicated

C H A P T E R 1 1

Renderer Objects

11-10 Renderer Objects Reference

previously, you can ensure that you take advantage of any available hardware
accelerator by using the interactive renderer, as follows:

myRenderer = Q3Renderer_NewFromType(kQ3RendererTypeInteractive);

To make the rendered images coherent, you should make the associated draw
context double buffered (that is, you should set the doubleBufferState field
of the draw context data structure to the value kQ3True). Some hardware
rasterizer engines (such as the one supplied by Apple Computer, Inc.) can
make coherent images without double buffering. This can provide a significant
speed advantage, at the possible cost of some tearing. To take advantage
of such hardware, you keep the draw context double buffered (to indicate
that you want the images to be coherent) and call the function
Q3InteractiveRenderer_SetDoubleBufferBypass, as follows:

Q3InteractiveRenderer_SetDoubleBufferBypass(myRenderer, kQ3True);

In the unlikely event that you want to use a particular rasterizer with the
interactive renderer, you can set a preference with the code:

Q3InteractiveRenderer_SetPreferences(myRenderer, vendor, engine);

Values that define the available vendors and engines are described in “Vendor
IDs” on page 11-11 and “Engine IDs” on page 11-11.

Renderer Objects Reference 11

This section describes the constants and routines provided by QuickDraw 3D
that you can use to create and manage renderers.

Constants 11

This section describes the constants that you can use to specify vendor and
engine IDs, CSG object IDs, and CSG equations.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 11-11

Vendor IDs 11

QuickDraw 3D provides constants that you can use to specify an ID for a
renderer vendor.

#define kQAVendor_BestChoice (-1)

#define kQAVendor_Apple 0

Constant descriptions

kQAVendor_BestChoice

The best available choice. QuickDraw 3D selects the
available drawing engine that produces the best output on
the target device.

kQAVendor_Apple Apple Computer, Inc.

Engine IDs 11

QuickDraw 3D provides constants that you can use to specify an ID for the
rendering engines supplied by Apple Computer, Inc.

#define kQAEngine_AppleHW (-1)

#define kQAEngine_AppleSW 0

Constant descriptions

kQAEngine_AppleHW

The rasterizer associated with the hardware accelerator
supplied by Apple Computer, Inc.

kQAEngine_AppleSW

The default software rasterizer supplied by Apple
Computer, Inc.

C H A P T E R 1 1

Renderer Objects

11-12 Renderer Objects Reference

CSG Object IDs 11

QuickDraw 3D provides constants that you can use to specify an ID for a CSG
object. You assign a CSG object ID to an object by including an attribute of type
kQ3AttributeType_ConstructiveSolidGeometryID in the object’s attribute
set. Currently, QuickDraw 3D supports up to five CSG objects per model.

#define kQ3SolidGeometryObjA 0

#define kQ3SolidGeometryObjB 1

#define kQ3SolidGeometryObjC 2

#define kQ3SolidGeometryObjD 3

#define kQ3SolidGeometryObjE 4

Constant descriptions

kQ3SolidGeometryObjA

The CSG object A.
kQ3SolidGeometryObjB

The CSG object B.
kQ3SolidGeometryObjC

The CSG object C.
kQ3SolidGeometryObjD

The CSG object D.
kQ3SolidGeometryObjE

The CSG object E.

CSG Equations 11

QuickDraw 3D provides constants for some common CSG equations. See
“Constructive Solid Geometry” on page 11-6 for more information on how CSG
equations are determined.

typedef enum TQ3CSGEquation {

kQ3CSGEquationAandB = (int) 0x88888888,

kQ3CSGEquationAandnotB = 0x22222222,

kQ3CSGEquationAanBonCad = 0x2F222F22,

kQ3CSGEquationnotAandB = 0x44444444,

kQ3CSGEquationnAaBorCanD = 0x74747474

} TQ3CSGEquation;

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 11-13

Constant descriptions

kQ3CSGEquationAandB

A ∩ B. The renderer draws the intersection of object A and
object B.

kQ3CSGEquationAandnotB

A ∩ ¬B. The renderer draws the portion of object A that
lies outside of object B.

kQ3CSGEquationAanBonCad

(A ∩ ¬B) ∪ (¬C ∩ D). The renderer draws the portion of
object A that lies outside of object B, and the portion of
object D that lies outside of object C.

kQ3CSGEquationnotAandB

¬A ∩ B. The renderer draws the portion of object B that lies
outside of object A.

kQ3CSGEquationnAaBorCanD

(¬A ∩ B) ∪ (C ∩ ¬D). The renderer draws the portion of
object B that lies outside of object A, and the portion of
object C that lies outside of object D.

Renderer Objects Routines 11

This section describes QuickDraw 3D routines that you can use to manage
renderer objects.

Creating and Managing Renderers 11

QuickDraw 3D provides a routine that you can use to create and manage
instances of a renderer.

C H A P T E R 1 1

Renderer Objects

11-14 Renderer Objects Reference

Q3Renderer_NewFromType 11

You can use the Q3Renderer_NewFromType function to create an instance of a
certain type of renderer.

TQ3RendererObject Q3Renderer_NewFromType (

TQ3ObjectType rendererObjectType);

rendererObjectType

A value that specifies a renderer type.

DESCRIPTION

The Q3Renderer_NewFromType function returns, as its function result, a new
renderer of the type specified by the rendererObjectType parameter. You can
use these values to specify QuickDraw 3D’s wireframe and interactive
renderers:

kQ3RendererTypeWireFrame

kQ3RendererTypeInteractive

You can also pass the value kQ3RendererTypeGeneric to create a generic
renderer. A generic renderer does not render any image, but you can use it to
collect state information.

If Q3Renderer_NewFromType is not able to create an instance of the specified
renderer type, it returns NULL.

SPECIAL CONSIDERATIONS

You should create a renderer object once and associate it with a view (by
calling Q3View_SetRenderer); you should not recreate a renderer object
for each frame.

SEE ALSO

You can call the Q3View_SetRendererByType function to create a new renderer
of a specified type and attach it to a view. See the chapter “View Objects” for
complete information.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 11-15

Q3Renderer_GetType 11

You can use the Q3Renderer_GetType function to get the type of a renderer.

TQ3ObjectType Q3Renderer_GetType (TQ3RendererObject renderer);

renderer A renderer.

DESCRIPTION

The Q3Renderer_GetType function returns, as its function result, the type of
the renderer object specified by the renderer parameter. The types of renderer
objects currently supported by QuickDraw 3D are defined by these constants:

kQ3RendererTypeWireFrame

kQ3RendererTypeGeneric

kQ3RendererTypeInteractive

If the specified renderer object is invalid or is not one of these types,
Q3Renderer_GetType returns the value kQ3ObjectTypeInvalid.

Q3Renderer_Sync 11

You can use the Q3Renderer_Sync function to ensure that a drawing operation
has completed.

TQ3Status Q3Renderer_Sync (

TQ3RendererObject renderer,

TQ3ViewObject view);

renderer A renderer.

view A view.

C H A P T E R 1 1

Renderer Objects

11-16 Renderer Objects Reference

DESCRIPTION

The Q3Renderer_Sync function waits until the completion of the drawing that
is currently being performed by the renderer specified by the renderer
parameter in the view specified by the view parameter. If the specified renderer
is implemented entirely in software, calling the Q3Renderer_Sync function has
no effect. If, however, the specified renderer relies on a hardware accelerator for
some or all of its operation, the Q3Renderer_Sync function waits until the
renderer is done drawing in the specified view and then returns. In either
case, therefore, you can safely perform any operations that depend on the
completion of a renderer’s drawing after Q3Renderer_Sync returns kQ3Success.

SPECIAL CONSIDERATIONS

Calling the Q3Renderer_Sync function can adversely affect the performance of
your application. You should call this function only when you need to know
that a drawing operation has completed (for example, if you want to allow the
user to select objects in the model by clicking on the model’s image on the
screen, or if you want to grab a copy of the image on the screen).

Q3Renderer_Flush 11

You can use the Q3Renderer_Flush function to flush any image buffers
maintained internally by a renderer.

TQ3Status Q3Renderer_Flush (

TQ3RendererObject renderer,

TQ3ViewObject view);

renderer A renderer.

view A view.

DESCRIPTION

The Q3Renderer_Flush function flushes any image buffers maintained
internally by the renderer specified by the renderer parameter when drawing
in the view specified by the view parameter. This function is useful only when
the draw context associated with the specified view is in single-buffering

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 11-17

mode. In that case, the renderer might need to allocate a temporary buffer to
hold data before it can render an image. In general, the user will not see any of
the image until your application calls Q3View_EndRendering. You can,
however, call the Q3Renderer_Flush function inside the rendering loop to
force the renderer to draw objects as they are submitted for drawing.

SPECIAL CONSIDERATIONS

Calling the Q3Renderer_Flush function can adversely affect the performance
of your application. You should call this function only when you need to force
the renderer to draw objects as they are submitted for drawing.

Managing Interactive Renderers 11

QuickDraw 3D provides routines that you can use to manage interactive
renderers.

Q3InteractiveRenderer_GetPreferences 11

You can use the Q3InteractiveRenderer_GetPreferences function to get the
current preference settings of the interactive renderer.

TQ3Status Q3InteractiveRenderer_GetPreferences (

TQ3RendererObject renderer,

long *vendorID,

long *engineID);

renderer An interactive renderer.

vendorID On exit, the vendor ID currently associated with the interactive
renderer. See “Vendor IDs” on page 11-11 for the values that can
be returned in this parameter.

engineID On exit, the engine ID currently associated with the interactive
renderer. See “Engine IDs” on page 11-11 for the values that can
be returned in this parameter.

C H A P T E R 1 1

Renderer Objects

11-18 Renderer Objects Reference

DESCRIPTION

The Q3InteractiveRenderer_GetPreferences function returns, in the
vendorID and engineID parameters, the vendor and engine IDs currently
associated with the interactive renderer specified by the renderer parameter.

Q3InteractiveRenderer_SetPreferences 11

You can use the Q3InteractiveRenderer_SetPreferences function to set the
preference settings of the interactive renderer.

TQ3Status Q3InteractiveRenderer_SetPreferences (

TQ3RendererObject renderer,

long vendorID,

long engineID);

renderer An interactive renderer.

vendorID A vendor ID. See “Vendor IDs” on page 11-11 for the values you
can pass in this parameter.

engineID An engine ID. See “Engine IDs” on page 11-11 for the values
you can pass in this parameter.

DESCRIPTION

The Q3InteractiveRenderer_SetPreferences function sets the default
vendor and engine to be used by the interactive renderer specified by the
renderer parameter to the values passed in the vendorID and engineID
parameters.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 11-19

Q3InteractiveRenderer_GetCSGEquation 11

You can use the Q3InteractiveRenderer_GetCSGEquation function to get the
CSG equation used by the interactive renderer.

TQ3Status Q3InteractiveRenderer_GetCSGEquation (

TQ3RendererObject renderer,

TQ3CSGEquation *equation);

renderer An interactive renderer.

equation On exit, the CSG equation currently associated with the
interactive renderer. See “CSG Equations” on page 11-12 for the
values that can be returned in this parameter.

DESCRIPTION

The Q3InteractiveRenderer_GetCSGEquation function returns, in the
equation parameter, the CSG equation currently associated with the
interactive renderer specified by the renderer parameter.

Q3InteractiveRenderer_SetCSGEquation 11

You can use the Q3InteractiveRenderer_SetCSGEquation function to set the
CSG equation used by the interactive renderer.

TQ3Status Q3InteractiveRenderer_SetCSGEquation (

TQ3RendererObject renderer,

TQ3CSGEquation equation);

renderer An interactive renderer.

equation A CSG equation. See “CSG Equations” on page 11-12 for the
values you can pass in this parameter.

C H A P T E R 1 1

Renderer Objects

11-20 Renderer Objects Reference

DESCRIPTION

The Q3InteractiveRenderer_SetCSGEquation function sets the CSG
equation to be used by the interactive renderer specified by the renderer
parameter to the equation specified by the equation parameter.

Q3InteractiveRenderer_GetDoubleBufferBypass 11

You can use the Q3InteractiveRenderer_GetDoubleBufferBypass function
to get the current double buffer bypass state of the interactive renderer.

TQ3Status Q3InteractiveRenderer_GetDoubleBufferBypass (

TQ3RendererObject renderer,

TQ3Boolean *bypass);

renderer An interactive renderer.

bypass On exit, a Boolean value that indicates the current double buffer
bypass state of the specified interactive renderer.

DESCRIPTION

The Q3InteractiveRenderer_GetDoubleBufferBypass function returns, in
the bypass parameter, a Boolean value that indicates the current double buffer
bypass state of the interactive renderer specified by the renderer parameter. If
bypass is kQ3True, double buffering is currently being bypassed.

Q3InteractiveRenderer_SetDoubleBufferBypass 11

You can use the Q3InteractiveRenderer_SetDoubleBufferBypass function
to set the double buffer bypass state of the interactive renderer.

TQ3Status Q3InteractiveRenderer_SetDoubleBufferBypass (

TQ3RendererObject renderer,

TQ3Boolean bypass);

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 11-21

renderer An interactive renderer.

bypass A Boolean value that indicates the desired double buffer bypass
state of the specified interactive renderer.

DESCRIPTION

The Q3InteractiveRenderer_SetDoubleBufferBypass function sets the state
of double buffer bypassing for the interactive renderer specified by the
renderer parameter to the Boolean value specified by the bypass parameter.

C H A P T E R 1 1

Renderer Objects

11-22 Summary of Renderer Objects

Summary of Renderer Objects 11

C Summary 11

Constants 11

Renderer Types

#define kQ3RendererTypeWireFrame Q3_OBJECT_TYPE('w','r','f','r')

#define kQ3RendererTypeGeneric Q3_OBJECT_TYPE('g','n','r','r')

#define kQ3RendererTypeInteractive Q3_OBJECT_TYPE('c','t','w','n')

Vendor IDs

#define kQAVendor_BestChoice (-1)

#define kQAVendor_Apple 0

Engine IDs

#define kQAEngine_AppleHW (-1)

#define kQAEngine_AppleSW 0

CSG Attribute Type

#define kQ3AttributeType_ConstructiveSolidGeometryID\

Q3_OBJECT_TYPE('c','s','g','i')

C H A P T E R 1 1

Renderer Objects

Summary of Renderer Objects 11-23

CSG Object IDs

#define kQ3SolidGeometryObjA 0

#define kQ3SolidGeometryObjB 1

#define kQ3SolidGeometryObjC 2

#define kQ3SolidGeometryObjD 3

#define kQ3SolidGeometryObjE 4

CSG Equations

typedef enum TQ3CSGEquation {

kQ3CSGEquationAandB = (int) 0x88888888,

kQ3CSGEquationAandnotB = 0x22222222,

kQ3CSGEquationAanBonCad = 0x2F222F22,

kQ3CSGEquationnotAandB = 0x44444444,

kQ3CSGEquationnAaBorCanD = 0x74747474

} TQ3CSGEquation;

Renderer Objects Routines 11

Creating and Managing Renderers

TQ3RendererObject Q3Renderer_NewFromType (

TQ3ObjectType rendererObjectType);

TQ3ObjectType Q3Renderer_GetType (

TQ3RendererObject renderer);

TQ3Status Q3Renderer_Sync (TQ3RendererObject renderer,

TQ3ViewObject view);

TQ3Status Q3Renderer_Flush (TQ3RendererObject renderer,

TQ3ViewObject view);

C H A P T E R 1 1

Renderer Objects

11-24 Summary of Renderer Objects

Managing Interactive Renderers

TQ3Status Q3InteractiveRenderer_GetPreferences (

TQ3RendererObject renderer,

long *vendorID,

long *engineID);

TQ3Status Q3InteractiveRenderer_SetPreferences (

TQ3RendererObject renderer,

long vendorID,

long engineID);

TQ3Status Q3InteractiveRenderer_GetCSGEquation (

TQ3RendererObject renderer,

TQ3CSGEquation *equation);

TQ3Status Q3InteractiveRenderer_SetCSGEquation (

TQ3RendererObject renderer,

TQ3CSGEquation equation);

TQ3Status Q3InteractiveRenderer_GetDoubleBufferBypass (

TQ3RendererObject renderer,

TQ3Boolean *bypass);

TQ3Status Q3InteractiveRenderer_SetDoubleBufferBypass (

TQ3RendererObject renderer,

TQ3Boolean bypass);

Errors and Warnings 11

kQ3ErrorUnknownStudioType
kQ3ErrorAlreadyRendering
kQ3ErrorStartGroupRange
kQ3ErrorUnsupportedGeometryType
kQ3ErrorInvalidGeometryType
kQ3ErrorUnsupportedFunctionality
kQ3WarningFunctionalityNotSupported

C H A P T E R 1 2

Contents

12-1

Contents

Figure 12-0
Listing 12-0
Table 12-0

12 Draw Context Objects

About Draw Context Objects 12-3
Macintosh Draw Contexts 12-5
Pixmap Draw Contexts 12-6

Using Draw Context Objects 12-7
Creating and Configuring a Draw Context 12-7
Using Double Buffering 12-8

Draw Context Objects Reference 12-8
Data Structures 12-8

Draw Context Data Structure 12-9
Macintosh Draw Context Structure 12-10
Pixmap Draw Context Structure 12-12

Draw Context Objects Routines 12-12
Managing Draw Contexts 12-12
Managing Macintosh Draw Contexts 12-22
Managing Pixmap Draw Contexts 12-27

Summary of the Draw Context Objects 12-30
C Summary 12-30

Constants 12-30
Data Types 12-30
Draw Context Objects Routines 12-31

Errors, Warnings, and Notices 12-34

This document was created with FrameMaker 4.0.4

C H A P T E R 1 2

About Draw Context Objects

12-3

Draw Context Objects 12

This chapter describes draw context objects (or draw contexts) and the
functions you can use to manipulate them. You use draw contexts to connect
your application to a specific drawing destination, such as a window system.
For example, to draw into a Macintosh window, you create an instance of a
Macintosh draw context object and attach it to a view.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about attaching a draw context to a view, see the chapter
“View Objects” in this book. You do not, however, need to know how to create
or manipulate views to read this chapter.

This chapter begins by describing draw contexts and their features. Then it
shows how to configure the settings of a draw context object. The section
“Draw Context Objects Reference,” beginning on page 12-8 provides a
complete description of draw context objects and the routines you can use to
create and manipulate them.

About Draw Context Objects 12

The QuickDraw 3D graphics library is able to direct its output—a rendered
image—into one or more destinations (hereafter called its

drawing
destinations

). For instance, you can use QuickDraw 3D to draw three-
dimensional images into a standard Macintosh window. To achieve this
cross-platform drawing capability, and thereby to insulate most of the
application programming interfaces from details of the underlying drawing
destination, QuickDraw 3D uses objects called draw context objects. A

draw context object

 (or, more briefly, a

draw context

) is a QuickDraw 3D
object that maintains information specific to a particular window system or
drawing destination.

In general, QuickDraw 3D does not duplicate existing methods of creating,
handling user actions in, or manipulating drawing destinations. For example,
QuickDraw 3D does not provide any means of creating a Macintosh window,
handling events in the window, or modifying the size or location of the
window. A QuickDraw 3D draw context, which provides a link between your
application and the Macintosh window, simply contains the minimum amount
of information it needs to draw into the window. You must use the Window
Manager for all other operations on a Macintosh window.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 2

Draw Context Objects

12-4

About Draw Context Objects

A draw context is of type

TQ3DrawContextObject

, which is a subtype of
shared object. You need to create an instance of a specific type of draw context
object and then attach it to a view, usually by calling

Q3View_SetDrawContext

.
QuickDraw 3D currently supports these types of draw contexts:

■

Macintosh draw contexts

■

pixmap draw contexts

Not all drawing destinations are windows. QuickDraw 3D supports the
pixmap draw context for drawing an image into an arbitrary region of memory
(that is, a pixmap). You can, if necessary, even create instances of several
kinds of draw contexts and draw the same scene into several different kinds
of windows.

All draw contexts share a set of basic properties, which are maintained in a
structure of type

TQ3DrawContextData

.

typedef struct TQ3DrawContextData {

TQ3DrawContextClearImageMethod clearImageMethod;

TQ3ColorARGB clearImageColor;

TQ3Area pane;

TQ3Boolean paneState;

TQ3Bitmap mask;

TQ3Boolean maskState;

TQ3Boolean doubleBufferState;

} TQ3DrawContextData;

These properties define the manner in which a window (or region of memory)
is cleared, the size of the destination drawing pane, the drawing mask, and the
state of the double buffering. These basic properties are designed to be
independent of any particular window system. You can rely on the capabilities
provided by these properties across window systems, whether or not the
drawing destination supports them.

C H A P T E R 1 2

Draw Context Objects

About Draw Context Objects

12-5

Note

Not all the basic properties maintained in the

TQ3DrawContextData

 data structure are supported by all
draw contexts. For example, it makes no sense to use
double buffering when drawing into a pixmap.

◆

In addition to these basic properties that are common to all draw contexts, each
specific type of draw context defines context-specific properties. For example,
the Macintosh draw context maintains information about the window into
which QuickDraw 3D is to draw, the optional use of a two-dimensional
graphics library (QuickDraw or QuickDraw GX), and so forth. The following
sections describe the specific draw context types.

Macintosh Draw Contexts 12

A

Macintosh draw context

 is a draw context associated with a Macintosh
window. You specify a Macintosh window by providing a pointer to a window
(of type

CWindowPtr

) which defines the area into which QuickDraw 3D will
draw images of rendered models. In addition, you can attach to a Macintosh
draw context either a QuickDraw color graphics port (of type

CGrafPort

) or
a QuickDraw GX view port (of type

gxViewPort

). Using this optional
two-dimensional graphics library, you can achieve special effects such as
clipping, dithering, and geometrical transforms of the image. At most one 2D
graphics library can be associated with a Macintosh draw context at one time,
and you are responsible for initializing the graphics library and performing
any other required set-up.

QuickDraw 3D cannot use a two-dimensional graphics library unless the draw
context is configured for double buffering and the active buffer is set to the
back buffer. QuickDraw and QuickDraw GX effects are applied when the front
buffer is updated from the back buffer. Figure 12-1 illustrates the three
possibilities for drawing in a Macintosh draw context. You can use QuickDraw
to set a clip region (middle possibility) and QuickDraw GX to set a clip shape
(right possibility).

C H A P T E R 1 2

Draw Context Objects

12-6

About Draw Context Objects

Figure 12-1

Using a two-dimensional graphics library in a Macintosh draw context

Pixmap Draw Contexts 12

A

pixmap draw context

 is a draw context associated with a pixmap, that is, a
region of memory not directly associated with a window. The two-dimensional
image produced by the renderer is simply written into that memory region.

Note

See the chapter “Geometric Objects” for information
on the structure of pixmaps.

◆

To draw an image into an offscreen graphics world (pointed to by a variable of
type

GWorldPtr

), for instance, you need to (1) create the offscreen graphics
world using standard QuickDraw routines, (2) call

LockPixels

 to lock the
pixels in memory, and (3) create a pixmap draw context in which the address of
the pixmap is the pointer returned by the

GetPixBaseAddr

 function. You need
to lock the pixmap in memory because QuickDraw 3D routines may move or
purge memory.

library

CWindowPtr CGrafPtr gxViewport

kQ3Mac2DLibraryNone kQ3Mac2DLibraryQuickDraw kQ3Mac2DLibraryQuickDrawGX

C H A P T E R 1 2

Draw Context Objects

Using Draw Context Objects

12-7

Note

See the book

Inside Macintosh: Imaging With QuickDraw

 for
complete information about offscreen graphics worlds.

◆

You can update a window without rendering to it by rendering to an offscreen
graphics world and then copying the data to the window.

Using Draw Context Objects 12

QuickDraw 3D supplies routines that you can use to create and configure draw
context objects. This section describes how to accomplish these tasks.

Creating and Configuring a Draw Context 12

You create a draw context object by calling a constructor function such as

Q3MacDrawContext_New

 or

Q3PixMapDrawContext_New

. These functions
take as a parameter a pointer to a data structure that contains information
about the draw context you want to create. For example, you pass the

Q3MacDrawContext_New

 function a pointer to a structure of type

TQ3MacDrawContextData

, defined as follows:

typedef struct TQ3MacDrawContextData {

TQ3DrawContextData drawContextData;

CWindowPtr window;

TQ3MacDrawContext2DLibrary library;

gxViewPort viewPort;

CGrafPtr grafPort;

} TQ3MacDrawContextData;

The first field is just a draw context data structure that contains basic
information about the draw context (see page 12-4). The remaining fields
contain specific information about the Macintosh window and 2D graphics
library associated with the draw context.

See Listing 1-7 on page 1-27 for a sample routine that creates a Macintosh
draw context.

C H A P T E R 1 2

Draw Context Objects

12-8

Draw Context Objects Reference

Using Double Buffering 12

In general, when drawing to a screen or other device visible by the user, you’ll
want to use QuickDraw 3D’s double buffering capability to reduce the amount
of flicker that occurs when the image on the screen is updated. You enable
double buffering by calling

Q3DrawContext_SetDoubleBufferState

 or by
setting the

doubleBufferState

 field of a draw context data structure to

kQ3True

 before calling the draw context constructor method.

Note

In general, QuickDraw 3D will take advantage of any
double buffering capabilities available on the target
window system.

◆

When double buffering is active for a draw context, the draw context is
associated with two buffers, the front buffer and the back buffer. The front
buffer is the area of memory that is being displayed on the screen. The back
buffer is some other area of memory that has the same size as the front buffer.

When double buffering is active, all drawing (as performed by routines such as

Q3Group_Submit

 in a rendering loop) is done into the back buffer, and the front
buffer is updated only after the call to

Q3View_EndRendering

 on the final pass
through your rendering loop. Some renderers (especially those that rely on
hardware accelerators) may return control to your application before the image
on the screen has been updated. You can call the

Q3Renderer_Sync

 function to
block execution until the renderer is done drawing in the screen’s draw
context. You might want to do this if you intend to grab the image on the
screen or if you intend to allow the user to pick objects displayed on the screen.
See the chapter “Renderer Objects” for complete information about calling

Q3Renderer_Sync

.

Draw Context Objects Reference 12

This section describes the QuickDraw 3D data structures and routines that you
can use to manage drawing contexts.

Data Structures 12

QuickDraw 3D provides data structures that you can use to define
draw contexts.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference

12-9

Draw Context Data Structure 12

QuickDraw 3D defines the

draw context data structure

 to maintain
information that is common to all the supported draw contexts. The draw
context data structure is defined by the

TQ3DrawContextData

 data type.

typedef struct TQ3DrawContextData {

TQ3DrawContextClearImageMethod clearImageMethod;

TQ3ColorARGB clearImageColor;

TQ3Area pane;

TQ3Boolean paneState;

TQ3Bitmap mask;

TQ3Boolean maskState;

TQ3Boolean doubleBufferState;

} TQ3DrawContextData;

Field descriptions

clearImageMethod

A constant that indicates how the drawing destination
should be cleared. You can use these constants to specify a
method to clear the image.

typedef enum TQ3DrawContextClearImageMethod {

kQ3ClearMethodNone,

kQ3ClearMethodWithColor

} TQ3DrawContextClearImageMethod;

The constant

kQ3ClearMethodNone

 indicates that the
drawing destination should not be cleared. The exact
behavior when

Q3View_StartRendering

 is called is
renderer-dependent. For example, some renderers expect
to redraw every pixel in the drawing destination. By
specifying

kQ3ClearMethodNone

, you allow those
renderers to apply optimizations during rendering. The
constant

kQ3ClearMethodWithColor

 indicates that the
drawing destination should be cleared with the color
specified in the

clearImageColor

 field.

clearImageColor

The color to be used when clearing the drawing
destination with a color. This field is ignored unless
the value in the

clearImageMethod

 field is

kQ3ClearMethodWithColor

.

C H A P T E R 1 2

Draw Context Objects

12-10

Draw Context Objects Reference

pane

The rectangular area (specified in window coordinates)
in the drawing destination within which all drawing
occurs. If the output pane is smaller than the window’s
port rectangle, the image is scaled (not clipped) to fit into
the pane.

paneState

A Boolean value that determines whether the area
specified in the

pane

 field is to be used (

kQ3True

) or is to
be ignored (

kQ3False

). Set this field to

kQ3False

 to use the
entire window as the output pane. If this field is set to

kQ3True

, the

pane

 field must contain a valid area.

mask

A bitmap that is used to mask out certain portions of
the drawing destination. Each bit in the bitmap
corresponds to a pixel in the drawing area. If a bit is set,
the corresponding pixel is drawn; if a bit is clear, the
corresponding pixel is not drawn. If the value in this field
is

NULL

, the entire window is used as the clipping region.

maskState A Boolean value that determines whether the mask
specified in the mask field is to be used (kQ3True) or is to
be ignored (kQ3False). If this field is set to kQ3True, the
mask field must contain a valid bitmap.

doubleBufferState

A Boolean value that determines whether double buffering
is to used for the drawing destination (kQ3True) or not
(kQ3False). When double buffering is enabled, the back
buffer is the active buffer.

Macintosh Draw Context Structure 12

QuickDraw 3D defines the Macintosh draw context data structure to maintain
information that is specific to Macintosh draw contexts. The Macintosh draw
context data structure is defined by the TQ3MacDrawContextData data type.

typedef struct TQ3MacDrawContextData {

TQ3DrawContextData drawContextData;

CWindowPtr window;

TQ3MacDrawContext2DLibrary library;

gxViewPort viewPort;

CGrafPtr grafPort;

} TQ3MacDrawContextData;

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-11

Field descriptions
drawContextData

A draw context data structure defining basic information
about the draw context.

window A pointer to a window.
library The two-dimensional graphics library to use when

rendering an image. You can use these constants to specify
a 2D graphics library:

typedef enum TQ3MacDrawContext2DLibrary {

kQ3Mac2DLibraryNone,

kQ3Mac2DLibraryQuickDraw,

kQ3Mac2DLibraryQuickDrawGX

} TQ3MacDrawContext2DLibrary;

The constants kQ3Mac2DLibraryQuickDraw and
kQ3Mac2DLibraryQuickDrawGX indicate that the renderer
should use QuickDraw or QuickDraw GX, respectively,
in the final stage of rendering. Either the viewPort
or the grafPort field must contain a non-null value
if QuickDraw or QuickDraw GX is to be used. The
two-dimensional library is used only when copying from
the back to the front buffer, never when drawing directly
to the front buffer.

viewPort A view port, as defined by QuickDraw GX. See the book
Inside Macintosh: QuickDraw GX Objects for complete
information about view ports.

grafPort A graphics port, as defined by QuickDraw. See the book
Inside Macintosh: Imaging With QuickDraw for complete
information about graphics ports.

C H A P T E R 1 2

Draw Context Objects

12-12 Draw Context Objects Reference

Pixmap Draw Context Structure 12

QuickDraw 3D defines the pixmap draw context data structure to maintain
information that is specific to pixmap draw contexts. The pixmap draw context
data structure is defined by the TQ3PixmapDrawContextData data type.

typedef struct TQ3PixmapDrawContextData {

TQ3DrawContextData drawContextData;

TQ3Pixmap pixmap;

} TQ3PixmapDrawContextData;

Field descriptions
drawContextData

A draw context data structure defining basic information
about the draw context.

pixmap A pixmap (that is, a pixel map in memory). This pixmap is
assumed to have a pixel size of 24 bits.

Draw Context Objects Routines 12

This section describes routines you can use to manage draw contexts.

Managing Draw Contexts 12

QuickDraw 3D provides a number of general routines for operating with draw
context objects.

Q3DrawContext_GetType 12

You can use the Q3DrawContext_GetType function to get the type of a
draw context.

TQ3ObjectType Q3DrawContext_GetType (

TQ3DrawContextObject drawContext);

drawContext

A draw context object.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-13

DESCRIPTION

The Q3DrawContext_GetType function returns, as its function result, the type
of the draw context specified by the drawContext parameter. The types of
draw contexts currently supported by QuickDraw 3D are defined by these
constants:

kQ3DrawContextTypeMacintosh

kQ3DrawContextTypePixmap

Q3DrawContext_GetData 12

You can use the Q3DrawContext_GetData function to get the data associated
with a draw context.

TQ3Status Q3DrawContext_GetData (

TQ3DrawContextObject context,

TQ3DrawContextData *contextData);

context A draw context object.

contextData On exit, a pointer to a draw context data structure.

DESCRIPTION

The Q3DrawContext_GetData function returns, in the contextData parameter,
a pointer to a draw context data structure for the draw context specified by the
context parameter.

C H A P T E R 1 2

Draw Context Objects

12-14 Draw Context Objects Reference

Q3DrawContext_SetData 12

You can use the Q3DrawContext_SetData function to set the data associated
with a draw context.

TQ3Status Q3DrawContext_SetData (

TQ3DrawContextObject context,

const TQ3DrawContextData *contextData);

context A draw context object.

contextData A pointer to a draw context data structure.

DESCRIPTION

The Q3DrawContext_SetData function sets the data associated with the draw
context specified by the context parameter to that specified in the draw
context data structure pointed to by the contextData parameter.

Q3DrawContext_GetClearImageColor 12

You can use the Q3DrawContext_GetClearImageColor function to get the
image clearing color of a draw context.

TQ3Status Q3DrawContext_GetClearImageColor (

TQ3DrawContextObject context,

TQ3ColorARGB *color);

context A draw context object.

color On exit, the current image clearing color of the specified
draw context.

DESCRIPTION

The Q3DrawContext_GetClearImageColor function returns, in the color
parameter, a constant that indicates the current image clearing color for the
draw context specified by the context parameter.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-15

Q3DrawContext_SetClearImageColor 12

You can use the Q3DrawContext_SetClearImageColor function to set the
image clearing color of a draw context.

TQ3Status Q3DrawContext_SetClearImageColor (

TQ3DrawContextObject context,

const TQ3ColorARGB *color);

context A draw context object.

color The desired image clearing color of the specified draw context.

DESCRIPTION

The Q3DrawContext_SetClearImageColor function sets the image clearing
color of the draw context specified by the context parameter to the value
specified in the color parameter.

Q3DrawContext_GetPane 12

You can use the Q3DrawContext_GetPane function to get the pane of a
draw context.

TQ3Status Q3DrawContext_GetPane (

TQ3DrawContextObject context,

TQ3Area *pane);

context A draw context object.

pane On exit, the area in the specified draw context in which all
drawing occurs.

DESCRIPTION

The Q3DrawContext_GetPane function returns, in the pane parameter, the
area in the draw context specified by the context parameter in which all
drawing occurs.

C H A P T E R 1 2

Draw Context Objects

12-16 Draw Context Objects Reference

Q3DrawContext_SetPane 12

You can use the Q3DrawContext_SetPane function to set the pane of a
draw context.

TQ3Status Q3DrawContext_SetPane (

TQ3DrawContextObject context,

const TQ3Area *pane);

context A draw context object.

pane The area in the specified draw context in which all drawing
should occur.

DESCRIPTION

The Q3DrawContext_SetPane function sets the area of the draw context
specified by the context parameter within which all drawing is to occur to
the area specified in the pane parameter.

Q3DrawContext_GetPaneState 12

You can use the Q3DrawContext_GetPaneState function to get the pane state
of a draw context.

TQ3Status Q3DrawContext_GetPaneState (

TQ3DrawContextObject context,

TQ3Boolean *state);

context A draw context object.

state On exit, the current pane state of the specified draw context.

DESCRIPTION

The Q3DrawContext_GetPaneState function returns, in the state parameter,
a Boolean value that determines whether the pane associated with the
draw context specified by the context parameter is to be used (kQ3True) or
not (kQ3False).

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-17

Q3DrawContext_SetPaneState 12

You can use the Q3DrawContext_SetPaneState function to set the pane state
of a draw context.

TQ3Status Q3DrawContext_SetPaneState (

TQ3DrawContextObject context,

TQ3Boolean state);

context A draw context object.

state The desired pane state of the specified draw context.

DESCRIPTION

The Q3DrawContext_SetPaneState function sets the pane state of the draw
context specified by the context parameter to the value specified in the state
parameter. If the value of state is kQ3True, the pane associated with that draw
context is to be used; if kQ3False, the pane is not used.

Q3DrawContext_GetClearImageMethod 12

You can use the Q3DrawContext_GetClearImageMethod function to get the
image clearing method of a draw context.

TQ3Status Q3DrawContext_GetClearImageMethod (

TQ3DrawContextObject context,

TQ3DrawContextClearImageMethod *method);

context A draw context object.

method On exit, the current image clearing method of the specified
draw context. See page 12-9 for the values that can be returned
in this parameter.

C H A P T E R 1 2

Draw Context Objects

12-18 Draw Context Objects Reference

DESCRIPTION

The Q3DrawContext_GetClearImageMethod function returns, in the method
parameter, a constant that indicates the current image clearing method for the
draw context specified by the context parameter.

Q3DrawContext_SetClearImageMethod 12

You can use the Q3DrawContext_SetClearImageMethod function to set the
image clearing method of a draw context.

TQ3Status Q3DrawContext_SetClearImageMethod (

TQ3DrawContextObject context,

TQ3DrawContextClearImageMethod method);

context A draw context object.

method The desired image clearing method of the specified draw
context. See page 12-9 for the values that can be passed in
this parameter.

DESCRIPTION

The Q3DrawContext_SetClearImageMethod function sets the image clearing
method of the draw context specified by the context parameter to the value
specified in the method parameter.

Q3DrawContext_GetMask 12

You can use the Q3DrawContext_GetMask function to get the mask of a
draw context.

TQ3Status Q3DrawContext_GetMask (

TQ3DrawContextObject context,

TQ3Bitmap *mask);

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-19

context A draw context object.

mask On exit, the mask of the specified draw context.

DESCRIPTION

The Q3DrawContext_GetMask function returns, in the mask parameter,
the current mask for the draw context specified by the context parameter.
The mask is a bitmap whose bits determine whether or not corresponding
pixels in the drawing destination are drawn or are masked out.
Q3DrawContext_GetMask allocates memory internally for the returned bitmap;
when you’re done using the bitmap, you should call the Q3Bitmap_Empty
function to dispose of that memory.

Q3DrawContext_SetMask 12

You can use the Q3DrawContext_SetMask function to set the mask of a
draw context.

TQ3Status Q3DrawContext_SetMask (

TQ3DrawContextObject context,

const TQ3Bitmap *mask);

context A draw context object.

mask The desired mask of the specified draw context.

DESCRIPTION

The Q3DrawContext_SetMask function sets the mask of the draw context
specified by the context parameter to the bitmap specified in the mask
parameter. Q3DrawContext_SetMask copies the bitmap to internal
QuickDraw 3D memory, so you can dispose of the specified bitmap after
calling Q3DrawContext_SetMask.

C H A P T E R 1 2

Draw Context Objects

12-20 Draw Context Objects Reference

Q3DrawContext_GetMaskState 12

You can use the Q3DrawContext_GetMaskState function to get the mask state
of a draw context.

TQ3Status Q3DrawContext_GetMaskState (

TQ3DrawContextObject context,

TQ3Boolean *state);

context A draw context object.

state On exit, the current mask state of the specified draw context.

DESCRIPTION

The Q3DrawContext_GetMaskState function returns, in the state parameter,
a Boolean value that determines whether the mask associated with the
draw context specified by the context parameter is to be used (kQ3True) or
not (kQ3False).

Q3DrawContext_SetMaskState 12

You can use the Q3DrawContext_SetMaskState function to set the mask state
of a draw context.

TQ3Status Q3DrawContext_SetMaskState (

TQ3DrawContextObject context,

TQ3Boolean state);

context A draw context object.

state The desired mask state of the specified draw context.

DESCRIPTION

The Q3DrawContext_SetMaskState function sets the mask state of the draw
context specified by the context parameter to the value specified in the state

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-21

parameter. Set state to kQ3True if you want the mask enabled and to
kQ3False otherwise.

Q3DrawContext_GetDoubleBufferState 12

You can use the Q3DrawContext_GetDoubleBufferState function to get the
double buffer state of a draw context.

TQ3Status Q3DrawContext_GetDoubleBufferState (

TQ3DrawContextObject context,

TQ3Boolean *state);

context A draw context object.

state On exit, the current mask state of the specified draw context.

DESCRIPTION

The Q3DrawContext_GetDoubleBufferState function returns, in the state
parameter, a Boolean value that determines whether double buffering is
enabled for the draw context specified by the context parameter (kQ3True) or
not (kQ3False).

Q3DrawContext_SetDoubleBufferState 12

You can use the Q3DrawContext_SetDoubleBufferState function to set the
double buffer state of a draw context.

TQ3Status Q3DrawContext_SetDoubleBufferState (

TQ3DrawContextObject context,

TQ3Boolean state);

context A draw context object.

state The desired mask state of the specified draw context.

C H A P T E R 1 2

Draw Context Objects

12-22 Draw Context Objects Reference

DESCRIPTION

The Q3DrawContext_SetDoubleBufferState function sets the double buffer
state of the draw context specified by the context parameter to the value
specified in the state parameter. Set state to kQ3True if you want the double
buffering enabled and to kQ3False otherwise. When you enable double
buffering, the active buffer is the back buffer.

Managing Macintosh Draw Contexts 12

QuickDraw 3D provides routines that you can use to create and manipulate
Macintosh draw contexts.

Q3MacDrawContext_New 12

You can use the Q3MacDrawContext_New function to create a new Macintosh
draw context.

TQ3DrawContextObject Q3MacDrawContext_New (

const TQ3MacDrawContextData *drawContextData);

drawContextData

A pointer to a Macintosh draw context data structure.

DESCRIPTION

The Q3MacDrawContext_New function returns, as its function result, a
new draw context object having the characteristics specified by the
drawContextData parameter. See “Macintosh Draw Context Structure” on
page 12-10 for information on the drawContextData parameter.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-23

Q3MacDrawContext_GetWindow 12

You can use the Q3MacDrawContext_GetWindow function to get the window
associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_GetWindow (

TQ3DrawContextObject drawContext,

CWindowPtr *window);

drawContext A Macintosh draw context object.

window On exit, a pointer to a window.

DESCRIPTION

The Q3MacDrawContext_GetWindow function returns, in the window parameter,
a pointer to the window currently associated with the draw context specified
by the drawContext parameter.

Q3MacDrawContext_SetWindow 12

You can use the Q3MacDrawContext_SetWindow function to set the window
associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_SetWindow (

TQ3DrawContextObject drawContext,

const CWindowPtr window);

drawContext A Macintosh draw context object.

window A pointer to a window.

DESCRIPTION

The Q3MacDrawContext_SetWindow function sets the window associated with
the draw context specified by the drawContext parameter to the window
specified by the window parameter.

C H A P T E R 1 2

Draw Context Objects

12-24 Draw Context Objects Reference

Q3MacDrawContext_Get2DLibrary 12

You can use the Q3MacDrawContext_Get2DLibrary function to get the
two-dimensional drawing library associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_Get2DLibrary (

TQ3DrawContextObject drawContext,

TQ3MacDrawContext2DLibrary *library);

drawContext A Macintosh draw context object.

library On exit, a constant that specifies the two-dimensional graphics
library used when rendering an image in the specified draw
context. See page 12-11 for the values that can be returned in
this field.

DESCRIPTION

The Q3MacDrawContext_Get2DLibrary function returns, in the library
parameter, the two-dimensional drawing library currently associated with the
draw context specified by the drawContext parameter.

Q3MacDrawContext_Set2DLibrary 12

You can use the Q3MacDrawContext_Set2DLibrary function to set the
two-dimensional drawing library associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_Set2DLibrary (

TQ3DrawContextObject drawContext,

TQ3MacDrawContext2DLibrary library);

drawContext A Macintosh draw context object.

library A constant that specifies the desired two-dimensional graphics
library to be used when rendering an image in the specified
draw context. See page 12-11 for the values that can be passed
in this field.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-25

DESCRIPTION

The Q3MacDrawContext_Set2DLibrary function sets the two-dimensional
drawing library associated with the draw context specified by the drawContext
parameter to the library specified by the library parameter.

Q3MacDrawContext_GetGXViewPort 12

You can use the Q3MacDrawContext_GetGXViewPort function to get the
QuickDraw GX view port associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_GetGXViewPort (

TQ3DrawContextObject drawContext,

gxViewPort *viewPort);

drawContext A Macintosh draw context object.

viewPort On exit, the QuickDraw GX view port currently associated with
the specified draw context.

DESCRIPTION

The Q3MacDrawContext_GetGXViewPort function returns, in the viewPort
parameter, the QuickDraw GX view port currently associated with the draw
context specified by the drawContext parameter. If no view port is associated
with the draw context or the two-dimensional graphics library is not set to
kQ3Mac2DLibraryQuickDrawGX, Q3MacDrawContext_GetGXViewPort returns
NULL in the viewPort parameter.

C H A P T E R 1 2

Draw Context Objects

12-26 Draw Context Objects Reference

Q3MacDrawContext_SetGXViewPort 12

You can use the Q3MacDrawContext_SetGXViewPort function to set the
QuickDraw GX view port associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_SetGXViewPort (

TQ3DrawContextObject drawContext,

const gxViewPort viewPort);

drawContext A Macintosh draw context object.

viewPort The QuickDraw GX view port to be associated with the
specified draw context.

DESCRIPTION

The Q3MacDrawContext_SetGXViewPort function sets the QuickDraw GX view
port associated with the draw context specified by the drawContext parameter
to the view port specified by the viewPort parameter. The two-dimensional
graphics library associated with the specified draw context must be
kQ3Mac2DLibraryQuickDrawGX.

Q3MacDrawContext_GetGrafPort 12

You can use the Q3MacDrawContext_GetGrafPort function to get the
QuickDraw graphics port associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_GetGrafPort (

TQ3DrawContextObject drawContext,

CGrafPtr *grafPort);

drawContext A Macintosh draw context object.

grafPort On exit, the QuickDraw graphics port currently associated with
the specified draw context.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-27

DESCRIPTION

The Q3MacDrawContext_GetGrafPort function returns, in the grafPort
parameter, the QuickDraw graphics port currently associated with the draw
context specified by the drawContext parameter. If no graphics port is
associated with the draw context or the two-dimensional graphics library is not
kQ3Mac2DLibraryQuickDraw, Q3MacDrawContext_GetGrafPort returns NULL
in the grafPort parameter.

Q3MacDrawContext_SetGrafPort 12

You can use the Q3MacDrawContext_SetGrafPort function to set the
QuickDraw graphics port associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_SetGrafPort (

TQ3DrawContextObject drawContext,

const CGrafPtr grafPort);

drawContext A Macintosh draw context object.

grafPort The QuickDraw graphics port to be associated with the
specified draw context.

DESCRIPTION

The Q3MacDrawContext_SetGrafPort function sets the QuickDraw graphics
port associated with the draw context specified by the drawContext parameter
to the graphics port specified by the grafPort parameter. The two-dimensional
graphics library associated with the specified draw context must be
kQ3Mac2DLibraryQuickDraw.

Managing Pixmap Draw Contexts 12

QuickDraw 3D provides routines that you can use to create and manipulate
pixmap draw contexts.

C H A P T E R 1 2

Draw Context Objects

12-28 Draw Context Objects Reference

Q3PixmapDrawContext_New 12

You can use the Q3PixmapDrawContext_New function to create a new pixmap
draw context.

TQ3DrawContextObject Q3PixmapDrawContext_New (

const TQ3PixmapDrawContextData *contextData);

contextData A pointer to a pixmap draw context data structure.

DESCRIPTION

The Q3PixmapDrawContext_New function returns, as its function result, a new
draw context object having the characteristics specified by the contextData
parameter.

Q3PixmapDrawContext_GetPixmap 12

You can use the Q3PixmapDrawContext_GetPixmap function to get the pixmap
associated with a pixmap draw context.

TQ3Status Q3PixmapDrawContext_GetPixmap (

TQ3DrawContextObject drawContext,

TQ3Pixmap *pixmap);

drawContext A pixmap draw context object.

pixmap On exit, a pointer to a pixmap.

DESCRIPTION

The Q3PixmapDrawContext_GetPixmap function returns, in the pixmap
parameter, a pointer to the pixmap currently associated with the draw
context specified by the drawContext parameter.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 12-29

Q3PixmapDrawContext_SetPixmap 12

You can use the Q3PixmapDrawContext_SetPixmap function to set the pixmap
associated with a pixmap draw context.

TQ3Status Q3PixmapDrawContext_SetPixmap (

TQ3DrawContextObject drawContext,

const TQ3Pixmap *pixmap);

drawContext A pixmap draw context object.

pixmap A pointer to a pixmap.

DESCRIPTION

The Q3PixmapDrawContext_SetPixmap function sets the pixmap associated
with the draw context specified by the drawContext parameter to the pixmap
specified by the pixmap parameter.

C H A P T E R 1 2

Draw Context Objects

12-30 Summary of the Draw Context Objects

Summary of the Draw Context Objects 12

C Summary 12

Constants 12

#define kQ3DrawContextTypePixmap Q3_OBJECT_TYPE('d','p','x','p')

#define kQ3DrawContextTypeMacintosh Q3_OBJECT_TYPE('d','m','a','c')

typedef enum TQ3DrawContextClearImageMethod {

kQ3ClearMethodNone,

kQ3ClearMethodWithColor

} TQ3DrawContextClearImageMethod;

typedef enum TQ3MacDrawContext2DLibrary {

kQ3Mac2DLibraryNone,

kQ3Mac2DLibraryQuickDraw,

kQ3Mac2DLibraryQuickDrawGX

} TQ3MacDrawContext2DLibrary;

Data Types 12

typedef TQ3SharedObject TQ3DrawContextObject;

Draw Context Data Structure

typedef struct TQ3DrawContextData {

TQ3DrawContextClearImageMethod clearImageMethod;

TQ3ColorARGB clearImageColor;

TQ3Area pane;

TQ3Boolean paneState;

C H A P T E R 1 2

Draw Context Objects

Summary of the Draw Context Objects 12-31

TQ3Bitmap mask;

TQ3Boolean maskState;

TQ3Boolean doubleBufferState;

} TQ3DrawContextData;

Macintosh Draw Context Data Structure

typedef struct TQ3MacDrawContextData {

TQ3DrawContextData drawContextData;

CWindowPtr window;

TQ3MacDrawContext2DLibrary library;

gxViewPort viewPort;

CGrafPtr grafPort;

} TQ3MacDrawContextData;

Pixmap Draw Context Data Structure

typedef struct TQ3PixmapDrawContextData {

TQ3DrawContextData drawContextData;

TQ3Pixmap pixmap;

} TQ3PixmapDrawContextData;

Draw Context Objects Routines 12

Managing Draw Contexts

TQ3ObjectType Q3DrawContext_GetType (

TQ3DrawContextObject drawContext);

TQ3Status Q3DrawContext_GetData (

TQ3DrawContextObject context,

TQ3DrawContextData *contextData);

TQ3Status Q3DrawContext_SetData (

TQ3DrawContextObject context,

const TQ3DrawContextData *contextData);

C H A P T E R 1 2

Draw Context Objects

12-32 Summary of the Draw Context Objects

TQ3Status Q3DrawContext_GetClearImageColor (

TQ3DrawContextObject context,

TQ3ColorARGB *color);

TQ3Status Q3DrawContext_SetClearImageColor (

TQ3DrawContextObject context,

const TQ3ColorARGB *color);

TQ3Status Q3DrawContext_GetPane (

TQ3DrawContextObject context,

TQ3Area *pane);

TQ3Status Q3DrawContext_SetPane (

TQ3DrawContextObject context,

const TQ3Area *pane);

TQ3Status Q3DrawContext_GetPaneState (

TQ3DrawContextObject context,

TQ3Boolean *state);

TQ3Status Q3DrawContext_SetPaneState (

TQ3DrawContextObject context,

TQ3Boolean state);

TQ3Status Q3DrawContext_GetClearImageMethod (

TQ3DrawContextObject context,

TQ3DrawContextClearImageMethod *method);

TQ3Status Q3DrawContext_SetClearImageMethod (

TQ3DrawContextObject context,

TQ3DrawContextClearImageMethod method);

TQ3Status Q3DrawContext_GetMask (

TQ3DrawContextObject context,

TQ3Bitmap *mask);

TQ3Status Q3DrawContext_SetMask (

TQ3DrawContextObject context,

const TQ3Bitmap *mask);

C H A P T E R 1 2

Draw Context Objects

Summary of the Draw Context Objects 12-33

TQ3Status Q3DrawContext_GetMaskState (

TQ3DrawContextObject context,

TQ3Boolean *state);

TQ3Status Q3DrawContext_SetMaskState (

TQ3DrawContextObject context,

TQ3Boolean state);

TQ3Status Q3DrawContext_GetDoubleBufferState (

TQ3DrawContextObject context,

TQ3Boolean *state);

TQ3Status Q3DrawContext_SetDoubleBufferState (

TQ3DrawContextObject context,

TQ3Boolean state);

Managing Macintosh Draw Contexts

TQ3DrawContextObject Q3MacDrawContext_New (

const TQ3MacDrawContextData *drawContextData);

TQ3Status Q3MacDrawContext_GetWindow (

TQ3DrawContextObject drawContext,

CWindowPtr *window);

TQ3Status Q3MacDrawContext_SetWindow (

TQ3DrawContextObject drawContext,

const CWindowPtr window);

TQ3Status Q3MacDrawContext_Get2DLibrary (

TQ3DrawContextObject drawContext,

TQ3MacDrawContext2DLibrary *library);

TQ3Status Q3MacDrawContext_Set2DLibrary (

TQ3DrawContextObject drawContext,

TQ3MacDrawContext2DLibrary library);

TQ3Status Q3MacDrawContext_GetGXViewPort (

TQ3DrawContextObject drawContext,

gxViewPort *viewPort);

C H A P T E R 1 2

Draw Context Objects

12-34 Summary of the Draw Context Objects

TQ3Status Q3MacDrawContext_SetGXViewPort (

TQ3DrawContextObject drawContext,

const gxViewPort viewPort);

TQ3Status Q3MacDrawContext_GetGrafPort (

TQ3DrawContextObject drawContext,

CGrafPtr *grafPort);

TQ3Status Q3MacDrawContext_SetGrafPort (

TQ3DrawContextObject drawContext,

const CGrafPtr grafPort);

Managing Pixmap Draw Contexts

TQ3DrawContextObject Q3PixmapDrawContext_New (

const TQ3PixmapDrawContextData *contextData);

TQ3Status Q3PixmapDrawContext_GetPixmap (

TQ3DrawContextObject drawContext,

TQ3Pixmap *pixmap);

TQ3Status Q3PixmapDrawContext_SetPixmap (

TQ3DrawContextObject drawContext,

const TQ3Pixmap *pixmap);

Errors, Warnings, and Notices 12

kQ3ErrorBadDrawContextType Unrecognized draw context
type

kQ3ErrorBadDrawContextFlag Unrecognized draw context flag
kQ3ErrorBadDrawContext Invalid draw context
kQ3ErrorUnsupportedPixelDepth Specified pixel depth not

supported by draw context
kQ3WarningInvalidPaneDimensions Invalid panel dimensions
kQ3NoticeDrawContextNotSetUsingInternalDefaults Draw context not set

C H A P T E R 1 3

Contents

13-1

Contents

Figure 13-0
Listing 13-0
Table 13-0

13 View Objects

About View Objects 13-3
Using View Objects 13-4

Creating and Configuring a View 13-4
Rendering an Image 13-4

View Objects Reference 13-6
View Objects Routines 13-7

Creating and Configuring Views 13-7
Rendering in a View 13-13
Picking in a View 13-17
Writing in a View 13-19
Bounding in a View 13-21
Setting Idle Methods 13-27
Writing Custom Data 13-28
Pushing and Popping the Graphics State 13-29
Getting a View’s Transforms 13-30
Managing a View’s Style States 13-33
Managing a View’s Attribute Set 13-38

Application-Defined Routines 13-41
Summary of View Objects 13-43

C Summary 13-43
Constants 13-43
View Objects Routines 13-44
Application-Defined Routines 13-48

Errors and Warnings 13-48

This document was created with FrameMaker 4.0.4

C H A P T E R 1 3

About View Objects

13-3

View Objects 13

This chapter describes view objects (or views) and the functions you can use to
manipulate them. You use a view to specify the camera, the group of lights, the
draw context, and the renderer that you want QuickDraw 3D to use when
rendering an image of a model. You also use views when picking and
performing some other operations on a model.

To use this chapter, you should already be familiar with cameras, light groups,
draw contexts, and renderers. See the chapters “Camera Objects,” “Group
Objects,” “Draw Context Objects,” and “Renderer Objects” in this book for
information on creating and manipulating these four kinds of objects. You must
create and configure instances of these objects before you can attach them to
a view.

This chapter begins by describing view objects and their features. Then it
shows how to create and attach objects to views. The section “View Objects
Routines,” beginning on page 13-7 provides a complete description of the
routines you can use to create and manipulate view objects.

About View Objects 13

A

view object

 (or, more briefly, a

view

) is a type of QuickDraw 3D object that
maintains the information necessary to render a single scene or image of a
model. A view also maintains the information necessary to perform picking,
calculate a bounding box or sphere, and write data to a file. A view is
essentially a collection of a single camera, a (possibly empty) group of lights, a
draw context, and a renderer. As you’ve seen, a camera defines a point of view
onto a three-dimensional model and a method of projecting the model onto
a two-dimensional view plane. The group of lights provides illumination on
the objects in the model. The draw context defines the destination of the two-
dimensional image, and the renderer determines the method of generating the
image from the model.

A view is of type

TQ3ViewObject

, which is one of the four main subclasses of
QuickDraw 3D objects. The structure of a view object is opaque; you must
create and manipulate views solely using functions supplied by QuickDraw 3D
(for example,

Q3View_New

).

This document was created with FrameMaker 4.0.4

C H A P T E R 1 3

View Objects

13-4

Using View Objects

Using View Objects 13

QuickDraw 3D supplies routines that you can use to create view objects, attach
cameras, renderers, and other objects to them, and render images in those view
objects. This section describes how to accomplish these tasks.

Creating and Configuring a View 13

You create a view object by calling the function

Q3View_New

. If successful,

Q3View_New

 returns a new empty view object. You must then configure the
view object by specifying a renderer, a camera, a group of lights, and a model.
Listing 1-9 on page 1-30 illustrates how to create and configure a view. Only
one object of each of these types can be associated with a view object at a given
time. You can, however, have multiple view objects in your application, each
associated with a different window.

Note

The group of lights is optional. A view, however, must
contain a camera, a renderer, and a draw context.

◆

Rendering an Image 13

Once you have created and configured a view, you can use it to render an
image of a model. To do so, you need to enter into the rendering state by
calling the

Q3View_StartRendering

 function. Then you specify the model to
be drawn and call

Q3View_EndRendering

. Because the renderer might not
have had sufficient memory to complete the rendering when you call

Q3View_EndRendering

, you might need to respecify the model, to give the
renderer another pass at the model’s data. As a result, you almost always call

Q3View_StartRendering

 and

Q3View_EndRendering

 in a

rendering loop,

shown in outline in Listing 13-1.

C H A P T E R 1 3

View Objects

Using View Objects

13-5

Listing 13-1

Rendering a model

Q3View_StartRendering(myView);

do {

/*submit the model here*/

} while (Q3View_EndRendering(myView) ==

kQ3ViewStatusRetraverse);

The

Q3View_EndRendering

 function returns a view status value that indicates
the status of the rendering process. If

Q3View_EndRendering

 returns the value

kQ3ViewStatusRetraverse

, you should reenter your rendering loop. If

Q3View_EndRendering

 returns

kQ3ViewStatusDone

,

kQ3ViewStatusError

, or

kQ3ViewStatusCancelled

, you should exit the loop.

As you know, QuickDraw 3D supports immediate mode, retained mode, and
mixed mode rendering. You use a rendering loop for all these rendering modes,
but they differ in how you create and draw the objects in a model. To use
retained mode rendering, you let QuickDraw 3D allocate memory to hold
the data associated with a particular object or group of objects. For example,
to render a box in retained mode, you must first create the box by calling
the

Q3Box_New

 function. Then you draw the box by calling the

Q3Geometry_Submit

 function, as illustrated in Listing 13-2.

Listing 13-2

Creating and rendering a retained object

TQ3BoxData myBoxData;

TQ3GeometryObject myBox;

Q3Point3D_Set(&myBoxData.origin, 1.0, 1.0, 1.0);

Q3Vector3D_Set(&myBoxData.orientation, 0, 2.0, 0);

Q3Vector3D_Set(&myBoxData.minorAxis, 2.0, 0, 0);

Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2.0);

myBox = Q3Box_New(&myBoxData);

Q3View_StartRendering(myView);

do {

Q3Geometry_Submit(myBox, myView);

} while (Q3View_EndRendering(myView) ==

kQ3ViewStatusRetraverse);

C H A P T E R 1 3

View Objects

13-6

View Objects Reference

In general, you use retained mode rendering when much of the model remains
unchanged from frame to frame. For retained mode rendering, you can use the
following routines inside a rendering loop:

Q3Style_Submit

Q3Geometry_Submit

Q3Transform_Submit

Q3Group_Submit

To use immediate mode rendering, you allocate memory for an object yourself
and draw the object using an immediate mode drawing routine, as illustrated
in Listing 13-3.

Listing 13-3

Creating and rendering an immediate object

TQ3BoxData myBoxData;

Q3Point3D_Set(&myBoxData.origin, 1.0, 1.0, 1.0);

Q3Vector3D_Set(&myBoxData.orientation, 0, 2.0, 0);

Q3Vector3D_Set(&myBoxData.minorAxis, 2.0, 0, 0);

Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2.0);

Q3View_StartRendering(myView);

do {

Q3Box_Submit(myBoxData, myView);

} while (Q3View_EndRendering(myView) ==

kQ3ViewStatusRetraverse);

In general, you use immediate mode when your application does not need to
retain the geometric data for subsequent use.

View Objects Reference 13

This section describes the QuickDraw 3D routines that you can use to manage
view objects.

C H A P T E R 1 3

View Objects

View Objects Reference

13-7

View Objects Routines 13

This section describes the routines you can use to manage views.

Creating and Configuring Views 13

QuickDraw 3D provides routines for creating a new view and for getting or
setting a view’s renderer, camera, light group, and draw context.

Q3View_New 13

You can use the

Q3View_New

 function to create a new view object.

TQ3ViewObject Q3View_New (void);

DESCRIPTION

The

Q3View_New

 function returns, as its function result, a new view object.
Before you can render a model in that view, you must first set the view’s
renderer, camera, and draw context. You can also set the view’s group of lights.

Q3View_New

 returns

NULL

 if it cannot create a new view object.

Q3View_GetRenderer 13

You can use the

Q3View_GetRenderer

 function to get the renderer associated
with a view.

TQ3Status Q3View_GetRenderer (

TQ3ViewObject view,

TQ3RendererObject *renderer);

view

A view.

renderer

On exit, the renderer object currently associated with the
specified view.

C H A P T E R 1 3

View Objects

13-8

View Objects Reference

DESCRIPTION

The

Q3View_GetRenderer

 function returns, in the

renderer

 parameter, the
renderer currently associated with the view specified by the

view

 parameter.
The reference count of that renderer is incremented.

Q3View_SetRenderer 13

You can use the

Q3View_SetRenderer

 function to set the renderer associated
with a view.

TQ3Status Q3View_SetRenderer (

TQ3ViewObject view,

TQ3RendererObject renderer);

view

A view.

renderer

A renderer object.

DESCRIPTION

The

Q3View_SetRenderer

 function attaches the renderer specified by the

renderer

 parameter to the view specified by the

view

 parameter. The reference
count of the specified renderer is incremented. In addition, if some other
renderer was already attached to the specified view, the reference count of that
renderer is decremented.

SEE ALSO

For information on creating and manipulating renderers, see the chapter
“Renderer Objects” in this book.

C H A P T E R 1 3

View Objects

View Objects Reference

13-9

Q3View_SetRendererByType 13

You can use the

Q3View_SetRendererByType

 function to set the renderer
associated with a view by specifying its type.

TQ3Status Q3View_SetRendererByType (

TQ3ViewObject view,

TQ3ObjectType type);

view

A view.

type

A renderer type.

DESCRIPTION

The

Q3View_SetRendererByType

 function attaches the renderer having the
type specified by the

type

 parameter to the view specified by the

view

parameter. The reference count of the specified render is incremented. In
addition, if some other renderer was already attached to the specified view, the
reference count of that renderer is decremented.

Q3View_GetCamera 13

You can use the

Q3View_GetCamera

 function to get the camera associated with
a view.

TQ3Status Q3View_GetCamera (

TQ3ViewObject view,

TQ3CameraObject *camera);

view

A view.

camera

On exit, the camera object currently associated with the
specified view.

C H A P T E R 1 3

View Objects

13-10

View Objects Reference

DESCRIPTION

The Q3View_GetCamera function returns, in the camera parameter, the camera
currently associated with the view specified by the view parameter. The
reference count of that camera is incremented.

Q3View_SetCamera 13

You can use the Q3View_SetCamera function to set the camera associated with
a view.

TQ3Status Q3View_SetCamera (

TQ3ViewObject view,

TQ3CameraObject camera);

view A view.

camera A camera object.

DESCRIPTION

The Q3View_SetCamera function attaches the camera specified by the camera
parameter to the view specified by the view parameter. The reference count of
the specified camera is incremented. In addition, if some other camera was
already attached to the specified view, the reference count of that camera is
decremented.

SEE ALSO

For information on creating and manipulating cameras, see the chapter
“Camera Objects” in this book.

C H A P T E R 1 3

View Objects

View Objects Reference 13-11

Q3View_GetLightGroup 13

You can use the Q3View_GetLightGroup function to get the light group
associated with a view.

TQ3Status Q3View_GetLightGroup (

TQ3ViewObject view,

TQ3GroupObject *lightGroup);

view A view.

lightGroup On exit, the light group currently associated with the
specified view.

DESCRIPTION

The Q3View_GetLightGroup function returns, in the lightGroup parameter,
the light group currently associated with the view specified by the view
parameter. The reference count of that light group is incremented.

Q3View_SetLightGroup 13

You can use the Q3View_SetLightGroup function to set the light group
associated with a view.

TQ3Status Q3View_SetLightGroup (

TQ3ViewObject view,

TQ3GroupObject lightGroup);

view A view.

lightGroup A light group.

C H A P T E R 1 3

View Objects

13-12 View Objects Reference

DESCRIPTION

The Q3View_SetLightGroup function attaches the light group specified by the
lightGroup parameter to the view specified by the view parameter. The
reference count of the specified light group is incremented. In addition, if some
other light group was already attached to the specified view, the reference
count of that light group is decremented.

SEE ALSO

For information on creating and manipulating light groups, see the chapters
“Light Objects” and “Group Objects” in this book.

Q3View_GetDrawContext 13

You can use the Q3View_GetDrawContext function to get the draw context
associated with a view.

TQ3Status Q3View_GetDrawContext (

TQ3ViewObject view,

TQ3DrawContextObject *drawContext);

view A view.

drawContext On exit, the draw context currently associated with the
specified view.

DESCRIPTION

The Q3View_GetDrawContext function returns, in the drawContext parameter,
the draw context currently associated with the view specified by the view
parameter. The reference count of that draw context is incremented.

C H A P T E R 1 3

View Objects

View Objects Reference 13-13

Q3View_SetDrawContext 13

You can use the Q3View_SetDrawContext function to set the draw context
associated with a view.

TQ3Status Q3View_SetDrawContext (

TQ3ViewObject view,

TQ3DrawContextObject drawContext);

view A view.

drawContext A draw context object.

DESCRIPTION

The Q3View_SetDrawContext function attaches the draw context specified by
the drawContext parameter to the view specified by the view parameter. The
reference count of the specified draw context is incremented. In addition, if
some other draw context was already attached to the specified view, the
reference count of that draw context is decremented.

SEE ALSO

For information on creating and manipulating draw contexts, see the chapter
“Draw Context Objects” in this book.

Rendering in a View 13

QuickDraw 3D provides routines that you can use to manage the process of
rendering in a view. The view must already exist and be fully configured before
you call these routines.

C H A P T E R 1 3

View Objects

13-14 View Objects Reference

Q3View_StartRendering 13

You can use the Q3View_StartRendering function to start rendering an image
of a model.

TQ3Status Q3View_StartRendering (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_StartRendering function begins the process of rendering an
image of a model in the view specified by the view parameter. After calling
Q3View_StartRendering, you specify the model to be drawn (for instance, by
calling Q3Geometry_Submit). When you have completely specified that model,
you should call Q3View_EndRendering to complete the rendering of the image.
Because the renderer attached to the specified view might need to reprocess the
model data, you should always call Q3View_StartRendering and
Q3View_EndRendering in a rendering loop.

Calling Q3View_StartRendering automatically clears the buffer into which the
rendered image is drawn.

SPECIAL CONSIDERATIONS

You should not call Q3View_StartRendering while rendering is already
occurring.

ERRORS

kQ3ErrorRenderingIsActive

SEE ALSO

See “Rendering an Image” on page 13-4 for more information about a
rendering loop.

C H A P T E R 1 3

View Objects

View Objects Reference 13-15

Q3View_EndRendering 13

You can use the Q3View_EndRendering function to stop rendering an image of
a model.

TQ3ViewStatus Q3View_EndRendering (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_EndRendering function returns, as its function result, a view
status value that indicates the current state of the rendering of an image of a
model in the view specified by the view parameter. Q3View_EndRendering
returns one of these four values:

typedef enum TQ3ViewStatus {

kQ3ViewStatusDone,

kQ3ViewStatusRetraverse,

kQ3ViewStatusError,

kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndRendering returns kQ3ViewStatusDone, the rendering of the
image has been completed and the specified view is no longer in rendering
mode. At that point, it is safe to exit your rendering loop. If double-buffering is
active, the front buffer is updated with the rendered image.

IMPORTANT

If the renderer associated with the specified view relies on
a hardware accelerator for some or all of its operation,
Q3View_EndRendering may return kQ3ViewStatusDone
even though the rendering has not yet completed. (When
a hardware accelerator is present, rendering occurs
asynchronously.) If you must know when the rendering
has actually finished, call the Q3Renderer_Sync function
(described in the chapter “Renderer Objects”). ▲

C H A P T E R 1 3

View Objects

13-16 View Objects Reference

If Q3View_EndRendering returns kQ3ViewStatusRetraverse, the rendering of
the image has not yet been completed. You should respecify the model by
reentering your rendering loop.

If Q3View_EndRendering returns kQ3ViewStatusError, the rendering of the
image has failed because the renderer associated with the view encountered an
error in processing the model. You should exit the rendering loop.

If Q3View_EndRendering returns kQ3ViewStatusCancelled, the rendering of
the image has been canceled. You should exit the rendering loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndRendering only if rendering is already occurring.

SEE ALSO

See “Rendering an Image” on page 13-4 for a sample rendering loop.

Q3View_Cancel 13

You can use the Q3View_Cancel function to cancel the rendering, picking,
bounding, or writing operation currently occurring in a view.

TQ3Status Q3View_Cancel (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_Cancel function interrupts the process of rendering an image of
a model, submitting objects for picking, calculating a bounding box or sphere,
or writing data to a file in accordance with the view specified by the view
parameter. Any subsequent calls to _Submit routines for the specified view will
fail, and Q3View_EndRendering (or the similar call for picking, bounding, or
writing) will return kQ3ViewStatusCancelled when it is next executed. Note
that you must still call Q3View_EndRendering (or the similar call for picking,
bounding, or writing) after you have called Q3View_Cancel.

C H A P T E R 1 3

View Objects

View Objects Reference 13-17

You can call Q3View_Cancel at any time. If the specified view is not in the
submitting state, Q3View_Cancel returns kQ3Failure.

Picking in a View 13

QuickDraw 3D provides routines that you can use to manage the process of
picking in a view. The view must already exist and be fully configured before
you call these routines.

Q3View_StartPicking 13

You can use the Q3View_StartPicking function to start picking in a view.

TQ3Status Q3View_StartPicking (

TQ3ViewObject view,

TQ3PickObject pick);

view A view.

pick A pick object.

DESCRIPTION

The Q3View_StartPicking function begins the process of picking in the view
specified by the view parameter, using the pick object specified by the pick
parameter. After calling Q3View_StartPicking, you specify the model (for
instance, by calling Q3Geometry_Submit). When you have completely specified
that model, you should call Q3View_EndPicking to complete the picking
operation. The renderer attached to the specified view might need to reprocess
the model data, so you should always call Q3View_StartPicking and
Q3View_EndPicking in a picking loop.

SPECIAL CONSIDERATIONS

You should not call Q3View_StartPicking while picking is already occurring.

C H A P T E R 1 3

View Objects

13-18 View Objects Reference

Q3View_EndPicking 13

You can use the Q3View_EndPicking function to end picking in a view.

TQ3ViewStatus Q3View_EndPicking (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_EndPicking function returns, as its function result, a view status
value that indicates the current state of the picking in the view specified by the
view parameter. Q3View_EndPicking returns one of these four values:

typedef enum TQ3ViewStatus {

kQ3ViewStatusDone,

kQ3ViewStatusRetraverse,

kQ3ViewStatusError,

kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndPicking returns kQ3ViewStatusDone, the picking has been
completed and the specified view is no longer in picking mode. At that point,
it is safe to exit your picking loop.

If Q3View_EndPicking returns kQ3ViewStatusRetraverse, the picking has
not yet been completed. You should respecify the model by reentering your
picking loop.

If Q3View_EndPicking returns kQ3ViewStatusError, the picking has failed
because the renderer associated with the view encountered an error in
processing the model. You should exit the picking loop.

If Q3View_EndPicking returns kQ3ViewStatusCancelled, the picking has
been canceled. You should exit the picking loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndPicking only if picking is already occurring.

C H A P T E R 1 3

View Objects

View Objects Reference 13-19

Writing in a View 13

QuickDraw 3D provides routines that you can use to manage the process of
writing a view’s data to a file. The view must already exist and be fully
configured before you call these routines.

Q3View_StartWriting 13

You can use the Q3View_StartWriting function to start writing to a file.

TQ3Status Q3View_StartWriting (

TQ3ViewObject view,

TQ3FileObject file);

view A view.

file A file object.

DESCRIPTION

The Q3View_StartWriting function begins the process of writing in the view
specified by the view parameter, using the file object specified by the file
parameter. After calling Q3View_StartWriting, you specify the model (for
instance, by calling Q3Geometry_Submit). When you have completely specified
that model, you should call Q3View_EndWriting to complete the write
operation. The renderer attached to the specified view might need to reprocess
the model data, so you should always call Q3View_StartWriting and
Q3View_EndWriting in a writing loop.

SPECIAL CONSIDERATIONS

You should not call Q3View_StartWriting while writing is already occurring.

C H A P T E R 1 3

View Objects

13-20 View Objects Reference

Q3View_EndWriting 13

You can use the Q3View_EndWriting function to end writing to a file.

TQ3ViewStatus Q3View_EndWriting (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_EndWriting function returns, as its function result, a view status
value that indicates the current state of the writing in the view specified by the
view parameter. Q3View_EndWriting returns one of these four values:

typedef enum TQ3ViewStatus {

kQ3ViewStatusDone,

kQ3ViewStatusRetraverse,

kQ3ViewStatusError,

kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndWriting returns kQ3ViewStatusDone, the writing has been
completed and the specified view is no longer in writing mode. At that point,
it is safe to exit your writing loop.

If Q3View_EndWriting returns kQ3ViewStatusRetraverse, the writing has
not yet been completed. You should respecify the model by reentering your
writing loop.

If Q3View_EndWriting returns kQ3ViewStatusError, the writing has failed
because the renderer associated with the view encountered an error in
processing the model. You should exit the writing loop.

If Q3View_EndWriting returns kQ3ViewStatusCancelled, the writing has
been canceled. You should exit the writing loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndWriting only if writing is already occurring.

C H A P T E R 1 3

View Objects

View Objects Reference 13-21

Bounding in a View 13

As you’ve seen (in the chapters “Geometric Objects” and “Group Objects”),
QuickDraw 3D provides routines that you can use to compute the bounding
box and bounding sphere of an object or a group of objects in a model.
Computing an object’s bounding box or bounding sphere requires applying
to it all the transforms in the current view transform stack. QuickDraw 3D
provides routines that you must call before and after computing an
object’s bounds.

QuickDraw 3D also provides a routine that you can use to determine whether a
bounding box is visible in a view. You might use that routine to avoid
specifying portions of a model that aren’t visible.

Q3View_StartBoundingBox 13

You can use the Q3View_StartBoundingBox function to start computing an
object’s bounding box.

TQ3Status Q3View_StartBoundingBox (

TQ3ViewObject view,

TQ3ComputeBounds computeBounds);

view A view.

computeBounds

A constant that specifies how the bounding box should be
computed. See the following description for details.

DESCRIPTION

The Q3View_StartBoundingBox function begins the process of calculating a
bounding box in the view specified by the view parameter. After calling
Q3View_StartBoundingBox, you specify the model (for instance, by calling
Q3Geometry_Submit). When you have completely specified that model, you
should call Q3View_EndBoundingBox to complete the bounding operation. The
renderer attached to the specified view might need to reprocess the model data,
so you should always call Q3View_StartBoundingBox and
Q3View_EndBoundingBox in a bounding loop.

C H A P T E R 1 3

View Objects

13-22 View Objects Reference

The computeBounds parameter determines the algorithm that QuickDraw 3D
uses to calculate the bounding box. You should set computeBounds to one of
these constants:

typedef enum TQ3ComputeBounds {

kQ3ComputeBoundsExact,

kQ3ComputeBoundsApproximate

} TQ3ComputeBounds;

If you set computeBounds to kQ3ComputeBoundsExact, the vertices of the
geometric object are transformed into world space, and then the world space
bounding box is computed from the transformed vertices. This method of
calculating a bounding box produces the most precise bounding box but is
slower than using the kQ3ComputeBoundsApproximate method.

If you set computeBounds to kQ3ComputeBoundsApproximate, a local
bounding box is computed from the vertices of the geometric object, and
then that bounding box is transformed into world space. The transformed
bounding box is returned as the approximate bounding box of the geometric
object. This method of calculating a bounding box is faster than using the
kQ3ComputeBoundsExact method but produces a bounding box that might be
larger than that computed by the exact method.

Q3View_EndBoundingBox 13

You can use the Q3View_EndBoundingBox function to stop computing an
object’s bounding box.

TQ3ViewStatus Q3View_EndBoundingBox (

TQ3ViewObject view,

TQ3BoundingBox *result);

view A view.

result On exit, the bounding box for the objects specified in the
bounding loop.

C H A P T E R 1 3

View Objects

View Objects Reference 13-23

DESCRIPTION

The Q3View_EndBoundingBox function returns, as its function result, a
view status value that indicates the current state of the bounding box
calculation of the objects in the view specified by the view parameter.
Q3View_EndBoundingBox returns one of these four values:

typedef enum TQ3ViewStatus {

kQ3ViewStatusDone,

kQ3ViewStatusRetraverse,

kQ3ViewStatusError,

kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndBoundingBox returns kQ3ViewStatusDone, the bounding box
calculation has completed. At that point, it is safe to exit your bounding loop.
The result parameter contains the bounding box.

If Q3View_EndBoundingBox returns kQ3ViewStatusRetraverse, the bounding
box calculation has not yet completed. You should respecify the model by
reentering your bounding loop.

If Q3View_EndBoundingBox returns kQ3ViewStatusError, the bounding box
calculation has failed. You should exit the bounding loop.

If Q3View_EndBoundingBox returns kQ3ViewStatusCancelled, the bounding
box calculation has been canceled. You should exit the bounding loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndBoundingBox only if bounding box calculation is
already occurring.

C H A P T E R 1 3

View Objects

13-24 View Objects Reference

Q3View_StartBoundingSphere 13

You can use the Q3View_StartBoundingSphere function to start computing an
object’s bounding sphere.

TQ3Status Q3View_StartBoundingSphere (

TQ3ViewObject view,

TQ3ComputeBounds computeBounds);

view A view.

computeBounds

A constant that specifies how the bounding sphere should be
computed. See the following description for details.

DESCRIPTION

The Q3View_StartBoundingSphere function begins the process of calculating
a bounding sphere in the view specified by the view parameter. After calling
Q3View_StartBoundingSphere, you specify the model (for instance, by calling
Q3Geometry_Submit). When you have completely specified that model, you
should call Q3View_EndBoundingSphere to complete the bounding operation.
The renderer attached to the specified view might need to reprocess the model
data, so you should always call Q3View_StartBoundingSphere and
Q3View_EndBoundingSphere in a bounding loop.

The computeBounds parameter determines the algorithm that QuickDraw 3D
uses to calculate the bounding sphere. You should set computeBounds to one of
these constants:

typedef enum TQ3ComputeBounds {

kQ3ComputeBoundsExact,

kQ3ComputeBoundsApproximate

} TQ3ComputeBounds;

If you set computeBounds to kQ3ComputeBoundsExact, the vertices of the
geometric object are transformed into world space, and then the world space
bounding sphere is computed from the transformed vertices. This method of
calculating a bounding sphere produces the most precise bounding sphere but
is slower than using the kQ3ComputeBoundsApproximate method.

C H A P T E R 1 3

View Objects

View Objects Reference 13-25

If you set computeBounds to kQ3ComputeBoundsApproximate, a local
bounding sphere is computed from the vertices of the geometric object, and
then that bounding sphere is transformed into world space. The transformed
bounding sphere is returned as the approximate bounding sphere of the
geometric object. This method of calculating a bounding sphere is faster than
using the kQ3ComputeBoundsExact method but produces a bounding sphere
that might be larger than that computed by the exact method.

Q3View_EndBoundingSphere 13

You can use the Q3View_EndBoundingSphere function to stop computing an
object’s bounding sphere.

TQ3ViewStatus Q3View_EndBoundingSphere (

TQ3ViewObject view,

TQ3BoundingSphere *result);

view A view.

result On exit, the bounding sphere for the objects specified in the
bounding loop.

DESCRIPTION

The Q3View_EndBoundingSphere function returns, as its function result, a
view status value that indicates the current state of the bounding sphere
calculation of the objects in the view specified by the view parameter.
Q3View_EndBoundingBox returns one of these four values:

typedef enum TQ3ViewStatus {

kQ3ViewStatusDone,

kQ3ViewStatusRetraverse,

kQ3ViewStatusError,

kQ3ViewStatusCancelled

} TQ3ViewStatus;

C H A P T E R 1 3

View Objects

13-26 View Objects Reference

If Q3View_EndBoundingSphere returns kQ3ViewStatusDone, the bounding
sphere calculation has completed. At that point, it is safe to exit your bounding
loop. The result parameter contains the bounding sphere.

If Q3View_EndBoundingSphere returns kQ3ViewStatusRetraverse, the
bounding sphere calculation has not yet completed. You should respecify the
model by reentering your bounding loop.

If Q3View_EndBoundingSphere returns kQ3ViewStatusError, the bounding
sphere calculation has failed. You should exit the bounding loop.

If Q3View_EndBoundingSphere returns kQ3ViewStatusCancelled, the
bounding sphere calculation has been canceled. You should exit the
bounding loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndBoundingSphere only if bounding sphere
calculation is already occurring.

Q3View_IsBoundingBoxVisible 13

You can use the Q3View_IsBoundingBoxVisible function to determine
whether a bounding box is visible in a view (that is, whether it lies in the
viewing frustum).

TQ3Boolean Q3View_IsBoundingBoxVisible (

TQ3ViewObject view,

const TQ3BoundingBox *bbox);

view A view.

bbox A bounding box.

DESCRIPTION

The Q3View_IsBoundingBoxVisible function returns, as its function result, a
Boolean value that indicates whether the bounding box specified by the bbox
parameter is visible in the view specified by the view parameter (kQ3True) or is

C H A P T E R 1 3

View Objects

View Objects Reference 13-27

not visible (kQ3False). Q3View_IsBoundingBoxVisible transforms the
specified bounding box by the view’s local-to-world transform and then
determines whether the box lies in the viewing frustum.

Setting Idle Methods 13

QuickDraw 3D provides a function that you can use to set a view’s idle
method. QuickDraw 3D executes your idle method occasionally during lengthy
operations. See “Application-Defined Routines” on page 13-41 for information
on writing an idle method.

Q3View_SetIdleMethod 13

You can use the Q3View_SetIdleMethod function to set a view’s idle method.

TQ3Status Q3View_SetIdleMethod (

TQ3ViewObject view,

TQ3ViewIdleMethod idleMethod,

const void *idleData);

view A view.

idleMethod A pointer to an idle method.

idleData A pointer to an application-defined block of data. This pointer
is passed to the idle method when it is executed.

DESCRIPTION

The Q3View_SetIdleMethod function sets the idle method of the view
specified by the view parameter to the function specified by the idleMethod
parameter. The idleData parameter is passed to your callback routine
whenever it is executed.

C H A P T E R 1 3

View Objects

13-28 View Objects Reference

Writing Custom Data 13

QuickDraw 3D provides a function that you can use to write custom objects. In
general, you should call this function only within your custom write method.

Q3View_SubmitWriteData 13

You can use the Q3View_SubmitWriteData function to submit for writing the
data associated with a custom object.

TQ3Status Q3View_SubmitWriteData (

TQ3ViewObject view,

TQ3Size size,

void *data,

void (*deleteData));

view A view.

size The number of bytes of data to write. This value should be
aligned on 4-byte boundaries.

data A pointer to a buffer of data to be submitted for writing.

deleteData A pointer to a data-deletion method. This method is called after
your custom write method exits (whether or not the write
method succeeds or fails). The value of the data parameter is
passed as a parameter to your method.

DESCRIPTION

The Q3View_SubmitWriteData function submits the data specified by the data
and size parameters for writing in the view specified by the view parameter.
You can call Q3View_SubmitWriteData in a custom object-traversal method to
write the data of a custom object. Q3View_SubmitWriteData calls the write
method associated with that custom object type to actually write the data to a
file object. When the write method returns, Q3View_SubmitWriteData executes
the data-deletion method specified by the deleteData parameter.

C H A P T E R 1 3

View Objects

View Objects Reference 13-29

SPECIAL CONSIDERATIONS

You should call this function only within a custom object-traversal method. See
the chapter “File Objects” for more information about traversal methods.

Pushing and Popping the Graphics State 13

QuickDraw 3D maintains a graphics state during rendering that contains
camera and lighting information, a transformation matrix stack, an attributes
stack, and a style stack. When it is traversing a hierarchical scene database,
QuickDraw 3D automatically pushes and pops graphics states onto and off the
graphics state stack.

QuickDraw 3D provides routines that you can use to push and pop a graphics
state during the rendering of an image or other view operation. You can push a
graphics state by calling Q3Push_Submit. Subsequent rendering may alter the
graphics state by drawing materials, styles, and transforms. You can restore a
saved graphics state by calling Q3Pop_Submit. You’re likely to use these
functions only if you want to simulate the traversal of a hierarchical structure
when operating in immediate mode.

Q3Push_Submit 13

You can use the Q3Push_Submit function to push a graphics state onto the
graphics state stack.

TQ3Status Q3Push_Submit (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3Push_Submit function pushes the current graphics state of the view
specified by the view parameter onto the graphics state stack. There must be a
matching call to Q3Pop_Submit before the next call to Q3View_EndRendering.

SPECIAL CONSIDERATIONS

You should call Q3Push_Submit only in a submitting loop.

C H A P T E R 1 3

View Objects

13-30 View Objects Reference

Q3Pop_Submit 13

You can use the Q3Pop_Submit function to pop a graphics state off the graphics
state stack.

TQ3Status Q3Pop_Submit (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3Pop_Submit function pops the graphics state of the view specified by the
view parameter off the graphics state stack. Every call to Q3Pop_Submit must
match a previous call to Q3Push_Submit.

SPECIAL CONSIDERATIONS

You should call Q3Pop_Submit only in a submitting loop.

Getting a View’s Transforms 13

QuickDraw 3D provides routines that you can use to get matrix representations
of the transforms associated with a view.

IMPORTANT

You should call these routines only between calls to
Q3View_StartRendering and Q3View_EndRendering (or
similar submitting loops). If you call them at any other
time, they return kQ3Failure. ▲

C H A P T E R 1 3

View Objects

View Objects Reference 13-31

Q3View_GetLocalToWorldMatrixState 13

You can use the Q3View_GetLocalToWorldMatrixState function to get a
view’s local-to-world transform matrix.

TQ3Status Q3View_GetLocalToWorldMatrixState (

TQ3ViewObject view,

TQ3Matrix4x4 *matrix);

view A view.

matrix On exit, a 4-by-4 matrix representing the local-to-world
transform of the specified view.

DESCRIPTION

The Q3View_GetLocalToWorldMatrixState function returns, in the matrix
parameter, a 4-by-4 matrix that represents the local-to-world transform of the
view specified by the view parameter.

Q3View_GetWorldToFrustumMatrixState 13

You can use the Q3View_GetWorldToFrustumMatrixState function to get a
view’s world-to-frustum transform matrix.

TQ3Status Q3View_GetWorldToFrustumMatrixState (

TQ3ViewObject view,

TQ3Matrix4x4 *matrix);

view A view.

matrix On exit, a 4-by-4 matrix representing the world-to-frustum
transform of the specified view.

C H A P T E R 1 3

View Objects

13-32 View Objects Reference

DESCRIPTION

The Q3View_GetWorldToFrustumMatrixState function returns, in the matrix
parameter, a 4-by-4 matrix that represents the world-to-frustum transform of
the view specified by the view parameter.

Q3View_GetFrustumToWindowMatrixState 13

You can use the Q3View_GetFrustumToWindowMatrixState function to get a
view’s frustum-to-window transform matrix.

TQ3Status Q3View_GetFrustumToWindowMatrixState (

TQ3ViewObject view,

TQ3Matrix4x4 *matrix);

view A view.

matrix On exit, a 4-by-4 matrix representing the frustum-to-window
transform of the specified view.

DESCRIPTION

The Q3View_GetFrustumToWindowMatrixState function returns, in the
matrix parameter, a 4-by-4 matrix that represents the frustum-to-window
transform of the view specified by the view parameter. The window is either
the pixmap associated with a pixmap draw context or the window associated
with a window draw context (for example, the Macintosh draw context). If, in a
window system draw context, a part of a window (a pane) has been associated
with the view, this function returns the matrix that maps the view frustum to
that part of the window.

The z value of a point pw in window space obtained by applying the transform
returned by Q3View_GetFrustumToWindowMatrixState to a point pf in the
frustum space is the z value of point pf (which ranges from 0.0 to 1.0, inclusive).
You might use the z value of a transformed point to determine whether that
point would be clipped (if the z value is less than 0 or greater than 1.0, the
original point lies outside the viewing frustum).

C H A P T E R 1 3

View Objects

View Objects Reference 13-33

Managing a View’s Style States 13

QuickDraw 3D provides routines that you can use to get information about the
style state of a view.

Note
For information about styles and style types, see the
chapter “Style Objects” in this book. ◆

Q3View_GetBackfacingStyleState 13

You can use the Q3View_GetBackfacingStyleState function to get the current
backfacing style of a view.

TQ3Status Q3View_GetBackfacingStyleState (

TQ3ViewObject view,

TQ3BackfacingStyle *backfacingStyle);

view A view.

backfacingStyle

On exit, the current backfacing style of the specified view.

DESCRIPTION

The Q3View_GetBackfacingStyleState function returns, in the
backfacingStyle parameter, the current backfacing style of the view
specified by the view parameter.

C H A P T E R 1 3

View Objects

13-34 View Objects Reference

Q3View_GetInterpolationStyleState 13

You can use the Q3View_GetInterpolationStyleState function to get the
current interpolation style of a view.

TQ3Status Q3View_GetInterpolationStyleState (

TQ3ViewObject view,

TQ3InterpolationStyle *interpolationType);

view A view.

interpolationType

On exit, the current interpolation style of the specified view.

DESCRIPTION

The Q3View_GetInterpolationStyleState function returns, in the
interpolationType parameter, the current interpolation style of the view
specified by the view parameter.

Q3View_GetFillStyleState 13

You can use the Q3View_GetFillStyleState function to get the current fill
style of a view.

TQ3Status Q3View_GetFillStyleState (

TQ3ViewObject view,

TQ3FillStyle *fillStyle);

view A view.

fillStyle On exit, the current fill style of the specified view.

DESCRIPTION

The Q3View_GetFillStyleState function returns, in the fillStyle
parameter, the current fill style of the view specified by the view parameter.

C H A P T E R 1 3

View Objects

View Objects Reference 13-35

Q3View_GetHighlightStyleState 13

You can use the Q3View_GetHighlightStyleState function to get the current
highlight style of a view.

TQ3Status Q3View_GetHighlightStyleState (

TQ3ViewObject view,

TQ3AttributeSet *highlightStyle);

view A view.

highlightStyle

On exit, the current highlight style of the specified view.

DESCRIPTION

The Q3View_GetHighlightStyleState function returns, in the
highlightStyle parameter, the current highlight style of the view specified
by the view parameter. You are responsible for disposing of the returned
attribute set (by calling Q3Object_Dispose) when you are done using it.

Q3View_GetSubdivisionStyleState 13

You can use the Q3View_GetSubdivisionStyleState function to get the
current subdivision style of a view.

TQ3Status Q3View_GetSubdivisionStyleState (

TQ3ViewObject view,

TQ3SubdivisionStyleData *subdivisionStyle);

view A view.

subdivisionStyle

On exit, the current subdivision style of the specified view.

C H A P T E R 1 3

View Objects

13-36 View Objects Reference

DESCRIPTION

The Q3View_GetSubdivisionStyleState function returns, in the
subdivisionStyle parameter, the current subdivision style of the view
specified by the view parameter.

Q3View_GetOrientationStyleState 13

You can use the Q3View_GetOrientationStyleState function to get the
current frontfacing direction style of a view.

TQ3Status Q3View_GetOrientationStyleState (

TQ3ViewObject view,

TQ3OrientationStyle

*fontFacingDirectionStyle);

view A view.

fontFacingDirectionStyle

On exit, the current frontfacing direction style of the
specified view.

DESCRIPTION

The Q3View_GetOrientationStyleState function returns, in the
fontFacingDirectionStyle parameter, the current frontfacing direction
style of the view specified by the view parameter.

Q3View_GetReceiveShadowsStyleState 13

You can use the Q3View_GetReceiveShadowsStyleState function to get the
current shadow-receiving style of a view.

TQ3Status Q3View_GetReceiveShadowsStyleState (

TQ3ViewObject view,

TQ3Boolean *receives);

C H A P T E R 1 3

View Objects

View Objects Reference 13-37

view A view.

receives On exit, the current shadow-receiving style of the
specified view.

DESCRIPTION

The Q3View_GetReceiveShadowsStyleState function returns, in the
receives parameter, the current shadow-receiving style of the view
specified by the view parameter.

Q3View_GetPickIDStyleState 13

You can use the Q3View_GetPickIDStyleState function to get the current
picking ID style of a view.

TQ3Status Q3View_GetPickIDStyleState (

TQ3ViewObject view,

unsigned long *pickIDStyle);

view A view.

pickIDStyle On exit, the current picking ID style of the specified view.

DESCRIPTION

The Q3View_GetPickIDStyleState function returns, in the pickIDStyle
parameter, the current picking ID style of the view specified by the
view parameter.

C H A P T E R 1 3

View Objects

13-38 View Objects Reference

Q3View_GetPickPartsStyleState 13

You can use the Q3View_GetPickPartsStyleState function to get the current
picking parts style of a view.

TQ3Status Q3View_GetPickPartsStyleState (

TQ3ViewObject view,

TQ3PickParts *pickPartsStyle);

view A view.

pickPartsStyle

On exit, the current picking parts style of the specified view.

DESCRIPTION

The Q3View_GetPickPartsStyleState function returns, in the
pickPartsStyle parameter, the current picking parts style of the view
specified by the view parameter.

Managing a View’s Attribute Set 13

QuickDraw 3D provides routines that you can use to manage a view’s
attribute set.

Q3View_GetDefaultAttributeSet 13

You can use the Q3View_GetDefaultAttributeSet function to get the default
attribute set associated with a view.

TQ3Status Q3View_GetDefaultAttributeSet (

TQ3ViewObject view,

TQ3AttributeSet *attributeSet);

view A view.

attributeSet

On exit, the default attribute set associated with the
specified view.

C H A P T E R 1 3

View Objects

View Objects Reference 13-39

DESCRIPTION

The Q3View_GetDefaultAttributeSet function returns, in the attributeSet
parameter, the default attribute set of the view specified by the view parameter.
QuickDraw 3D supplies a default set of attributes for every view so that you
can safely render a view without having to set a value for each attribute. The
default attribute values are defined by constants:

#define kQ3ViewDefaultAmbientCoefficient 1.0

#define kQ3ViewDefaultDiffuseColor 0.5, 0.5, 0.5

#define kQ3ViewDefaultSpecularColor 0.5, 0.5, 0.5

#define kQ3ViewDefaultSpecularControl 4.0

#define kQ3ViewDefaultTransparency 1.0, 1.0, 1.0

#define kQ3ViewDefaultSubdivisionMethod \

kQ3SubdivisionMethodConstant

#define kQ3ViewDefaultSubdivisionC1 10.0

#define kQ3ViewDefaultSubdivisionC2 10.0

Q3View_SetDefaultAttributeSet 13

You can use the Q3View_SetDefaultAttributeSet function to set the default
attribute set associated with a view.

TQ3Status Q3View_SetDefaultAttributeSet (

TQ3ViewObject view,

TQ3AttributeSet attributeSet);

view A view.

attributeSet

The default attribute set to be associated with the specified view.

DESCRIPTION

The Q3View_SetDefaultAttributeSet function sets the default attribute set of
the view specified by the view parameter to the set specified in the
attributeSet parameter.

C H A P T E R 1 3

View Objects

13-40 View Objects Reference

Q3View_GetAttributeSetState 13

You can use the Q3View_GetAttributeSetState function to get the current
attribute set associated with a view.

TQ3Status Q3View_GetAttributeSetState (

TQ3ViewObject view,

TQ3AttributeSet *attributeSet);

view A view.

attributeSet

On exit, the attribute set currently associated with the
specified view.

DESCRIPTION

The Q3View_GetAttributeSetState function returns, in the attributeSet
parameter, the current attribute set of the view specified by the view parameter.

Q3View_GetAttributeState 13

You can use the Q3View_GetAttributeState function to get the state of a
view’s attribute.

TQ3Status Q3View_GetAttributeState (

TQ3ViewObject view,

TQ3AttributeType attributeType,

void *data);

view A view.

attributeType

An attribute type.

data On exit, a pointer to the attribute data associated with the
specified attribute type.

C H A P T E R 1 3

View Objects

View Objects Reference 13-41

DESCRIPTION

The Q3View_GetAttributeState function returns, in the data parameter, a
pointer to the attribute data associated with the attribute type specified by the
attributeType parameter in the attribute set of the view specified by the view
parameter. If the value NULL is returned in the data parameter, there is no
attribute of the specified type in the view’s attribute set.

Application-Defined Routines 13

QuickDraw 3D allows you to specify an idle method that QuickDraw 3D calls
occasionally during lengthy operations.

TQ3ViewIdleMethod 13

You can define an idle method to receive occasional callbacks to your
application during lengthy operations.

typedef TQ3Status (*TQ3ViewIdleMethod) (

TQ3ViewObject view,

const void *idleData);

view A view.

idleData A pointer to an application-defined block of data.

DESCRIPTION

Your TQ3ViewIdleMethod function is called occasionally during lengthy
operations, such as rendering a complex model. You can use an idle method to
provide a means for the user to cancel the lengthy operation (for example, by
clicking a button or pressing a key sequence such as Command-period).

If your idle method returns kQ3Success, QuickDraw 3D continues its current
operation. If your idle method returns kQ3Failure, QuickDraw 3D cancels
its current operation and returns kQ3ViewStatusCancelled the next time
you call Q3View_EndRendering or a similar function. You should not call
Q3View_Cancel (or any other QuickDraw 3D routine) inside your idle method.

C H A P T E R 1 3

View Objects

13-42 View Objects Reference

There is currently no way to indicate how often you want your idle method to
be called. You can read the time maintained by the Operating System if you
need to determine the amount of time that has elapsed since your idle method
was last called.

SPECIAL CONSIDERATIONS

You must not call any QuickDraw 3D routines inside your idle method. In
particular, you must not change any of the settings of the view being rendered
or call Q3View_StartRendering on that same view.

Some renderers (particularly those that use hardware accelerators) might not
support idle methods.

C H A P T E R 1 3

View Objects

Summary of View Objects 13-43

Summary of View Objects 13

C Summary 13

Constants 13

View Rendering Status Values

typedef enum TQ3ViewStatus {

kQ3ViewStatusDone,

kQ3ViewStatusRetraverse,

kQ3ViewStatusError,

kQ3ViewStatusCancelled

} TQ3ViewStatus;

Compute Bounds Values

typedef enum TQ3ComputeBounds {

kQ3ComputeBoundsExact,

kQ3ComputeBoundsApproximate

} TQ3ComputeBounds;

Properties of the Default Material

#define kQ3ViewDefaultAmbientCoefficient 1.0

#define kQ3ViewDefaultDiffuseColor 0.5, 0.5, 0.5

#define kQ3ViewDefaultSpecularColor 0.5, 0.5, 0.5

#define kQ3ViewDefaultSpecularControl 4.0

#define kQ3ViewDefaultTransparency 1.0, 1.0, 1.0

#define kQ3ViewDefaultSubdivisionMethod kQ3SubdivisionMethodConstant

#define kQ3ViewDefaultSubdivisionC1 10.0

#define kQ3ViewDefaultSubdivisionC2 10.0

C H A P T E R 1 3

View Objects

13-44 Summary of View Objects

View Objects Routines 13

Creating and Configuring Views

TQ3ViewObject Q3View_New (void);

TQ3Status Q3View_GetRenderer (TQ3ViewObject view,

TQ3RendererObject *renderer);

TQ3Status Q3View_SetRenderer (TQ3ViewObject view,

TQ3RendererObject renderer);

TQ3Status Q3View_SetRendererByType (

TQ3ViewObject view, TQ3ObjectType type);

TQ3Status Q3View_GetCamera (TQ3ViewObject view,

TQ3CameraObject *camera);

TQ3Status Q3View_SetCamera (TQ3ViewObject view,

TQ3CameraObject camera);

TQ3Status Q3View_GetLightGroup(TQ3ViewObject view,

TQ3GroupObject *lightGroup);

TQ3Status Q3View_SetLightGroup(TQ3ViewObject view,

TQ3GroupObject lightGroup);

TQ3Status Q3View_GetDrawContext (

TQ3ViewObject view,

TQ3DrawContextObject *drawContext);

TQ3Status Q3View_SetDrawContext (

TQ3ViewObject view,

TQ3DrawContextObject drawContext);

Rendering in a View

TQ3Status Q3View_StartRendering(TQ3ViewObject view);

TQ3ViewStatus Q3View_EndRendering (

TQ3ViewObject view);

TQ3Status Q3View_Cancel (TQ3ViewObject view);

C H A P T E R 1 3

View Objects

Summary of View Objects 13-45

Picking in a View

TQ3Status Q3View_StartPicking (TQ3ViewObject view, TQ3PickObject pick);

TQ3ViewStatus Q3View_EndPicking (

TQ3ViewObject view);

Writing in a View

TQ3Status Q3View_StartWriting (TQ3ViewObject view, TQ3FileObject file);

TQ3ViewStatus Q3View_EndWriting (

TQ3ViewObject view);

Bounding in a View

TQ3Status Q3View_StartBoundingBox (

TQ3ViewObject view,

TQ3ComputeBounds computeBounds);

TQ3ViewStatus Q3View_EndBoundingBox (

TQ3ViewObject view, TQ3BoundingBox *result);

TQ3Status Q3View_StartBoundingSphere (

TQ3ViewObject view,

TQ3ComputeBounds computeBounds);

TQ3ViewStatus Q3View_EndBoundingSphere (

TQ3ViewObject view,

TQ3BoundingSphere *result);

TQ3Boolean Q3View_IsBoundingBoxVisible (

TQ3ViewObject view,

const TQ3BoundingBox *bbox);

Setting Idle Methods

TQ3Status Q3View_SetIdleMethod(TQ3ViewObject view,

TQ3ViewIdleMethod idleMethod,

const void *idleData);

C H A P T E R 1 3

View Objects

13-46 Summary of View Objects

Writing Custom Data

TQ3Status Q3View_SubmitWriteData (

TQ3ViewObject view,

TQ3Size size,

void *data,

void (*deleteData));

Pushing and Popping the Graphics State

TQ3Status Q3Push_Submit (TQ3ViewObject view);

TQ3Status Q3Pop_Submit (TQ3ViewObject view);

Getting a View’s Transforms

TQ3Status Q3View_GetLocalToWorldMatrixState (

TQ3ViewObject view, TQ3Matrix4x4 *matrix);

TQ3Status Q3View_GetWorldToFrustumMatrixState (

TQ3ViewObject view, TQ3Matrix4x4 *matrix);

TQ3Status Q3View_GetFrustumToWindowMatrixState (

TQ3ViewObject view, TQ3Matrix4x4 *matrix);

Managing a View’s Style States

TQ3Status Q3View_GetBackfacingStyleState (

TQ3ViewObject view,

TQ3BackfacingStyle *backfacingStyle);

TQ3Status Q3View_GetInterpolationStyleState (

TQ3ViewObject view,

TQ3InterpolationStyle *interpolationType);

TQ3Status Q3View_GetFillStyleState (

TQ3ViewObject view,

TQ3FillStyle *fillStyle);

C H A P T E R 1 3

View Objects

Summary of View Objects 13-47

TQ3Status Q3View_GetHighlightStyleState (

TQ3ViewObject view,

TQ3AttributeSet *highlightStyle);

TQ3Status Q3View_GetSubdivisionStyleState (

TQ3ViewObject view,

TQ3SubdivisionStyleData *subdivisionStyle);

TQ3Status Q3View_GetOrientationStyleState (

TQ3ViewObject view,

TQ3OrientationStyle

*fontFacingDirectionStyle);

TQ3Status Q3View_GetReceiveShadowsStyleState (

TQ3ViewObject view,

TQ3Boolean *receives);

TQ3Status Q3View_GetPickIDStyleState (

TQ3ViewObject view,

unsigned long *pickIDStyle);

TQ3Status Q3View_GetPickPartsStyleState (

TQ3ViewObject view,

TQ3PickParts *pickPartsStyle);

Managing a View’s Attribute Set

TQ3Status Q3View_GetDefaultAttributeSet (

TQ3ViewObject view,

TQ3AttributeSet *attributeSet);

TQ3Status Q3View_SetDefaultAttributeSet (

TQ3ViewObject view,

TQ3AttributeSet attributeSet);

TQ3Status Q3View_GetAttributeSetState (

TQ3ViewObject view,

TQ3AttributeSet *attributeSet);

C H A P T E R 1 3

View Objects

13-48 Summary of View Objects

TQ3Status Q3View_GetAttributeState (

TQ3ViewObject view,

TQ3AttributeType attributeType,

void *data);

Application-Defined Routines 13

typedef TQ3Status (*TQ3ViewIdleMethod) (

TQ3ViewObject view,

const void *idleData);

Errors and Warnings 13

kQ3ErrorViewNotStarted
kQ3ErrorViewIsStarted
kQ3ErrorRendererNotSet
kQ3ErrorRenderingIsActive
kQ3ErrorImmediateModeUnderflow
kQ3ErrorDisplayNotSet
kQ3ErrorCameraNotSet
kQ3ErrorDrawContextNotSet
kQ3ErrorNonInvertibleMatrix
kQ3ErrorRenderingNotStarted
kQ3ErrorPickingNotStarted
kQ3ErrorBoundsNotStarted
kQ3ErrorDataNotAvailable
kQ3ErrorNothingToPop
kQ3WarningViewTraversalInProgress
kQ3WarningNonInvertibleMatrix

C H A P T E R 1 4

Contents

14-1

Contents

Figure 14-0
Listing 14-0
Table 14-0

14 Shader Objects

About Shader Objects 14-3
Surface-Based Shaders 14-4
Illumination Models 14-4

Lambert Illumination 14-5
Phong Illumination 14-6
Null Illumination 14-9

Textures 14-10
Using Shader Objects 14-10

Using Illumination Shaders 14-11
Using Texture Shaders 14-11
Creating Storage Pixmaps 14-15
Handling

uv

 Values Outside the Valid Range 14-16
Shader Objects Reference 14-16

Constants 14-17
Boundary-Handling Methods 14-17

Shader Objects Routines 14-18
Managing Shaders 14-18
Managing Shader Characteristics 14-19
Managing Texture Shaders 14-24
Managing Illumination Shaders 14-25
Managing Textures 14-28
Managing Pixmap Textures 14-30

Summary of Shader Objects 14-32
C Summary 14-32

Constants 14-32
Shader Objects Routines 14-32

This document was created with FrameMaker 4.0.4

C H A P T E R 1 4

About Shader Objects

14-3

Shader Objects 14

This chapter describes shader objects (or shaders) and the functions you can
use to manipulate them. You use shaders to provide shading and other effects
to the objects in a model. For example, you can use a texture shader to apply a
texture to the surface of an object in a model.

To use this chapter, you should already be familiar with views and lights,
described in the chapters “View Objects” and “Light Objects” earlier in
this book.

This chapter begins by describing shader objects and their features. Then it
shows how to create and manipulate shaders. The section “Shader Objects
Reference,” beginning on page 14-16 provides a complete description of shader
objects and the routines you can use to create and manipulate them.

About Shader Objects 14

A

shader object

 (or, more briefly, a

shader

) is a type of QuickDraw 3D object
that you can use to manipulate visual effects that depend on the illumination
provided by a view’s group of lights, the color and other material properties
(such as the reflectance and texture) of surfaces in a model, and the position
and orientation of the lights and objects in a model. Shaders that affect the
surfaces of geometric objects based on their material properties, position, and
orientation (and other factors) are

surface-based shaders.

 QuickDraw 3D
supplies several surface-based shaders, and you can define your own custom
surface-based shaders to create other special effects. For instance, you can
define a custom surface-based shader to handle custom attributes you have
attached to surfaces or parts of surfaces.

The application of surface-based shaders occurs within the

QuickDraw 3D
shading architecture,

 an environment in which shaders can be applied at
various stages in the imaging pipeline. This architecture provides well-defined
entry points at specific locations along the imaging pipeline. At each such
location, you can invoke a shader. This capability allows you to create both
two-dimensional and three-dimensional visual effects.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 4

Shader Objects

14-4

About Shader Objects

The QuickDraw 3D shading architecture is implemented using an object-based
class hierarchy. For each location in the imaging pipeline at which a shader can
be invoked, a subclass of the shader object has been defined. The following
sections describe the available classes of shader objects.

Surface-Based Shaders 14

Several of the base classes of shaders apply shading effects to the surfaces of
geometric objects.

■

Surface shaders

 are applied when calculating the appearance of a surface.
A geometric object (or group of geometric objects) can be associated with a
surface shader, which is called to evaluate the shading effect for each face,
vertex, or pixel of the object. QuickDraw 3D currently defines one subclass
of surface shaders:

n

Texture shaders

 apply shading to an object using a texture. See
“Textures” on page 14-10 for more information on textures and
texture shaders.

■

Illumination shaders

 determine the effects of the view’s group of lights on
the objects in a model. QuickDraw 3D currently defines three subclasses of
illumination shaders. See “Illumination Models” on page 14-4 for more
information on these illumination models.

n

The

Lambert illumination shader

implements a Lambert illumination
model.

n

The

Phong illumination shader

implements a Phong illumination model.

n

The

null illumination shader

draws objects using only the diffuse colors
of those objects, ignoring the view’s group of lights.

Illumination Models 14

As you’ve seen, an illumination shader determines the effects of a view’s group
of lights on the objects in a model. In order for the lights to have any effect, you
must attach an illumination shader to the view. QuickDraw 3D provides three
types of illumination shaders.

C H A P T E R 1 4

Shader Objects

About Shader Objects

14-5

Lambert Illumination 14

The Lambert illumination shader implements an illumination model based on
the diffuse reflection (also called the Lambertian reflection) of a surface.

Diffuse reflection

 is characteristic of light reflected from a dull, nonshiny
surface. Objects illuminated solely by diffusely reflected light exhibit an equal
light intensity from all viewing directions. Figure 14-1 shows an object
illuminated using the Lambert illumination shader. See also Color Plate 4 at the
beginning of this book.

Figure 14-1

Effects of the Lambert illumination shader

For a point on a surface, the Lambert illumination provided by

i

 distinct lights
is given by the following equation:

Here,

I

a

 is the intensity of the ambient light, and

k

a

 is the ambient coefficient.

O

d

is the diffuse color of the surface of the object being illuminated.

N

 is the
surface normal vector at the point whose illumination is being evaluated, and

L

i

 is a normalized vector indicating the direction to the

i

th light source. Notice
that if the dot product (

N

⋅

L

i

) is 0 for a particular light (that is, if

N

 and

L

i

 are
perpendicular), that light contributes nothing to the illumination of the point.

I

i

 is the intensity of the

i

th light source, and

k

d

 is the

diffuse coefficient

 of the
surface being illuminated (that is, the level of diffuse reflection of the surface).

ILambert IakaOd N Li•() IikdOd
i

∑+=

C H A P T E R 1 4

Shader Objects

14-6

About Shader Objects

As you can see, the intensity of the light reflected by a point on a surface
depends solely on the ambient light and the diffuse reflection of the surface
at that point.

Note

QuickDraw 3D does not currently provide a way to set the
value of the diffuse coefficient of a surface directly. Instead,
you must use the product

k

d

O

d

 as the surface’s diffuse
color. You specify a diffuse color by inserting an attribute
of type

kQ3AttributeTypeDiffuseColor

 into the
surface’s attribute set.

◆

Phong Illumination 14

The Phong illumination shader implements an illumination model based on
both diffuse reflection and specular reflection of a surface.

Specular reflection

is characteristic of light reflected from a shiny surface, where a bright highlight
appears from certain viewing directions. Figure 14-2 shows an object
illuminated using the Phong illumination shader. See also Color Plate 4 at the
beginning of this book.

Figure 14-2

Effects of the Phong illumination shader

C H A P T E R 1 4

Shader Objects

About Shader Objects

14-7

For a point on a surface, the Phong illumination provided by

i

 distinct lights is
given by the following equation:

Notice that the Phong illumination equation is simply the Lambert illumination
equation with an additional summand to account for specular reflection. Here,

R

 is the direction of reflection and

V

 is the direction of viewing. The exponent

n

is the specular reflection exponent, and

k

s

 is the specular reflection coefficient.
The

specular reflection exponent

 determines how quickly the specular
reflection diminishes as the viewing direction moves away from the direction
of reflection. In other words, the specular reflection exponent determines the
size of the

specular highlight

 (a bright area on the surface of the object caused
by specular reflection). When the value of

n

 is small, the size of the specular
highlight is large; as

n

 increases, the size of the specular highlight shrinks.

The

specular coefficient

 (or

specular reflection coefficient

), symbolized by

k

s

in the equation above, indicates the level of the object’s specular reflection. It
controls the overall brightness of the specular highlight, independent of the
brightness of the light sources and the direction of viewing.

Figure 14-3 shows an object illuminated using a variety of values for the
specular reflection exponent and the specular coefficient. In this figure,
the specular reflection exponent increases from left to right, resulting in a
smaller specular highlight. In addition, the specular coefficient increases
from top to bottom, resulting in a brighter specular highlight.

IPhong IakaOd N Li•() IikdOd() R V•() n
ks()+[]

i
∑+=

C H A P T E R 1 4

Shader Objects

14-8

About Shader Objects

Figure 14-3

Phong illumination with various specular exponents and coefficients

Note

A surface’s specular reflection coefficient is also called
its

specular control.

 You specify a specular reflection
coefficient by inserting an attribute of type

kQ3AttributeTypeSpecularControl

 into the surface’s
attribute set.

◆

C H A P T E R 1 4

Shader Objects

About Shader Objects

14-9

Null Illumination 14

The null illumination shader ignores the lights in a view’s light group and
configures the renderer to draw all objects using only the diffuse colors of those
objects. The net effect of the this shader is to draw objects as if the only light
source was an ambient light at full intensity. Figure 14-4 shows an object
illuminated using the null illumination shader.

Figure 14-4

Effects of the null illumination shader

For any point on a surface, the null illumination is given by the following
equation:

Here,

O

d

 is the diffuse color of the surface of the object being illuminated. As
you can see, when the null illumination shader is active, all facets of an object
are drawn the same color (unless different facets have attribute sets that
override the diffuse color of the object).

Inull Od=

C H A P T E R 1 4

Shader Objects

14-10 Using Shader Objects

Textures 14

As indicated earlier, QuickDraw 3D supports texture shaders that allow you
to perform texture mapping, a technique wherein a predefined image (the
texture) is mapped onto the surface of an object in a model. For instance, you
can create a wood-grain image and map it onto objects in a model to give those
objects a wooden appearance. Similarly, you can digitize an image of a person
and apply it, using a texture shader, to the face of an object to create a picture,
in the model, of that person. In general, you’ll use texture shaders to create
realistic-looking surfaces (such as wood, stone, or cloth) in your models.

You create a texture shader by calling Q3TextureShader_New, passing it a
texture object (or, more briefly, a texture). QuickDraw 3D provides a number
of functions that you can use to create and manipulate texture objects.
Currently QuickDraw 3D supports one subclass of texture objects, pixmap
texture objects, which are images defined by pixmaps. You call
Q3PixmapTexture_New to create a new texture object from a pixmap.

Note
See the chapter “Geometric Objects” for information on
pixmaps. ◆

Once you’ve created a texture from a pixmap, you need to attach the texture to
surfaces in your model. See “Using Texture Shaders” on page 14-11 for details.

Using Shader Objects 14

QuickDraw 3D supplies routines that you use to create and configure shader
objects. You can make a shader’s effects appear in a rendered image in several
ways. You can submit the shader inside a rendering loop, or you can add the
shader to a group and submit the group inside a rendering loop. Indeed, you
can apply a surface shader in yet a third way, by attaching it to an object as an
attribute. These ways of applying a shader are all equally good, and which of
them you use depends on the circumstances. For instance, if you put a shader
object into an unordered display group, it will affect only the objects following
it in the group.

C H A P T E R 1 4

Shader Objects

Using Shader Objects 14-11

Using Illumination Shaders 14

You create an illumination shader by calling the _New function for the type of
illumination model you want to use. For example, to use Phong illumination,
you can call the Q3PhongIllumination_New function.

Once you’ve created an illumination shader, you apply it to the objects in a
model by submitting the shader inside of a submitting loop, or by adding it to
a group that is submitted in a submitting loop. For instance, to apply Phong
illumination to all the objects in a model, you can call the function
Q3Shader_Submit in your rendering loop, as shown in Listing 14-1.

Listing 14-1 Applying an illumination shader

Q3View_StartRendering(myView);

do {

Q3Shader_Submit(myPhongShader, myView);

/*submit styles, groups, and other objects here*/

myViewStatus = Q3View_EndRendering(myView);

} while (myViewStatus == kQ3ViewStatusRetraverse);

Using Texture Shaders 14

You create a texture shader by calling the Q3TextureShader_New function,
to which you pass a texture object. QuickDraw 3D currently supports only
pixmap texture objects, which you create by calling the Q3PixMapTexture_New
function.

Once you’ve created a texture shader, you can apply it to all the objects in a
model by submitting the shader inside of a rendering loop, as shown in
Listing 14-2.

C H A P T E R 1 4

Shader Objects

14-12 Using Shader Objects

Listing 14-2 Applying a texture shader in a submitting loop

Q3View_StartRendering(myView);

do {

Q3Shader_Submit(myTextureShader, myView);

/*submit styles, groups, and other objects here*/

myViewStatus = Q3View_EndRendering(myView);

} while (myViewStatus == kQ3ViewStatusRetraverse);

You can apply the shader to the objects in a group by adding it to a group that
is submitted in a rendering loop, as shown in Listing 14-3. (The myGroup group
is an ordered display group.)

Listing 14-3 Applying a texture shader in a group

Q3Group_AddObject(myGroup, myTextureShader);

Q3View_StartRendering(myView);

do {

Q3Group_Submit(myGroup, myView);

myViewStatus = Q3View_EndRendering(myView);

} while (myViewStatus == kQ3ViewStatusRetraverse);

You can also apply a texture shader to all the objects in a model by adding the
shader as an attribute of type kQ3AttributeTypeSurfaceShader to the view’s
attribute set. Similarly, you can attach the texture shader to a part of a
geometric object as an attribute. For example, you can attach a texture shader
to the face of a cube or a mesh to have that face shaded with a texture.
Listing 14-4 illustrates how to create a texture shader and use it to shade a
triangle. Note that the function MyCreateShadedTriangle defined in
Listing 14-4 sets up a custom surface parameterization for the triangle, because
there is no standard surface parameterization for a triangle.

C H A P T E R 1 4

Shader Objects

Using Shader Objects 14-13

Listing 14-4 Applying a texture shader as an attribute

TQ3GeometryObject MyCreateShadedTriangle (TQ3StoragePixmap myPixmap)

{

TQ3ShaderObject myShader;

TQ3TextureObject myTexture;

TQ3TriangleData myTriData;

TQ3GeometryObject myTriangle;

TQ3Param2D myParam2D;

TQ3Vertex3D myVertices[3] = {

{ { 0.5, 0.5, 0.0}, NULL },

{ {-0.5, 0.5, 0.0}, NULL },

{ {-0.5, -0.5, 0.0}, NULL }};

/*Create a new texture from the pixmap passed in.*/

myTexture = Q3PixmapTexture_New(&myPixmap);

if (myTexture == NULL)

return (NULL);

Q3Object_Dispose(myPixmap.image);

/*Create a new texture shader from the texture.*/

myShader = Q3TextureShader_New(myTexture);

if (myShader == NULL)

return (NULL);

Q3Object_Dispose(myTexture);

/*Configure triangle data.*/

/*First, attach uv values to the three vertices.*/

myParam2D.u = 0;

myParam2D.v = 0;

myVertices[0].attributeSet = Q3AttributeSet_New();

Q3AttributeSet_Add(myVertices[0].attributeSet, kQ3AttributeTypeShadingUV,

&myParam2D);

myParam2D.u = 0;

myParam2D.v = 1;

C H A P T E R 1 4

Shader Objects

14-14 Using Shader Objects

myVertices[1].attributeSet = Q3AttributeSet_New();

Q3AttributeSet_Add(myVertices[1].attributeSet, kQ3AttributeTypeShadingUV,

&myParam2D);

myParam2D.u = 1;

myParam2D.v = 1;

myVertices[2].attributeSet = Q3AttributeSet_New();

Q3AttributeSet_Add(myVertices[2].attributeSet, kQ3AttributeTypeShadingUV,

&myParam2D);

/*Define the triangle, using the vertices and uv values just set up.*/

myTriData.vertices[0] = myVertices[0];

myTriData.vertices[1] = myVertices[1];

myTriData.vertices[2] = myVertices[2];

/*Attach a texture surface shader as an attribute.*/

myTriData.triangleAttributeSet = Q3AttributeSet_New();

Q3AttributeSet_Add(myTriData.triangleAttributeSet,

kQ3AttributeTypeSurfaceShader, &myShader);

myTriangle = Q3Triangle_New(&myTriData);

Q3Object_Dispose(myVertices[0].attributeSet);

Q3Object_Dispose(myVertices[1].attributeSet);

Q3Object_Dispose(myVertices[2].attributeSet);

return(myTriangle);

}

The function MyCreateShadedTriangle defined in Listing 14-4 creates a
texture from the pixmap it is passed and then creates a new texture shader
from that texture. MyCreateShadedTriangle then attaches uv parameterization
values to each of the three triangle vertices and defines the triangle data.
Finally, MyCreateShadedTriangle creates a triangle and returns it to its caller.
When the triangle is drawn (perhaps by being submitted in a rendering loop),
it will have the specified texture mapped onto it.

C H A P T E R 1 4

Shader Objects

Using Shader Objects 14-15

Creating Storage Pixmaps 14

The data passed to the Q3PixmapTexture_New function (as in Listing 14-4 on
page 14-13) is a storage pixmap, of type TQ3StoragePixmap. The image field
of a storage pixmap specifies a storage object that contains the pixmap data
to be applied as a texture. You can call either Q3MemoryStorage_New or
Q3MemoryStorage_NewBuffer to create a storage object. Which function you
use depends on whether (1) you want QuickDraw 3D to maintain the image
data in an internal buffer or (2) you want to maintain the data in your
own buffer.

To let QuickDraw 3D manage the pixmap data, you can assign the image field
of a storage pixmap using code like this:

myStoragePixmap.image = Q3MemoryStorage_New(myBuffer, mySize);

This code asks QuickDraw 3D to allocate a buffer internally, of the specified
size. Once Q3MemoryStorage_New returns successfully, you can dispose of the
buffer myBuffer, because QuickDraw 3D has copied the texture pixmap data
into its own internal memory.

If you prefer, you can maintain the pixmap data in your application’s memory
partition and avoid the overhead of having the data copied to internal
QuickDraw 3D memory. (This is especially useful if you want to animate a
texture by changing the texture pixmap data from frame to frame.) To do this,
you create a storage object by calling the Q3MemoryStorage_NewBuffer
function, like this:

myStoragePixmap.image = Q3MemoryStorage_NewBuffer

(myBuffer, mySize, mySize);

In this case, you should not dispose of the data buffer. You can change the
pixmap data by calling Q3MemoryStorage_SetBuffer.

Q3MemoryStorage_SetBuffer

(myStoragePixmap.image, myBuffer, mySize, mySize);

You need to call Q3MemoryStorage_SetBuffer to force QuickDraw 3D to
update any caches.

C H A P T E R 1 4

Shader Objects

14-16 Shader Objects Reference

Note
You can also change the data of a storage object created by
a call to Q3MemoryStorage_New, by calling
Q3MemoryStorage_Set. ◆

Handling uv Values Outside the Valid Range 14

As you’ve seen, a uv parameterization defines how to map one object (for
example, a pixmap) onto another (typically a surface). The standard surface
parameterizations defined by QuickDraw 3D all use u and v parametric values
that are in the valid range 0.0 to 1.0. A custom surface parameterization,
however, is free to define some other range of u and v values. When this
happens, you need to indicate how you want QuickDraw 3D to handle uv
values outside the valid range.

Currently, QuickDraw 3D supports two boundary-handling methods:
wrapping and clamping. To wrap a shader effect is to replicate the entire effect
across the mapped area. For example, to wrap a texture is to replicate the
texture across the entire mapped area, as many times as are necessary to fill the
mapped area. To clamp a shader effect is to replicate the boundaries of the effect
across the portion of the mapped area that lies outside the valid range 0.0 to 1.0.

You can specify the boundary-handling methods of the u and v directions
independently. You can call the Q3Shader_SetUBoundary function to indicate
how to handle values in the u parametric direction that lie outside the valid
range, and you can call the Q3Shader_SetVBoundary function to indicate how
to handle values in the v parametric direction that lie outside the valid range.
The default boundary-handling method is to wrap in both the u and v
parametric directions.

Shader Objects Reference 14

This section describes the constants, data structures, and routines you can use
to create and manipulate shaders, neighborhoods, textures, and attachments.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 14-17

Constants 14

This section describes the constants that you use to specify uv boundary-
handling methods.

Boundary-Handling Methods 14

You use a boundary-handling method specifier to indicate how you want a
shader to handle uv values that are outside the valid range (namely, 0 to 1). For
example, you pass one of these constants to the Q3Shader_SetUBoundary
function to indicate how to handle values in the u parametric direction that lie
outside the valid range.

Note
For a fuller description of boundary-handling methods,
see “Handling uv Values Outside the Valid Range,”
beginning on page 14-16. ◆

typedef enum TQ3ShaderUVBoundary {

kQ3ShaderUVBoundaryWrap,

kQ3ShaderUVBoundaryClamp

} TQ3ShaderUVBoundary;

Constant descriptions

kQ3ShaderUVBoundaryWrap

Values outside the valid range are to be wrapped. To wrap
a shader effect is to replicate the entire effect across the
mapped area. For example, for a texture shader, wrapping
causes the entire image to be replicated across the surface
onto which the texture is mapped.

kQ3ShaderUVBoundaryClamp

Values outside the valid range are to be clamped. To clamp
a shader effect is to replicate the boundaries of the effect
across the portion of the mapped area that lies outside the
valid range. For example, for a texture shader, clamping
causes boundaries of the image to be smeared across the
portion of the surface onto which the texture is mapped
that lies outside the valid range.

C H A P T E R 1 4

Shader Objects

14-18 Shader Objects Reference

Shader Objects Routines 14

This section describes the routines you can use to manage shaders and textures.

Managing Shaders 14

QuickDraw 3D provides routines that you can use to manage shaders.

Q3Shader_GetType 14

You can use the Q3Shader_GetType function to get the type of a shader object.

TQ3ObjectType Q3Shader_GetType (TQ3ShaderObject shader);

shader A shader object.

DESCRIPTION

The Q3Shader_GetType function returns, as its function result, the type of the
shader object specified by the shader parameter. The types of shader objects
currently supported by QuickDraw 3D are defined by these constants:

kQ3ShaderTypeSurface

kQ3ShaderTypeIllumination

If the specified shader object is invalid or is not one of these types,
Q3Shader_GetType returns the value kQ3ObjectTypeInvalid.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 14-19

Q3Shader_Submit 14

You can use the Q3Shader_Submit function to submit a shader in a view.

TQ3Status Q3Shader_Submit (

TQ3ShaderObject shader,

TQ3ViewObject view);

shader A shader.

view A view.

DESCRIPTION

The Q3Shader_Submit function submits the shader specified by the shader
parameter for drawing or writing in the view specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Managing Shader Characteristics 14

QuickDraw 3D provides routines for getting and setting characteristics that
define how a shader affects a surface.

Q3Shader_GetUVTransform 14

You can use the Q3Shader_GetUVTransform function to get the current
transform in uv parametric space.

TQ3Status Q3Shader_GetUVTransform (

TQ3ShaderObject shader,

TQ3Matrix3x3 *uvTransform);

C H A P T E R 1 4

Shader Objects

14-20 Shader Objects Reference

shader A shader.

uvTransform On exit, a pointer to the current transform in uv
parametric space.

DESCRIPTION

The Q3Shader_GetUVTransform function returns, in the uvTransform
parameter, the current transform in uv parametric space for the shader
specified by the shader parameter.

Q3Shader_SetUVTransform 14

You can use the Q3Shader_SetUVTransform function to set the transform in uv
parametric space.

TQ3Status Q3Shader_SetUVTransform (

TQ3ShaderObject shader,

const TQ3Matrix3x3 *uvTransform);

shader A shader.

uvTransform A pointer to the desired transform in uv parametric space.

DESCRIPTION

The Q3Shader_SetUVTransform function sets the transform in uv parametric
space for the shader specified by the shader parameter to the transform
specified by the uvTransform parameter. For example, a texture shader that
relies on uv values to index a texture mapping can rotate, scale, or translate the
texture by setting appropriate values in the uv transform.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 14-21

Q3Shader_GetUBoundary 14

You can use the Q3Shader_GetUBoundary function to get the current
boundary-handling method for u values that are outside the range 0 to 1.

TQ3Status Q3Shader_GetUBoundary (

TQ3ShaderObject shader,

TQ3ShaderUVBoundary *uBoundary);

shader A shader.

uBoundary On exit, a value that indicates the current method of handling u
values that are outside the range 0 to 1. See
“Boundary-Handling Methods” on page 14-17 for a description
of the values that can be returned.

DESCRIPTION

The Q3Shader_GetUBoundary function returns, in the uBoundary parameter,
the current method used by the shader specified by the shader parameter of
handling u values that are outside the range 0 to 1. If Q3Shader_GetUBoundary
completes successfully, the uBoundary parameter contains one of these values:

typedef enum TQ3ShaderUVBoundary {

kQ3ShaderUVBoundaryWrap,

kQ3ShaderUVBoundaryClamp

} TQ3ShaderUVBoundary;

Q3Shader_SetUBoundary 14

You can use the Q3Shader_SetUBoundary function to set the current
boundary-handling method for u values that are outside the range 0 to 1.

TQ3Status Q3Shader_SetUBoundary (

TQ3ShaderObject shader,

TQ3ShaderUVBoundary uBoundary);

C H A P T E R 1 4

Shader Objects

14-22 Shader Objects Reference

shader A shader.

uBoundary A value that indicates the desired method of handling u values
that are outside the range 0 to 1. See “Boundary-Handling
Methods” on page 14-17 for a description of the values that you
can pass in this parameter.

DESCRIPTION

The Q3Shader_SetUBoundary function sets the boundary-handling method for
u values to be used by the shader specified by the shader parameter to the
method specified by the uBoundary parameter.

Q3Shader_GetVBoundary 14

You can use the Q3Shader_GetVBoundary function to get the current
boundary-handling mode for v values that are outside the range 0 to 1.

TQ3Status Q3Shader_GetVBoundary (

TQ3ShaderObject shader,

TQ3ShaderUVBoundary *vBoundary);

shader A shader.

vBoundary On exit, a value that indicates the current method of
handling v values that are outside the range 0 to 1. See
“Boundary-Handling Methods” on page 14-17 for a
description of the values that can be returned.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 14-23

DESCRIPTION

The Q3Shader_GetVBoundary function returns, in the vBoundary parameter,
the current method used by the shader specified by the shader parameter of
handling v values that are outside the range 0 to 1. If Q3Shader_GetVBoundary
completes successfully, the vBoundary parameter contains one of these values:

typedef enum TQ3ShaderUVBoundary {

kQ3ShaderUVBoundaryWrap,

kQ3ShaderUVBoundaryClamp

} TQ3ShaderUVBoundary;

Q3Shader_SetVBoundary 14

You can use the Q3Shader_SetVBoundary function to set the current
boundary-handling mode for v values that are outside the range 0 to 1.

TQ3Status Q3Shader_SetVBoundary (

TQ3ShaderObject shader,

TQ3ShaderUVBoundary vBoundary);

shader A shader.

vBoundary A value that indicates the desired method of handling v values
that are outside the range 0 to 1. See “Boundary-Handling
Methods” on page 14-17 for a description of the values that you
can pass in this parameter.

DESCRIPTION

The Q3Shader_SetVBoundary function sets the boundary-handling method for
v values to be used by the shader specified by the shader parameter to the
method specified by the vBoundary parameter.

C H A P T E R 1 4

Shader Objects

14-24 Shader Objects Reference

Managing Texture Shaders 14

QuickDraw 3D provides routines that you can use to create and manage
texture shaders.

Q3TextureShader_New 14

You can use the Q3TextureShader_New function to create a new texture shader.

TQ3ShaderObject Q3TextureShader_New (TQ3TextureObject texture);

texture A texture object.

DESCRIPTION

The Q3TextureShader_New function returns, as its function result, a new
texture shader that uses the texture specified by the texture parameter.
If Q3TextureShader_New cannot create a new texture shader, it returns the
value NULL.

Q3TextureShader_GetTexture 14

You can use the Q3TextureShader_GetTexture function to get the texture
associated with a texture shader.

TQ3Status Q3TextureShader_GetTexture (

TQ3ShaderObject shader,

TQ3TextureObject *texture);

shader A texture shader.

texture On exit, the texture object currently associated with the
specified texture shader.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 14-25

DESCRIPTION

The Q3TextureShader_GetTexture function returns, in the texture
parameter, the texture object currently associated with the texture shader
specified by the shader parameter.

Q3TextureShader_SetTexture 14

You can use the Q3TextureShader_SetTexture function to set the texture
associated with a texture shader.

TQ3Status Q3TextureShader_SetTexture (

TQ3ShaderObject shader,

TQ3TextureObject texture);

shader A texture shader.

texture The texture object to be associated with the specified
texture shader.

DESCRIPTION

The Q3TextureShader_SetTexture function sets the texture object associated
with the texture shader specified by the shader parameter to the texture
specified by the texture parameter.

Managing Illumination Shaders 14

QuickDraw 3D provides routines that you can use to create and manage
illumination shaders. QuickDraw 3D supplies two types of illumination
shaders, Lambert illumination shaders and Phong illumination shaders.

C H A P T E R 1 4

Shader Objects

14-26 Shader Objects Reference

Q3LambertIllumination_New 14

You can use the Q3LambertIllumination_New function to create a new
illumination shader that provides Lambert illumination.

TQ3ShaderObject Q3LambertIllumination_New (void);

DESCRIPTION

The Q3LambertIllumination_New function returns, as its function result, a
new illumination shader that implements a Lambert illumination model.
See “Illumination Models” on page 14-4 for information on the Lambert
illumination algorithm.

Q3PhongIllumination_New 14

You can use the Q3PhongIllumination_New function to create a new
illumination shader that provides Phong illumination.

TQ3ShaderObject Q3PhongIllumination_New (void);

DESCRIPTION

The Q3PhongIllumination_New function returns, as its function result, a new
illumination shader that implements a Phong illumination model. See
“Illumination Models” on page 14-4 for information on the Phong illumination
algorithm.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 14-27

Q3NULLIllumination_New 14

You can use the Q3NULLIllumination_New function to create a new null
illumination shader.

TQ3ShaderObject Q3NULLIllumination_New (void);

DESCRIPTION

The Q3NULLIllumination_New function returns, as its function result, a new
null illumination shader.

Q3IlluminationShader_GetType 14

You can use the Q3IlluminationShader_GetType function to get the type of
an illumination shader.

TQ3ObjectType Q3IlluminationShader_GetType (

TQ3ShaderObject shader);

shader An illumination shader.

DESCRIPTION

The Q3IlluminationShader_GetType function returns, as its function result,
the type of the illumination shader specified by the shader parameter. The
types of illumination shaders currently supported by QuickDraw 3D are
defined by these constants:

kQ3IlluminationTypeLambert

kQ3IlluminationTypePhong

kQ3IlluminationTypeNULL

If the specified illumination shader is invalid or is not one of these types,
Q3IlluminationShader_GetType returns the value kQ3ObjectTypeInvalid.

C H A P T E R 1 4

Shader Objects

14-28 Shader Objects Reference

Managing Textures 14

QuickDraw 3D provides routines that you can use to get information about
the characteristics of a texture. You can get the dimensions of a texture, as
well as the number of channels and the number of bits per channel. You
cannot, however, reset any of these texture characteristics (they are determined
at the time you create a texture object). You can also get the current alpha
and RGB channels of a texture. You can reset these characteristics to achieve
special effects.

Note
To create a texture object, you need to create an instance
of some subclass of the texture class. For example, you
can create a pixmap texture object by calling
Q3PixmapTexture_New. See “Managing Pixmap Textures”
on page 14-30 for information on creating and
manipulating pixmap textures. ◆

Q3Texture_GetType 14

You can use the Q3Texture_GetType function to get the type of a texture object.

TQ3ObjectType Q3Texture_GetType (TQ3TextureObject texture);

texture A texture object.

DESCRIPTION

The Q3Texture_GetType function returns, as its function result, the type of the
texture object specified by the texture parameter. The type of texture objects
currently supported by QuickDraw 3D is defined by this constant:

kQ3TextureTypePixmap

If the specified texture object is invalid or is not of this type,
Q3Texture_GetType returns the value kQ3ObjectTypeInvalid.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 14-29

Q3Texture_GetWidth 14

You can use the Q3Texture_GetWidth function to get the width of a texture.

TQ3Status Q3Texture_GetWidth (

TQ3TextureObject texture,

unsigned long *width);

texture A texture object.

width On exit, the width of the specified texture.

DESCRIPTION

The Q3Texture_GetWidth function returns, in the width parameter, the width
of the texture specified by the texture parameter.

Q3Texture_GetHeight 14

You can use the Q3Texture_GetHeight function to get the height of a texture.

TQ3Status Q3Texture_GetHeight (

TQ3TextureObject texture,

unsigned long *height);

texture A texture object.

height On exit, the height of the specified texture.

DESCRIPTION

The Q3Texture_GetHeight function returns, in the height parameter, the
height of the texture specified by the texture parameter.

C H A P T E R 1 4

Shader Objects

14-30 Shader Objects Reference

Managing Pixmap Textures 14

QuickDraw 3D provides routines that you can use to create and manipulate
pixmap textures.

Q3PixmapTexture_New 14

You can use the Q3PixmapTexture_New function to create a new
pixmap texture.

TQ3TextureObject Q3PixmapTexture_New (

const TQ3StoragePixmap *pixmap);

pixmap A storage pixmap.

DESCRIPTION

The Q3PixmapTexture_New function returns, as its function result, a new
texture object that uses the storage pixmap specified by the pixmap parameter.
If Q3PixmapTexture_New cannot create a new pixmap texture object, it returns
the value NULL.

Q3PixmapTexture_GetPixmap 14

You can use the Q3PixmapTexture_GetPixmap function to get the pixmap
associated with a pixmap texture object.

TQ3Status Q3PixmapTexture_GetPixmap (

TQ3TextureObject texture,

TQ3StoragePixmap *pixmap);

texture A pixmap texture object.

pixmap On exit, the storage pixmap currently associated with the
specified pixmap texture object.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 14-31

DESCRIPTION

The Q3PixmapTexture_GetPixmap function returns, in the pixmap parameter,
the pixmap currently associated with the pixmap texture object specified by the
texture parameter.

Q3PixmapTexture_SetPixmap 14

You can use the Q3PixmapTexture_SetPixmap function to set the pixmap
associated with a pixmap texture object.

TQ3Status Q3PixmapTexture_SetPixmap (

TQ3TextureObject texture,

const TQ3StoragePixmap *pixmap);

texture A pixmap texture object.

pixmap The storage pixmap to be associated with the specified pixmap
texture object.

DESCRIPTION

The Q3PixmapTexture_SetPixmap function sets the pixmap to be associated
with the pixmap texture object specified by the texture parameter to the
pixmap specified by the pixmap parameter.

C H A P T E R 1 4

Shader Objects

14-32 Summary of Shader Objects

Summary of Shader Objects 14

C Summary 14

Constants 14

typedef enum TQ3ShaderUVBoundary {

kQ3ShaderUVBoundaryWrap,

kQ3ShaderUVBoundaryClamp

} TQ3ShaderUVBoundary;

#define kQ3ShaderTypeSurface Q3_OBJECT_TYPE('s','u','s','h')

#define kQ3ShaderTypeIllumination Q3_OBJECT_TYPE('i','l','s','h')

#define kQ3SurfaceShaderTypeTexture Q3_OBJECT_TYPE('t','x','s','u')

#define kQ3IlluminationTypeLambert Q3_OBJECT_TYPE('l','m','i','l')

#define kQ3IlluminationTypePhong Q3_OBJECT_TYPE('p','h','i','l')

#define kQ3IlluminationTypeNULL Q3_OBJECT_TYPE('n','u','l','l')

#define kQ3TextureTypePixmap Q3_OBJECT_TYPE('t','x','p','m')

Shader Objects Routines 14

Managing Shaders

TQ3ObjectType Q3Shader_GetType(TQ3ShaderObject shader);

TQ3Status Q3Shader_Submit (TQ3ShaderObject shader, TQ3ViewObject view);

C H A P T E R 1 4

Shader Objects

Summary of Shader Objects 14-33

Managing Shader Characteristics

TQ3Status Q3Shader_GetUVTransform (

TQ3ShaderObject shader,

TQ3Matrix3x3 *uvTransform);

TQ3Status Q3Shader_SetUVTransform (

TQ3ShaderObject shader,

const TQ3Matrix3x3 *uvTransform);

TQ3Status Q3Shader_GetUBoundary (

TQ3ShaderObject shader,

TQ3ShaderUVBoundary *uBoundary);

TQ3Status Q3Shader_SetUBoundary (

TQ3ShaderObject shader,

TQ3ShaderUVBoundary uBoundary);

TQ3Status Q3Shader_GetVBoundary (

TQ3ShaderObject shader,

TQ3ShaderUVBoundary *vBoundary);

TQ3Status Q3Shader_SetVBoundary (

TQ3ShaderObject shader,

TQ3ShaderUVBoundary vBoundary);

Managing Texture Shaders

TQ3ShaderObject Q3TextureShader_New (

TQ3TextureObject texture);

TQ3Status Q3TextureShader_GetTexture (

TQ3ShaderObject shader,

TQ3TextureObject *texture);

TQ3Status Q3TextureShader_SetTexture (

TQ3ShaderObject shader,

TQ3TextureObject texture);

C H A P T E R 1 4

Shader Objects

14-34 Summary of Shader Objects

Managing Illumination Shaders

TQ3ShaderObject Q3LambertIllumination_New (

void);

TQ3ShaderObject Q3PhongIllumination_New (

void);

TQ3ShaderObject Q3NULLIllumination_New (

void);

TQ3ObjectType Q3IlluminationShader_GetType (

TQ3ShaderObject shader);

Managing Textures

TQ3ObjectType Q3Texture_GetType (

TQ3TextureObject texture);

TQ3Status Q3Texture_GetWidth (TQ3TextureObject texture,

unsigned long *width);

TQ3Status Q3Texture_GetHeight (TQ3TextureObject texture,

unsigned long *height);

Managing Pixmap Textures

TQ3TextureObject Q3PixmapTexture_New (

const TQ3StoragePixmap *pixmap);

TQ3Status Q3PixmapTexture_GetPixmap (

TQ3TextureObject texture,

TQ3StoragePixmap *pixmap);

TQ3Status Q3PixmapTexture_SetPixmap (

TQ3TextureObject texture,

const TQ3StoragePixmap *pixmap);

C H A P T E R 1 5

Contents

15-1

Contents

Figure 15-0
Listing 15-0
Table 15-0

15 Pick Objects

About Pick Objects 15-3
Types of Pick Objects 15-4
Hit Identification 15-5
Hit Sorting 15-7
Hit Information 15-9

Using Pick Objects 15-11
Handling Object Picking 15-12
Handling Mesh Part Picking 15-14
Picking in Immediate Mode 15-15

Pick Objects Reference 15-17
Constants 15-17

Hit List Sorting Values 15-18
Hit Information Masks 15-18
Pick Parts Masks 15-20

Data Structures 15-20
Pick Data Structure 15-21
Window-Point Pick Data Structure 15-21
Window-Rectangle Pick Data Structure 15-22
Hit Path Structure 15-22
Hit Data Structure 15-23

Pick Objects Routines 15-24
Managing Pick Objects 15-25
Managing Shape Parts and Mesh Parts 15-31
Picking With Window Points 15-36
Picking With Window Rectangles 15-39

This document was created with FrameMaker 4.0.4

C H A P T E R 1 5

15-2

Contents

Summary of Pick Objects 15-43
C Summary 15-43

Constants 15-43
Data Types 15-44
Pick Objects Routines 15-46

Warnings 15-48

C H A P T E R 1 5

About Pick Objects

15-3

Pick Objects 15

This chapter describes pick objects and the functions you can use to manipulate
them. You use pick objects to get a list of objects in a view that intersect a
specified geometric object (for example, objects the user has selected in an
image on the screen).

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about views, see the chapter “View Objects” in this book.
You do not, however, need to know how to create or manipulate views to read
this chapter.

This chapter begins by describing pick objects and their features. Then it shows
how to create and use pick objects. The section “Pick Objects Reference,”
beginning on page 15-17 provides a complete description of pick objects and
the routines you can use to create and manipulate them.

About Pick Objects 15

Picking

 is the process of identifying the objects in a view that are close to a
specified geometric object. You might, for example, want to determine which
objects in a view, if any, are sufficiently close to a particular ray. You’ll use
picking primarily to allow users to select objects in a view. Picking thereby
provides the foundation for user interaction with three-dimensional models.
You can, however, use picking for other purposes. You might, for example, use
picking to determine which objects in a model are visible from a particular
camera location.

Screen-space picking

 (or

window picking

) involves testing whether the
projections of three-dimensional objects onto the screen intersect or are close
enough to a specified two-dimensional object on the screen.

QuickDraw 3D returns information about the picked objects as they are
defined in three-dimensional space. For example, you might want to know
the distance of a picked object from some point. The distance reported by
QuickDraw 3D is always a three-dimensional world-space distance, not a
two-dimensional screen-space distance.

You perform a picking operation by creating a

pick object

 (or, more briefly, a

pick

). QuickDraw 3D provides a variety of routines that you can use to create
pick objects, depending on the desired picking method. For example, you can

This document was created with FrameMaker 4.0.4

C H A P T E R 1 5

Pick Objects

15-4

About Pick Objects

call

Q3WindowPointPick_New

 to create a pick object that selects objects in a
view whose projections onto the screen are close enough to a particular point.
The geometric object used in any picking method is the

pick geometry.

To get the objects in the model that are close to the pick geometry, you must
specify the entire model. The code you use to do this is similar to the rendering
loop you use when drawing a model and therefore is called the

picking loop.

(A picking loop is a type of submitting loop.) In a picking loop, however,
instead of drawing the model, you pick the model by calling routines such as

Q3DisplayGroup_Submit

. See Listing 15-1 on page 15-12 for code that
illustrates a picking loop.

Once you’ve completely specified the model within a picking loop,
QuickDraw 3D can return to your application a list of all objects in the model
that are close to the pick geometry. This list is the

hit list.

 You can search
through the returned hit list for individual items and obtain information about
those items. You can also specify an order in which you want the items in the
hit list to be sorted, and you can indicate in advance the kinds of objects you
want QuickDraw 3D to put into the hit list. For example, you can indicate that
you want QuickDraw 3D to put only entire objects into the hit list or that you
want QuickDraw 3D to put only

parts of

 objects (that is, its component vertices,
edges, or faces) into the hit list.

Types of Pick Objects 15

A pick object is of type

TQ3PickObject

, which is one of the basic types of
QuickDraw 3D object. QuickDraw 3D defines several subtypes of pick objects,
which are distinguished from one another by the pick geometry.

QuickDraw 3D provides two types of screen-space pick objects:

window-point
pick objects

 and

window-rectangle pick objects.

 These pick objects test for
closeness between the pick geometry (a point or rectangle in a window) and
the screen projections of the objects in the model. In general, you’ll use one
of these two screen-space pick objects when using picking as the basis of
user interaction.

C H A P T E R 1 5

Pick Objects

About Pick Objects

15-5

Note

There are many optimizations that can be used to
determine whether an object in a model is suitably
close to a pick geometry without having to perform
all the projections that otherwise would be required.
QuickDraw 3D uses these optimizations whenever
appropriate.

◆

Hit Identification 15

Once you have created a pick object and specified the model within a picking
loop, QuickDraw 3D determines which, if any, of the objects in the model are
suitably close to the pick geometry specified in the pick object. QuickDraw 3D
uses hit-tests that are appropriate to the specific pick object and the objects in
the model being tested. For example, if you’re using a window-point pick
object and your model contains a triangle, QuickDraw 3D tests whether the
pick geometry—a point—is inside the two-dimensional screen projection of the
triangle. If it is, QuickDraw 3D adds the triangle to the hit list.

For some pick geometries, QuickDraw 3D allows you to specify two tolerance
values, which indicate how close a pick geometry must be to an object in a
model for a hit to occur. A pick object’s

vertex tolerance

 indicates how close
two points must be for a hit to occur. A pick object’s

edge tolerance

 indicates
how close a point must be to a line for a hit to occur. Edge and vertex tolerances
are used only with one- and two-dimensional pick geometries.

Table 15-1 lists the hit-tests that QuickDraw 3D uses for window-space pick
objects. The tolerances for these picks are floating-point values that specify
units in the window coordinate system. QuickDraw 3D adds an object in a
view to the hit list if the specified condition is fulfilled.

C H A P T E R 1 5

Pick Objects

15-6

About Pick Objects

Table 15-1

Hit-tests for window-space pick objects

Object Point pick objects Rectangle pick objects

Marker The pick point is inside the marker
bitmap and on an active pixel. (No
tolerance is used.)

The pick rectangle intersects the
marker bitmap and covers an active
pixel in the bitmap.

Point The distance from the pick point to
the screen projection of the point is
less than or equal to the vertex
tolerance.

The screen projection of the point is
within the pick rectangle.

Line The distance from the pick point to
the closest point on the screen
projection of the line is less than or
equal to the edge tolerance.

The screen projection of the line
intersects the pick rectangle.

Triangle The pick point is inside of the screen
projection of the triangle.

The screen projection of the triangle
intersects the pick rectangle or lies
completely within it.

Polygon The pick point is inside of the screen
projection of the polygon.

The screen projection of the polygon
intersects the pick rectangle or lies
completely within it.

Mesh For object picking, the pick point is
inside of the screen projection of any
element of the mesh. For mesh
vertex, edge, or face picking, the
criteria for points, line, and triangles
apply, respectively.

For object picking, the screen
projection of any element of the mesh
intersects the pick rectangle or lies
completely within it. For mesh vertex,
edge, or face picking, the criteria for
points, line, and triangles apply,
respectively

C H A P T E R 1 5

Pick Objects

About Pick Objects

15-7

IMPORTANT

If the view within which picking is occurring is associated
with a pixmap draw context, you need to transform the
window-space pick coordinates (usually obtained from the
mouse coordinates) to the pixmap’s coordinate space. You
can use original QuickDraw’s

MapPt

 function to do this.

▲

Hit Sorting 15

In some cases, you can have QuickDraw 3D sort a hit list before returning it to
your application. The sorting is based on either increasing or decreasing
distance from some point, the

pick origin.

 As a result, hit-list sorting is possible
only when the pick geometry has a clearly defined pick origin. Pick objects
whose pick geometries have a pick origin are called

metric pick objects

 (or

metric picks

). Window-point picking uses metric pick objects. With window-
rectangle pick objects, however, there is no clearly defined pick origin. As a
result, window-rectangle pick objects are not metric: you cannot have the hit
list sorted by distance.

With a metric pick, distances are measured along the ray from the pick origin
to the point of intersection on the picked object. If that ray intersects a picked
object more than once, QuickDraw 3D always returns the hit that’s closest to
the pick origin.

Recall that you can have QuickDraw 3D put either entire objects or parts of
objects into a hit list. When you are hit-testing parts of objects—vertices, edges,
and faces—you need to keep in mind that the tolerance values can complicate
the process of calculating distances (and hence the process of sorting hits). For
example, a window point might be equally distant from both a vertex and an
edge, at least within the tolerance values associated with the window-point
pick object. To establish a unique sorting order in such cases, QuickDraw 3D
gives priority to vertices, then to edges, and finally to faces.

C H A P T E R 1 5

Pick Objects

15-8

About Pick Objects

Note that the distances used to establish a sort order might not be the same
distances reported to your application when you retrieve hit information.
Consider, for example, the situation illustrated in Figure 15-1. Here, the vertex

V

 is within the current vertex tolerance of the world ray pick object and
therefore qualifies as a hit. QuickDraw 3D uses the distance

d’

 from the pick
origin to the closest point on the pick ray (that is,

V’

) as the basis for sorting
vertex

V

 in the hit list. However, when reporting the distance from the pick
origin to the picked vertex

V

, QuickDraw 3D gives the actual distance

d

.

Figure 15-1

Determining a vertex sorting distance

QuickDraw 3D calculates distances to edges and faces in an analogous manner.
If the pick ray passes within the current edge tolerance of an edge, the sorting
distance is set to the distance

d’

 from the pick ray origin to the projection onto
the pick ray of the point on the edge that is closest to the pick ray. See
Figure 15-2.

Figure 15-2

Determining an edge sorting distance

d

V

Pick origin
Pick ray

d

V

Pick origin
Pick ray

C H A P T E R 1 5

Pick Objects

About Pick Objects

15-9

If the pick ray intersects a face, the sorting distance is set to the distance from
the pick ray origin to the projection onto the pick ray of the face vertex that is
closest to the pick ray. See Figure 15-3.

Figure 15-3

Determining a face sorting distance

Note

The sorting distance

d’

 is not always less than the actual
distance

d

 to the hit object. In Figure 15-3, for example,

d’

 is
greater than

d

.

◆

Hit Information 15

When you create a pick object, you specify (in the

mask

 field of a pick data
structure) a

hit information mask

 value that indicates the kind of information
you want returned about objects in the model. For example, you could use this
code to request information about surface normals and the distance from the
pick origin:

TQ3PickData myPickData;

myPickData.mask = kQ3PickDetailMaskNormal |

kQ3PickDetailMaskDistance;

V

Pick origin

Pick ray

d

C H A P T E R 1 5

Pick Objects

15-10

About Pick Objects

Once you’ve created the hit list, you can obtain information about a particular
hit in the list by calling the

Q3Pick_GetHitData

 function. You pass this
function a pick object and a pointer to a

hit data structure.

 A hit data structure
is defined by the

TQ3HitData

 data type.

typedef struct TQ3HitData {

TQ3PickParts part;

TQ3PickDetail validMask;

unsigned long pickID;

TQ3HitPath path;

TQ3Object object;

TQ3Matrix4x4 localToWorldMatrix;

TQ3Point3D xyzPoint;

float distance;

TQ3Vector3D normal;

TQ3ShapePartObject shapePart;

} TQ3HitData;

Note

See “Hit Data Structure” on page 15-23 for complete
information about the fields of a hit data structure.

◆

QuickDraw 3D fills in fields of the structure you pass it and sets the

validMask

field to indicate which of the fields are valid. Before reading any information
from the fields of a returned hit data structure, you should check

validMask

to see what information QuickDraw 3D has returned. The values in the

mask

field of a pick data structure and the

validMask

 field of a hit data structure
can differ.

You need to pay attention to what information is returned in part because some
kinds of information are not available for some combinations of pick object
types and picked object types. For example, you cannot get information about a
surface normal for a hit on a point (because points do not have normals).
Similarly, you cannot get a distance value for a window-rectangle pick object
(because rectangles have no origin from which to measure). Table 15-2 indicates
the kinds of information you can receive about each type of picked object.

C H A P T E R 1 5

Pick Objects

Using Pick Objects

15-11

IMPORTANT

QuickDraw 3D can always return information in the

pickID

,

path

,

object

, and

localToWorldMatrix

 fields. As
a result, those fields are omitted from Table 15-2.

▲

Using Pick Objects 15

A pick object contains all the information necessary to calculate geometric
intersections between the pick geometry and the objects in a model. To create a
pick object, you need to fill out data structures with the appropriate
information, including

■

how the hits are to be sorted

■

how many hits to return

■

what information should be returned about any hits

■

whether to pick whole objects or parts of objects

■

how much tolerance to allow when calculating hits

■

the pick geometry

Table 15-2

Pick geometries and information types supported by view objects

View object

xyzPoint distance normal shapePart

Marker

Point Point
Rectangle

Point

Line Point Point

Triangle Point Point Point

Polygon Point Point Point

Decomposition Point Point Point

Mesh Point Point Point Point

C H A P T E R 1 5

Pick Objects

15-12

Using Pick Objects

The following sections illustrate how to perform these tasks.

Handling Object Picking 15

Listing 15-1 illustrates how to create, use, and dispose of pick objects. It defines
a function,

MyHandleClickInWindow

, that takes a window pointer and an event
record and handles mouse clicks in that window.

Listing 15-1

Picking objects

TQ3Status MyHandleClickInWindow (CGrafPtr myWindow, EventRec myEvent)

{

TQ3WindowPointPickData myWPPickData;

TQ3PickObject myPickObject;

TQ3HitData myHitData;

unsigned long myNumHits;

unsigned long myIndex;

Point myPoint;

TQ3Point2D my2DPoint;

TQ3ViewObject myView;

/*Get the window coordinates of a mouse click.*/

SetPort(myWindow);

myPoint = myEvent.where; /*get location of mouse click*/

GlobalToLocal(&myPoint); /*convert to window coordinates*/

my2DPoint.x = myPoint.h; /*configure a 2D point*/

my2DPoint.y = myPoint.v;

/*Set up picking data structures.*/

/*Set sorting type: objects nearer to pick origin are returned first.*/

myWPPickData.data.sort = kQ3PickSortNearToFar;

myWPPickData.data.mask = kQ3PickDetailMaskPickID | kQ3PickDetailMaskXYZ |

kQ3PickDetailMaskObject;

myWPPickData.data.numHitsToReturn = kQ3ReturnAllHits;

myWPPickData.point = my2DPoint;

myWPPickData.vertexTolerance = 2.0;

C H A P T E R 1 5

Pick Objects

Using Pick Objects

15-13

myWPPickData.edgeTolerance = 2.0;

/*Create a new window-point pick object.*/

myPickObject = Q3WindowPointPick_New(&myWPPickData);

myView = MyGetViewFromWindow(myWindow); /*increments reference count*/

/*Pick a group object.*/

Q3View_StartPicking(myView, myPickObject);

do {

Q3DisplayGroup_Submit(gGroup, myPickObject, myView);

} while (Q3View_EndPicking(myView) == kQ3ViewStatusRetraverse);

/*See whether any hits occurred.*/

if (!Q3Pick_GetNumHits(myPickObject, &myNumHits) || !(myNumHits == 0)) {

Q3Object_Dispose(myPickObject);

return;

}

/*Process each hit.*/

for (myIndex = 0; myIndex < myNumHits; myIndex++) {

Q3Pick_GetHitData(myPickObject, myIndex, &myHitData);

/*operate on myHitData, then...*/

…

Q3Hit_EmptyData(&myHitData); /*dispose of hit data*/

}

/*Dispose of all hits in the hit list.*/

Q3Pick_EmptyHitList(myPickObject);

/*Dispose of the pick object.*/

Q3Object_Dispose(myPickObject);

/*Dispose of the view object.*/

Q3Object_Dispose(myView);

}

C H A P T E R 1 5

Pick Objects

15-14 Using Pick Objects

Note that the call to Q3Pick_EmptyHitList is redundant, because disposing
of a pick object (by calling Q3Object_Dispose) also disposes of its associated
hit list. The call is included in Listing 15-1 simply to illustrate how to
call Q3Pick_EmptyHitList. You would, however, need to call to
Q3Pick_EmptyHitList if you wanted to reuse the associated pick object in
another pick operation.

Handling Mesh Part Picking 15

When a model includes a mesh, you can decide whether the entire mesh only
or parts of the mesh also are eligible for picking. You do this by specifying an
appropriate hit information mask. For example, to allow mesh parts to be
selected, you can set up the hit information mask like this:

myPickData.mask = kQ3PickDetailMaskShapePart |

kQ3PickDetailMaskObject |

kQ3PickDetailMaskDistance;

This line of code indicates that you want QuickDraw 3D to return information
about objects and any distinguishable parts of objects, as well as the distances
from the objects to the pick origin. (To prevent mesh parts from being selected,
you simply omit adding in the kQ3PickDetailMaskShapePart mask.)

You can determine whether a hit data structure returned by
Q3Pick_GetHitData applies to a shape part by inspecting the shapePart field
of that structure. If the value in the field is non-NULL, the structure contains
information about a shape part. Currently the only available shape parts are
mesh parts. Listing 15-2 illustrates how to use the shapePart field to determine
the type of mesh part selected and to perform some operation on the selected
mesh part.

Listing 15-2 Picking mesh parts

Q3Pick_GetHitData(myPickObject, myIndex, &myHitData);

if (myHitData.shapePart != NULL) {

switch(Q3Object_GetLeafType(myHitData.shapePart)) {

case kQ3MeshPartTypeMeshFacePart:

Q3MeshFacePart_GetFace(myHitData.shapePart, &myFace);

C H A P T E R 1 5

Pick Objects

Using Pick Objects 15-15

MyDoPickFace(myHitData.object, myFace);

break;

case kQ3MeshPartTypeMeshEdgePart:

Q3MeshEdgePart_GetEdge(myHitData.shapePart, &myEdge);

MyDoPickEdge(myHitData.object, myEdge);

break;

case kQ3MeshPartTypeMeshVertexPart:

Q3MeshVertexPart_GetVertex(myHitData.shapePart, &myVertex);

MyDoPickVertex(myHitData.object, myVertex);

break;

}

}

This code branches on the type of the mesh part indicated by the shapePart
field. For each defined type of mesh part, the code calls a QuickDraw 3D
routine to retrieve the corresponding mesh face, edge, or vertex. Then it calls an
application-defined routine (for example, MyDoPickFace) to handle the mesh
part selection.

Picking in Immediate Mode 15

Picking IDs are particularly useful when picking in immediate mode.
Listing 15-3 shows how to create a triangle, attach a picking ID to it, and
then process hits.

Listing 15-3 Picking in immediate mode

void MyImmediateModePickID (TQ3ViewObject view, WindowPtr window)

{

TQ3WindowRectPickData myPickData;

TQ3TriangleData myTriangleData;

TQ3PickObject myPick;

TQ3ViewStatus myViewStatus;

TQ3HitData myHitData;

Rect myPortRect;

Point myCenter;

C H A P T E R 1 5

Pick Objects

15-16 Using Pick Objects

unsigned long myNumHits;

/*Set up a triangle.*/

Q3Point3D_Set(&myTriangleData.vertices[0].point, -1.0, -0.5, 0.0);

Q3Point3D_Set(&myTriangleData.vertices[1].point, 1.0, 0.0, 0.0);

Q3Point3D_Set(&myTriangleData.vertices[2].point, -0.5, 1.5, 0.0);

myTriangleData.vertices[0].attributeSet = NULL;

myTriangleData.vertices[1].attributeSet = NULL;

myTriangleData.vertices[2].attributeSet = NULL;

myTriangleData.triangleAttributeSet = NULL;

/*Set up TQ3WindowPointPickData structure.*/

myPickData.data.sort = kQ3PickSortNone;

myPickData.data.mask = kQ3PickDetailMaskPickID | kQ3PickDetailMaskObject;

myPickData.data.numHitsToReturn = kQ3ReturnAllHits;

myPortRect = ((GrafPtr) window)->myPortRect;

myCenter.h = (myPortRect.right - myPortRect.left)/2.0;

myCenter.v = (myPortRect.bottom - myPortRect.top) /2.0;

Q3Point2D_Set(&myPickData.rect.min, myCenter.h - 5, myCenter.v - 5);

Q3Point2D_Set(&myPickData.rect.max, myCenter.h + 5, myCenter.v + 5);

/*Create the window rectangle window pick.*/

myPick = Q3WindowRectPick_New(&myPickData);

/*Submit the pick ID and triangle in immediate mode.*/

Q3View_StartPicking(view, myPick);

do

{

Q3PickIDStyle_Submit(kPickID, view);

Q3Triangle_Submit(&myTriangleData, view);

myViewStatus = Q3View_EndPicking(view);

} while (myViewStatus == kQ3ViewStatusRetraverse);

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-17

Q3Pick_GetNumHits(myPick, &myNumHits);

if (numHits == 1)

{

/*Get the hit data and check its pick ID.*/

Q3Pick_GetHitData(myPick, 0, &myHitData);

if (myHitData.pickID == kPickID)

{

/*picked on triangle with pick ID*/

}

}

Q3Object_Dispose(myPick);

}

Pick Objects Reference 15

This section describes the constants, data structures, and routines provided by
QuickDraw 3D that you can use to manage pick objects.

Constants 15

QuickDraw 3D provides constants that you can use to specify how to sort hit
lists, what kinds of information you want returned about the items in a hit list,
and what features of an object you want information about.

C H A P T E R 1 5

Pick Objects

15-18 Pick Objects Reference

Hit List Sorting Values 15

You specify a hit list sorting value to determine the kind of sorting that is to be
done on the hit list.

typedef enum TQ3PickSort {

kQ3PickSortNone,

kQ3PickSortNearToFar,

kQ3PickSortFarToNear

} TQ3PickSort;

Constant descriptions

kQ3PickSortNone No sorting is to be done on the hit list. There is no meaning
to the order of hits in the list.

kQ3PickSortNearToFar

The hit list is sorted according to increasing distance from
the origin of the pick point. Objects nearer to the origin are
returned before objects farther away.

kQ3PickSortFarToNear

The hit list is sorted according to decreasing distance from
the origin of the pick point. Objects farther away from the
origin are returned before objects nearer to it.

Hit Information Masks 15

You specify a hit information mask in the mask field of a pick data structure to
indicate the type of information you want returned for the items in a hit list.
When QuickDraw 3D returns a hit list to you, it sets the bits in the validMask
field of a hit data structure to indicate the types of information it is returning.
The hit information masks correspond to the fields in the hit data structure. See
“Hit Data Structure” on page 15-23 for a more complete description of the
information these masks specify.

typedef enum TQ3PickDetailMasks {

kQ3PickDetailNone = 0,

kQ3PickDetailMaskPickID = 1 << 0,

kQ3PickDetailMaskPath = 1 << 1,

kQ3PickDetailMaskObject = 1 << 2,

kQ3PickDetailMaskLocalToWorldMatrix = 1 << 3,

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-19

kQ3PickDetailMaskXYZ = 1 << 4,

kQ3PickDetailMaskDistance = 1 << 5,

kQ3PickDetailMaskNormal = 1 << 6,

kQ3PickDetailMaskShapePart = 1 << 7

} TQ3PickDetailMasks;

Constant descriptions

kQ3PickDetailNone

No pick detail. This mask results in faster picking, because
various calculations do not need to be performed.

kQ3PickDetailMaskPickID

The picking ID of the picked object.
kQ3PickDetailMaskPath

The path through the model’s group hierarchy to the
picked object.

kQ3PickDetailMaskObject

A reference to the object handle of the picked object.
kQ3PickDetailMaskLocalToWorldMatrix

The matrix that transforms the local coordinate system
of the picked object to the world coordinate system. Note
that the local-to-world transform matrix for a multiply-
referenced object differs for each reference to the object.

kQ3PickDetailMaskXYZ

The point of intersection between the picked object and the
pick geometry in world space.

kQ3PickDetailMaskDistance

The distance between the picked object and the origin of
the pick geometry.

kQ3PickDetailMaskNormal

The surface normal of the picked object at the point of
intersection with the pick geometry. The magnitude of this
normal should always be normalized.

kQ3PickDetailMaskShapePart

The shape part object of the picked object.

C H A P T E R 1 5

Pick Objects

15-20 Pick Objects Reference

Pick Parts Masks 15

QuickDraw 3D defines pick parts masks to indicate the kinds of objects it has
placed in the hit list. You use the face, vertex, and edge values to pick parts of
meshes. To pick any other object, use the value kQ3PickPartsObject.

typedef enum TQ3PickPartsMasks {

kQ3PickPartsObject = 0,

kQ3PickPartsMaskFace = 1 << 0,

kQ3PickPartsMaskEdge = 1 << 1,

kQ3PickPartsMaskVertex = 1 << 2

} TQ3PickPartsMasks;

Constant descriptions

kQ3PickPartsObject

The hit list contains only whole objects.
kQ3PickPartsMaskFace

The hit list contains faces.
kQ3PickPartsMaskEdge

The hit list contains edges.
kQ3PickPartsMaskVertex

The hit list contains vertices.

Data Structures 15

This section describes the data structures you need to use for creating pick
objects and retrieving the information returned in a hit list.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-21

Pick Data Structure 15

You use a pick data structure to specify information when creating a pick
object for subsequent picking. A pick data structure is defined by the
TQ3PickData data type.

typedef struct TQ3PickData {

TQ3PickSort sort;

TQ3PickDetail mask;

unsigned long numHitsToReturn;

} TQ3PickData;

Field descriptions
sort A hit list sorting value that determines the kind of sorting,

if any, that is to be done on the hit list.
mask A hit information mask that determines the type of

information to be returned for the items in a hit list.
numHitsToReturn The maximum number of hits to return. QuickDraw 3D

discards any hits that would exceed this limit, but only
after all possible hits have been found and placed into the
sort order determined by the sort field. You can specify
the constant kQ3ReturnAllHits to request that all hits be
returned.

Window-Point Pick Data Structure 15

You use a window-point pick data structure to specify information when
creating a pick object for subsequent window-point picking. A window-point
pick data structure is defined by the TQ3WindowPointPickData data type.

typedef struct TQ3WindowPointPickData {

TQ3PickData data;

TQ3Point2D point;

float vertexTolerance;

float edgeTolerance;

} TQ3WindowPointPickData;

C H A P T E R 1 5

Pick Objects

15-22 Pick Objects Reference

Field descriptions
data A pick data structure specifying basic information about

the window-point pick object.
point A point, in window coordinates.
vertexTolerance The vertex tolerance.
edgeTolerance The edge tolerance.

Window-Rectangle Pick Data Structure 15

You use a window-rectangle pick data structure to specify information when
creating a pick object for subsequent window-rectangle picking. A window-
rectangle pick data structure is defined by the TQ3WindowRectPickData
data type.

typedef struct TQ3WindowRectPickData {

TQ3PickData data;

TQ3Area rect;

} TQ3WindowRectPickData;

Field descriptions
data A pick data structure specifying basic information about

the window-rectangle pick object.
rect A rectangle, in window coordinates.

Hit Path Structure 15

You use a hit path structure to get group information about the path through a
model hierarchy to a specific picked object. A hit path structure is defined by
the TQ3HitPath data type.

typedef struct TQ3HitPath {

TQ3GroupObject rootGroup;

unsigned long depth;

TQ3GroupPosition *positions;

} TQ3HitPath;

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-23

Field descriptions
rootGroup The root group that was picked.
depth The number of positions in the path. If the picked object is

not in the model hierarchy, this field contains the value 0.
positions A pointer to an array of group positions. This array is

allocated by QuickDraw 3D.

Hit Data Structure 15

You use a hit data structure to get information about an item in the hit list. The
validMask field indicates which of the fields in the structure contain valid
information. A hit data structure is defined by the TQ3HitData data type.

typedef struct TQ3HitData {

TQ3PickParts part;

TQ3PickDetail validMask;

unsigned long pickID;

TQ3HitPath path;

TQ3Object object;

TQ3Matrix4x4 localToWorldMatrix;

TQ3Point3D xyzPoint;

float distance;

TQ3Vector3D normal;

TQ3ShapePartObject shapePart;

} TQ3HitData;

Field descriptions
part The part picked. See “Pick Parts Masks” on page 15-20 for

the constants that can be returned in this field.
validMask A long integer whose bits specify which of the following

fields contain information about a picked object. See “Hit
Information Masks” on page 15-18 for a list of the masks
you can use to check the bits in this field.

pickID The style pick ID in the group of the picked object. The
picking ID is a 32-bit value specified by your application.
See the chapter “Style Objects” for more information about
picking IDs. Picking IDs are especially useful for
immediate mode picking. See Listing 15-3 on page 15-15
for a sample routine that uses picking IDs.

C H A P T E R 1 5

Pick Objects

15-24 Pick Objects Reference

path The path through the model hierarchy to the picked object,
from the root group of the hierarchy to the leaf object. See
“Hit Path Structure” on page 15-22 for information about a
path. For immediate mode picking, this field is not valid.

object A reference to the picked geometry object. For immediate
mode picking, this field is not valid.

localToWorldMatrix

The matrix that transforms the local coordinates of the
picked object to world-space coordinates. This matrix is
copied from the graphics state in effect at the time the
object is hit. If there are multiple references to an object,
this matrix may be different for each individual reference.

xyzPoint For window-point picking, the point (in world-space
coordinates) at which the picked object and the pick
geometry intersect. For all other types of picking, this field
is undefined.

distance For window-point picking, the distance (in world space)
from the origin of the picking ray to the point of
intersection with the picked object. (This is effectively the
distance from the camera to the intersection point, in
world space.) For all other types of picking, this field is
undefined.

normal The surface normal of the picked object at the point of
intersection with the pick geometry. This field is valid only
for window-point picking.

shapePart The shape part object, if any, that was picked. If the
picked object has no distinguishable shape parts, this
field contains the value NULL. If the value of this field is
not NULL, you can call the Q3ShapePart_GetType
function to get the type of this shape part object, or
Q3Object_GetLeafType to get the leaf type of this
shape part.

Pick Objects Routines 15

This section describes the routines you can use to manage pick objects and
hit lists.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-25

Managing Pick Objects 15

QuickDraw 3D provides a number of general routines for managing pick
objects of any kind.

Q3Pick_GetType 15

You can use the Q3Pick_GetType function to get the type of a pick object.

TQ3ObjectType Q3Pick_GetType (TQ3PickObject pick);

pick A pick object.

DESCRIPTION

The Q3Pick_GetType function returns, as its function result, the type of the
pick object specified by the pick parameter. The types of pick objects currently
supported by QuickDraw 3D are defined by these constants:

kQ3PickTypeWindowPoint

kQ3PickTypeWindowRect

If the specified pick object is invalid or is not one of these types,
Q3Pick_GetType returns the value kQ3ObjectTypeInvalid.

Q3Pick_GetData 15

You can use the Q3Pick_GetData function to get the basic data associated with
a pick object.

TQ3Status Q3Pick_GetData (

TQ3PickObject pick,

TQ3PickData *data);

pick A pick object.

data On entry, a pointer to a pick data structure.

C H A P T E R 1 5

Pick Objects

15-26 Pick Objects Reference

DESCRIPTION

The Q3Pick_GetData function returns, through the data parameter, basic
information about the pick object specified by the pick parameter. See “Pick
Data Structure” on page 15-21 for a description of a pick data structure. Your
application is responsible for allocating memory for the pick data structure
before calling Q3Pick_GetData and for disposing of that memory when you’re
finished using that structure.

Q3Pick_SetData 15

You can use the Q3Pick_SetData function to set the basic data associated with
a pick object.

TQ3Status Q3Pick_SetData (

TQ3PickObject pick,

const TQ3PickData *data);

pick A pick object.

data A pointer to a pick data structure.

DESCRIPTION

The Q3Pick_SetData function sets the data associated with the pick object
specified by the pick parameter to the data specified by the data parameter.

Q3Pick_GetVertexTolerance 15

You can use the Q3Pick_GetVertexTolerance function to get the current
vertex tolerance of a pick object.

TQ3Status Q3Pick_GetVertexTolerance (

TQ3PickObject pick,

float *vertexTolerance);

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-27

pick A pick object.

vertexTolerance

On exit, the current vertex tolerance of the specified pick object.

DESCRIPTION

The Q3Pick_GetVertexTolerance function returns, in the vertexTolerance
parameter, the current vertex tolerance of the pick object specified by the pick
parameter. If the specified pick object does not support a vertex tolerance,
Q3Pick_GetVertexTolerance generates an error.

Q3Pick_SetVertexTolerance 15

You can use the Q3Pick_SetVertexTolerance function to set the vertex
tolerance of a pick object.

TQ3Status Q3Pick_SetVertexTolerance (

TQ3PickObject pick,

float vertexTolerance);

pick A pick object.

vertexTolerance

The desired vertex tolerance of the specified pick object.

DESCRIPTION

The Q3Pick_SetVertexTolerance function sets the vertex tolerance of the pick
object specified by the pick parameter to the tolerance specified by the
vertexTolerance parameter. If the specified pick object does not support a
vertex tolerance, Q3Pick_SetVertexTolerance generates an error.

C H A P T E R 1 5

Pick Objects

15-28 Pick Objects Reference

Q3Pick_GetEdgeTolerance 15

You can use the Q3Pick_GetEdgeTolerance function to get the current edge
tolerance of a pick object.

TQ3Status Q3Pick_GetEdgeTolerance (

TQ3PickObject pick,

float *edgeTolerance);

pick A pick object.

edgeTolerance

On exit, the current edge tolerance of the specified pick object.

DESCRIPTION

The Q3Pick_GetEdgeTolerance function returns, in the edgeTolerance
parameter, the current edge tolerance of the pick object specified by the pick
parameter. If the specified pick object does not support an edge tolerance,
Q3Pick_GetEdgeTolerance generates an error.

Q3Pick_SetEdgeTolerance 15

You can use the Q3Pick_SetEdgeTolerance function to set the edge tolerance
of a pick object.

TQ3Status Q3Pick_SetEdgeTolerance (

TQ3PickObject pick,

float edgeTolerance);

pick A pick object.

edgeTolerance

The desired edge tolerance of the specified pick object.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-29

DESCRIPTION

The Q3Pick_SetEdgeTolerance function sets the edge tolerance of the pick
object specified by the pick parameter to the tolerance specified by the
edgeTolerance parameter. If the specified pick object does not support an
edge tolerance, Q3Pick_SetEdgeTolerance generates an error.

Q3Pick_GetNumHits 15

You can use the Q3Pick_GetNumHits function to get the number of hits in the
hit list of a pick object.

TQ3Status Q3Pick_GetNumHits (

TQ3PickObject pick,

unsigned long *numHits);

pick A pick object.

numHits On exit, the number of items in the hit list of the specified
pick object.

DESCRIPTION

The Q3Pick_GetNumHits function returns, in the numHits parameter, the
number of items in the hit list associated with the pick object specified by the
pick parameter. This number never exceeds the maximum number of items
specified in the pick object’s data structure.

C H A P T E R 1 5

Pick Objects

15-30 Pick Objects Reference

Q3Pick_GetHitData 15

You can use the Q3Pick_GetHitData function to get an item in the hit list of a
pick object.

TQ3Status Q3Pick_GetHitData (

TQ3PickObject pick,

unsigned long index,

TQ3HitData *hitData);

pick A pick object.

index An index into a hit list. This number should be between 0 and
one less than the number of items in the hit list of the specified
pick object, inclusive.

hitData On entry, a pointer to a hit data structure. On exit, a pointer to a
hit data structure for the specified item in the hit list of the
specified pick object.

DESCRIPTION

The Q3Pick_GetHitData function returns, in the hitData parameter, a pointer
to a hit data structure for the item that has the index specified by the index
parameter in the hit list associated with the pick object specified by the pick
parameter. The hit data structure whose address is passed in the hitData
parameter must be created by your application. QuickDraw 3D allocates
memory to hold any additional information returned in the hit data structure;
you should call Q3Hit_EmptyData to dispose of that memory when you are
finished using the hit data.

Q3Hit_EmptyData 15

You can use the Q3Hit_EmptyData function to empty a hit data structure.

TQ3Status Q3Hit_EmptyData (TQ3HitData *hitData);

hitData A pointer to a hit data structure.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-31

DESCRIPTION

The Q3Hit_EmptyData function disposes of all QuickDraw 3D-allocated
memory occupied by the data in the hit data structure specified by the hitData
parameter. You should call Q3Hit_EmptyData for any hit data structures you
had filled out by Q3Pick_GetHitData.

Q3Pick_EmptyHitList 15

You can use the Q3Pick_EmptyHitList function to empty a pick object’s hit list.

TQ3Status Q3Pick_EmptyHitList (TQ3PickObject pick);

pick A pick object.

DESCRIPTION

The Q3Pick_EmptyHitList function disposes of all QuickDraw 3D-allocated
memory occupied by the hit list associated with the pick object specified by the
pick parameter. (This memory is also disposed of when the specified pick
object is disposed of.) Q3Pick_EmptyHitList also sets the hit count of the
specified pick object to 0.

Managing Shape Parts and Mesh Parts 15

QuickDraw 3D provides routines that you can use to get shape parts and mesh
parts and to determine the shape objects that correspond to those parts.

C H A P T E R 1 5

Pick Objects

15-32 Pick Objects Reference

Q3ShapePart_GetShape 15

You can use the Q3ShapePart_GetShape function to get the shape object that
contains a shape part object.

TQ3Status Q3ShapePart_GetShape (

TQ3ShapePartObject shapePartObject,

TQ3ShapeObject *shapeObject);

shapePartObject

A shape part object.

shapeObject On exit, the shape object that contains the specified shape
part object.

DESCRIPTION

The Q3ShapePart_GetShape function returns, in the shapeObject parameter,
the shape object that contains the shape part object specified by the
shapePartObject parameter.

Note
You don’t need to call Q3ShapePart_GetShape if you’ve
already retrieved a hit data structure by calling
Q3Pick_GetHitData because the containing object is
specified by the object field of that structure. ◆

Q3ShapePart_GetType 15

You can use the Q3ShapePart_GetType function to get the type of a shape
part object.

TQ3ObjectType Q3ShapePart_GetType (

TQ3ShapePartObject shapePartObject);

shapePartObject

A shape part object.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-33

DESCRIPTION

The Q3ShapePart_GetType function returns, as its function result, the type
identifier of the shape part object specified by the shapePartObject parameter.
If successful, Q3ShapePart_GetType returns one of these constants:

kQ3ShapePartTypeMeshPart

If the type cannot be determined or is invalid, Q3ShapePart_GetType returns
the value kQ3ObjectTypeInvalid.

Q3MeshPart_GetType 15

You can use the Q3MeshPart_GetType function to get the type of a mesh
part object.

TQ3ObjectType Q3MeshPart_GetType (

TQ3MeshPartObject meshPartObject);

meshPartObject

A mesh part object.

DESCRIPTION

The Q3MeshPart_GetType function returns, as its function result, the type
identifier of the mesh part object specified by the meshPartObject parameter.
If successful, Q3MeshPart_GetType returns one of these constants:

kQ3MeshPartTypeMeshFacePart

kQ3MeshPartTypeMeshEdgePart

kQ3MeshPartTypeMeshVertexPart

If the type cannot be determined or is invalid, Q3MeshPart_GetType returns
the value kQ3ObjectTypeInvalid.

C H A P T E R 1 5

Pick Objects

15-34 Pick Objects Reference

Q3MeshPart_GetComponent 15

You can use the Q3MeshPart_GetComponent function to get the mesh
component that contains a mesh part.

TQ3Status Q3MeshPart_GetComponent (

TQ3MeshPartObject meshPartObject,

TQ3MeshComponent *component);

meshPartObject

A mesh part object.

component On exit, the mesh component that contains the specified mesh
part object.

DESCRIPTION

The Q3MeshPart_GetComponent function returns, in the component parameter,
the mesh component that contains the mesh part object specified by the
meshPartObject parameter.

Q3MeshFacePart_GetFace 15

You can use the Q3MeshFacePart_GetFace function to get the mesh face that
corresponds to a mesh face part.

TQ3Status Q3MeshFacePart_GetFace (

TQ3MeshFacePartObject meshFacePartObject,

TQ3MeshFace *face);

meshFacePartObject

A mesh face part object.

face On exit, the mesh face that corresponds to the specified mesh
face part object.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-35

DESCRIPTION

The Q3MeshFacePart_GetFace function returns, in the face parameter, the
mesh face that corresponds to the mesh face part object specified by the
meshFacePartObject parameter.

Q3MeshEdgePart_GetEdge 15

You can use the Q3MeshEdgePart_GetEdge function to get the mesh edge that
corresponds to a mesh edge part.

TQ3Status Q3MeshEdgePart_GetEdge (

TQ3MeshEdgePartObject meshEdgePartObject,

TQ3MeshEdge *edge);

meshEdgePartObject

A mesh edge part object.

edge On exit, the mesh edge that corresponds to the specified mesh
face part object.

DESCRIPTION

The Q3MeshEdgePart_GetEdge function returns, in the edge parameter, the
mesh edge that corresponds to the mesh edge part object specified by the
meshEdgePartObject parameter.

Q3MeshVertexPart_GetVertex 15

You can use the Q3MeshVertexPart_GetVertex function to get the mesh vertex
that corresponds to a mesh vertex part.

TQ3Status Q3MeshVertexPart_GetVertex (

TQ3MeshVertexPartObject meshVertexPartObject,

TQ3MeshVertex *vertex);

C H A P T E R 1 5

Pick Objects

15-36 Pick Objects Reference

meshVertexPartObject

A mesh vertex part object.

vertex On exit, the mesh vertex that corresponds to the specified mesh
vertex part object.

DESCRIPTION

The Q3MeshVertexPart_GetVertex function returns, in the vertex parameter,
the mesh vertex that corresponds to the mesh vertex part object specified by the
meshVertexPartObject parameter.

Picking With Window Points 15

QuickDraw 3D provides routines that you can use to pick with window points.
The location of the point is in the resolution of the current draw context.

Q3WindowPointPick_New 15

You can use the Q3WindowPointPick_New function to create a new window-
point pick object.

TQ3PickObject Q3WindowPointPick_New (

const TQ3WindowPointPickData *data);

data A pointer to a window-point pick data structure.

DESCRIPTION

The Q3WindowPointPick_New function returns, as its function result, a new
window-point pick object having the characteristics specified by the data
parameter.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-37

Q3WindowPointPick_GetPoint 15

You can use the Q3WindowPointPick_GetPoint function to get the point of a
window-point pick object.

TQ3Status Q3WindowPointPick_GetPoint (

TQ3PickObject pick,

TQ3Point2D *point);

pick A window-point pick object.

point On exit, the current point of the specified window-point
pick object.

DESCRIPTION

The Q3WindowPointPick_GetPoint function returns, in the point parameter,
the current point of the window-point pick object specified by the pick
parameter.

Q3WindowPointPick_SetPoint 15

You can use the Q3WindowPointPick_SetPoint function to set the point of a
window-point pick object in screen space.

TQ3Status Q3WindowPointPick_SetPoint (

TQ3PickObject pick,

const TQ3Point2D *point);

pick A window-point pick object.

point The desired point for the specified window-point pick object.

C H A P T E R 1 5

Pick Objects

15-38 Pick Objects Reference

DESCRIPTION

The Q3WindowPointPick_SetPoint function sets the point of the window-
point pick object specified by the pick parameter to the point specified by the
point parameter.

Q3WindowPointPick_GetData 15

You can use the Q3WindowPointPick_GetData function to get the data
associated with a window-point pick object.

TQ3Status Q3WindowPointPick_GetData (

TQ3PickObject pick,

TQ3WindowPointPickData *data);

pick A window-point pick object.

data On exit, a pointer to a window-point pick data structure.

DESCRIPTION

The Q3WindowPointPick_GetData function returns, through the data
parameter, information about the window-point pick object specified by the
pick parameter. See “Window-Point Pick Data Structure” on page 15-21 for a
description of a window-point pick data structure.

Q3WindowPointPick_SetData 15

You can use the Q3WindowPointPick_SetData function to set the data
associated with a window-point pick object.

TQ3Status Q3WindowPointPick_SetData (

TQ3PickObject pick,

const TQ3WindowPointPickData *data);

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-39

pick A window-point pick object.

data A pointer to a window-point pick data structure.

DESCRIPTION

The Q3WindowPointPick_SetData function sets the data associated with the
window-point pick object specified by the pick parameter to the data specified
by the data parameter.

Picking With Window Rectangles 15

QuickDraw 3D provides routines that you can use to pick with window
rectangles. The dimensions of the rectangle are in the resolution of the current
draw context.

Q3WindowRectPick_New 15

You can use the Q3WindowRectPick_New function to create a new window-
rectangle pick object.

TQ3PickObject Q3WindowRectPick_New (

const TQ3WindowRectPickData *data);

data A pointer to a window-rectangle pick data structure.

DESCRIPTION

The Q3WindowRectPick_New function returns, as its function result, a new
window-rectangle pick object having the characteristics specified by the data
parameter.

C H A P T E R 1 5

Pick Objects

15-40 Pick Objects Reference

Q3WindowRectPick_GetRect 15

You can use the Q3WindowRectPick_GetRect function to get the rectangle of a
window-rectangle pick object.

TQ3Status Q3WindowRectPick_GetRect (

TQ3PickObject pick,

TQ3Area *rect);

pick A window-rectangle pick object.

rect On exit, the current rectangle of the specified window-rectangle
pick object.

DESCRIPTION

The Q3WindowRectPick_GetRect function returns, in the rect parameter, the
current rectangle of the window-rectangle pick object specified by the pick
parameter.

Q3WindowRectPick_SetRect 15

You can use the Q3WindowRectPick_SetRect function to set the rectangle of a
window-rectangle pick object.

TQ3Status Q3WindowRectPick_SetRect (

TQ3PickObject pick,

const TQ3Area *rect);

pick A window-rectangle pick object.

rect The desired rectangle for the specified window-rectangle
pick object.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 15-41

DESCRIPTION

The Q3WindowRectPick_SetRect function sets the rectangle of the window-
rectangle pick object specified by the pick parameter to the rectangle specified
by the rect parameter.

Q3WindowRectPick_GetData 15

You can use the Q3WindowRectPick_GetData function to get the data
associated with a window-rectangle pick object.

TQ3Status Q3WindowRectPick_GetData (

TQ3PickObject pick,

TQ3WindowRectPickData *data);

pick A window-rectangle pick object.

data On exit, a pointer to a window-rectangle pick data structure.

DESCRIPTION

The Q3WindowRectPick_GetData function returns, through the data
parameter, information about the window-rectangle pick object specified by the
pick parameter. See “Window-Rectangle Pick Data Structure” on page 15-22
for the structure of a window-rectangle pick data structure.

Q3WindowRectPick_SetData 15

You can use the Q3WindowRectPick_SetData function to set the data
associated with a window-rectangle pick object.

TQ3Status Q3WindowRectPick_SetData (

TQ3PickObject pick,

const TQ3WindowRectPickData *data);

C H A P T E R 1 5

Pick Objects

15-42 Pick Objects Reference

pick A window-rectangle pick object.

data A pointer to a window-rectangle pick data structure.

DESCRIPTION

The Q3WindowRectPick_SetData function sets the data associated with the
window-rectangle pick object specified by the pick parameter to the data
specified by the data parameter.

C H A P T E R 1 5

Pick Objects

Summary of Pick Objects 15-43

Summary of Pick Objects 15

C Summary 15

Constants 15

#define kQ3ReturnAllHits 0

Pick Object Types

#define kQ3PickTypeWindowPoint Q3_OBJECT_TYPE('p','k','w','p')

#define kQ3PickTypeWindowRect Q3_OBJECT_TYPE('p','k','w','r')

Shape Part and Mesh Part Types

#define kQ3ShapePartTypeMeshPart Q3_OBJECT_TYPE('s','p','m','h')

#define kQ3MeshPartTypeMeshFacePart Q3_OBJECT_TYPE('m','f','a','c')

#define kQ3MeshPartTypeMeshEdgePart Q3_OBJECT_TYPE('m','e','d','g')

#define kQ3MeshPartTypeMeshVertexPart Q3_OBJECT_TYPE('m','v','t','x')

Hit List Sorting Values

typedef enum TQ3PickSort {

kQ3PickSortNone,

kQ3PickSortNearToFar,

kQ3PickSortFarToNear

} TQ3PickSort;

C H A P T E R 1 5

Pick Objects

15-44 Summary of Pick Objects

Hit Information Masks

typedef enum TQ3PickDetailMasks {

kQ3PickDetailNone = 0,

kQ3PickDetailMaskPickID = 1 << 0,

kQ3PickDetailMaskPath = 1 << 1,

kQ3PickDetailMaskObject = 1 << 2,

kQ3PickDetailMaskLocalToWorldMatrix = 1 << 3,

kQ3PickDetailMaskXYZ = 1 << 4,

kQ3PickDetailMaskDistance = 1 << 5,

kQ3PickDetailMaskNormal = 1 << 6,

kQ3PickDetailMaskShapePart = 1 << 7}

TQ3PickDetailMasks;

Pick Parts Values

typedef enum TQ3PickPartsMasks {

kQ3PickPartsObject = 0,

kQ3PickPartsMaskFace = 1 << 0,

kQ3PickPartsMaskEdge = 1 << 1,

kQ3PickPartsMaskVertex = 1 << 2

} TQ3PickPartsMasks;

Data Types 15

typedef unsigned long TQ3PickDetail;

typedef unsigned long TQ3PickParts;

typedef TQ3ShapePartObject TQ3MeshPartObject;

typedef TQ3MeshPartObject TQ3MeshFacePartObject;

typedef TQ3MeshPartObject TQ3MeshEdgePartObject;

typedef TQ3MeshPartObject TQ3MeshVertexPartObject;

C H A P T E R 1 5

Pick Objects

Summary of Pick Objects 15-45

Pick Data Structure

typedef struct TQ3PickData {

TQ3PickSort sort;

TQ3PickDetail mask;

unsigned long numHitsToReturn;

} TQ3PickData;

Window-Point Pick Data Structure

typedef struct TQ3WindowPointPickData {

TQ3PickData data;

TQ3Point2D point;

float vertexTolerance;

float edgeTolerance;

} TQ3WindowPointPickData;

Window-Rectangle Pick Data Structure

typedef struct TQ3WindowRectPickData {

TQ3PickData data;

TQ3Area rect;

} TQ3WindowRectPickData;

Hit Path Structure

typedef struct TQ3HitPath {

unsigned long depth;

TQ3GroupPosition *positions;

} TQ3HitPath;

Hit Data Structure

typedef struct TQ3HitData {

TQ3PickParts part;

TQ3PickDetail validMask;

unsigned long pickID;

C H A P T E R 1 5

Pick Objects

15-46 Summary of Pick Objects

TQ3HitPath path;

TQ3Object object;

TQ3Matrix4x4 localToWorldMatrix;

TQ3Point3D xyzPoint;

float distance;

TQ3Vector3D normal;

TQ3ShapePartObject shapePart;

} TQ3HitData;

Pick Objects Routines 15

Managing Pick Objects

TQ3ObjectType Q3Pick_GetType (TQ3PickObject pick);

TQ3Status Q3Pick_GetData (TQ3PickObject pick, TQ3PickData *data);

TQ3Status Q3Pick_SetData (TQ3PickObject pick, const TQ3PickData *data);

TQ3Status Q3Pick_GetVertexTolerance (

TQ3PickObject pick, float *vertexTolerance);

TQ3Status Q3Pick_SetVertexTolerance (

TQ3PickObject pick, float vertexTolerance);

TQ3Status Q3Pick_GetEdgeTolerance (

TQ3PickObject pick, float *edgeTolerance);

TQ3Status Q3Pick_SetEdgeTolerance (

TQ3PickObject pick, float edgeTolerance);

TQ3Status Q3Pick_GetNumHits (TQ3PickObject pick, unsigned long *numHits);

TQ3Status Q3Pick_GetHitData (TQ3PickObject pick,

unsigned long index,

TQ3HitData *hitData);

TQ3Status Q3Hit_EmptyData (TQ3HitData *hitData);

TQ3Status Q3Pick_EmptyHitList (TQ3PickObject pick);

C H A P T E R 1 5

Pick Objects

Summary of Pick Objects 15-47

Managing Shape Parts and Mesh Parts

TQ3Status Q3ShapePart_GetShape(TQ3ShapePartObject shapePartObject,

TQ3ShapeObject *shapeObject);

TQ3ObjectType Q3ShapePart_GetType (

TQ3ShapePartObject shapePartObject);

TQ3ObjectType Q3MeshPart_GetType (

TQ3MeshPartObject meshPartObject);

TQ3Status Q3MeshPart_GetComponent (

TQ3MeshPartObject meshPartObject,

TQ3MeshComponent *component);

TQ3Status Q3MeshFacePart_GetFace (

TQ3MeshFacePartObject meshFacePartObject,

TQ3MeshFace *face);

TQ3Status Q3MeshEdgePart_GetEdge (

TQ3MeshEdgePartObject meshEdgePartObject,

TQ3MeshEdge *edge);

TQ3Status Q3MeshVertexPart_GetVertex (

TQ3MeshVertexPartObject meshVertexPartObject,

TQ3MeshVertex *vertex);

Picking With Window Points

TQ3PickObject Q3WindowPointPick_New (

const TQ3WindowPointPickData *data);

TQ3Status Q3WindowPointPick_GetPoint (

TQ3PickObject pick, TQ3Point2D *point);

TQ3Status Q3WindowPointPick_SetPoint (

TQ3PickObject pick, const TQ3Point2D *point);

TQ3Status Q3WindowPointPick_GetData (

TQ3PickObject pick,

TQ3WindowPointPickData *data);

C H A P T E R 1 5

Pick Objects

15-48 Summary of Pick Objects

TQ3Status Q3WindowPointPick_SetData (

TQ3PickObject pick,

const TQ3WindowPointPickData *data);

Picking With Window Rectangles

TQ3PickObject Q3WindowRectPick_New (

const TQ3WindowRectPickData *data);

TQ3Status Q3WindowRectPick_GetRect (

TQ3PickObject pick, TQ3Area *rect);

TQ3Status Q3WindowRectPick_SetRect (

TQ3PickObject pick, const TQ3Area *rect);

TQ3Status Q3WindowRectPick_GetData (

TQ3PickObject pick,

TQ3WindowRectPickData *data);

TQ3Status Q3WindowRectPick_SetData (

TQ3PickObject pick,

const TQ3WindowRectPickData *data);

Warnings 15

kQ3WarningPickParamOutside

C H A P T E R 1 6

Contents

16-1

Contents

Figure 16-0
Listing 16-0
Table 16-0

16 Storage Objects

About Storage Objects 16-3
Using Storage Objects 16-5

Creating a Storage Object 16-5
Getting and Setting Storage Object Information 16-8

Storage Objects Reference 16-9
Storage Objects Routines 16-9

Managing Storage Objects 16-9
Creating and Accessing Memory Storage Objects 16-13
Creating and Accessing Handle Storage Objects 16-19
Creating and Accessing Macintosh Storage Objects 16-21
Creating and Accessing FSSpec Storage Objects 16-24
Creating and Accessing UNIX Storage Objects 16-27
Creating and Accessing UNIX Path Name Storage Objects 16-30

Summary of Storage Objects 16-33
C Summary 16-33

Constants 16-33
Storage Objects Routines 16-33

Errors 16-36

This document was created with FrameMaker 4.0.4

C H A P T E R 1 6

About Storage Objects

16-3

Storage Objects 16

This chapter describes storage objects and the functions you can use to
manipulate them. You use storage objects to represent a piece of storage
accessible in a computer (for example, a file on disk, a block of memory, or
some data on the Clipboard). A storage object connects a physical storage
device to a file object. You use storage objects together with file objects to access
the data on that storage device.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about file objects, see the chapter “File Objects.” You do
not, however, need to know how to create file objects or attach them to storage
objects to read this chapter.

This chapter begins by describing storage objects and their features. Then it
shows how to create and manipulate storage objects. The section “Storage
Objects Reference,” beginning on page 16-9 provides a complete description of
storage objects and the routines you can use to create and manipulate them.

About Storage Objects 16

A

storage object

is a type of QuickDraw 3D object that you can use to represent
a physical piece of storage in a computer. The piece of storage can be any data
that is accessible in a linear, stream-based manner. QuickDraw 3D currently
supports three basic types of data storage formats: data stored in memory, data
stored in the data fork of a Macintosh file, and data stored in files accessed
through the C programming language standard I/O library. QuickDraw 3D
represents these data storage devices as storage objects.

To read data from (or write data to) a data storage device, you first need to
create a storage object of the appropriate type. For example, to read data from a
Macintosh file, you can create a Macintosh storage object. You also need to
create a file object (of type

TQ3FileObject

) and attach the file object to the
storage object. Once you’ve created a storage object and a file object and
attached them to one another, you can then read data from the file object by
using file object reading calls. See the chapter “File Objects” for information on
creating file objects, attaching them to storage objects, and reading or writing
data using those file objects.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 6

Storage Objects

16-4

About Storage Objects

QuickDraw 3D distinguishes between storage objects and file objects primarily
so that you can read and write stored data using a single set of functions.
QuickDraw 3D supports only one class of file object, instances of which can be
attached to any of the types of storage objects that it supports.

A storage object is of type

TQ3StorageObject

, which is a type of shared object.
QuickDraw 3D provides three subclasses of the

TQ3StorageObject

 type:

■

A

memory storage object

 (of type

kQ3StorageTypeMemory

) represents a
dynamically allocated block of RAM. You can allocate the block of memory
yourself, or you can have QuickDraw 3D allocate a block of memory on
your behalf. Memory storage objects are available on all computer systems.
QuickDraw 3D supports one subclass of the

kQ3StorageTypeMemory

 storage
object type:

n

A

handle storage object

 (of type

kQ3MemoryStorageTypeHandle

)
represents a handle to a block of dynamically allocated RAM. On the
Macintosh Operating System, QuickDraw 3D uses the

SetHandleSize

function when it needs to change the size of the memory block. On
operating systems that do not support handles, QuickDraw 3D allocates
and maintains the memory blocks internally.

■

A

Macintosh storage object

 (of type

kQ3StorageTypeMacintosh

) represents
the data fork of a Macintosh file using a file reference number. Macintosh
storage objects are available only on the Macintosh Operating System.
QuickDraw 3D supports one subclass of the

kQ3StorageTypeMacintosh

storage object type:

n

A

Macintosh FSSpec storage object

 (of type

kQ3MacintoshStorageTypeFSSpec

) represents the data fork of a
Macintosh file using a file system specification structure (of type

FSSpec

).
QuickDraw 3D uses the Alias Manager to create cross-file references.

■

A

UNIX

 storage object

 (of type

kQ3StorageTypeUnix

) represents a file
using a structure of type

FILE

. This structure is accessed using the

standard
I/O library,

a collection of functions that provide character I/O and
file-manipulation services for C programs on any operating system. The
represented object can be a pipe, the standard input file, the standard output
file, or any other

FILE

 abstraction. QuickDraw 3D supports one subclass of
the

kQ3StorageTypeUnix

 storage object type:

n

A

UNIX path name storage object

 (of type

kQ3UnixStorageTypePath

)
represents a file using a path name.

C H A P T E R 1 6

Storage Objects

Using Storage Objects

16-5

IMPORTANT

UNIX storage objects and UNIX path name storage objects
can be used to represent any object accessible through the
standard I/O library on

any

 operating system. The names,
which can therefore be confusing, derive from the origin of
the standard I/O library on the UNIX operating system.

▲

For a description of pointers and handles, see the book

Inside Macintosh:
Memory.

 For a description of the Macintosh file-specification methods (that
is, file reference numbers and file system specification structures), see the
book

Inside Macintosh: Files.

 For a description of the standard I/O library,
see the documentation for any UNIX-based computer (for example,

A/UX Essentials

 from Apple Computer, Inc., or

 The UNIX Programming
Environment

 by Kernighan and Pike), or any book devoted specifically to C
language programming (for example,

The C Programming Language

 by
Kernighan and Ritchie).

Using Storage Objects 16

As indicated earlier, you use storage objects to represent physical storage
devices available on a computer. Most often, you’ll simply create a new storage
object associated with some part of a storage device (for instance, with some
file on a disk drive) and then attach that storage object to a file object (by
calling the

Q3File_SetStorage

 function). If necessary, you can also get or set
some of the information associated with a particular storage object. For
example, you can determine the file reference number of the open file
associated with a Macintosh storage object. This section describes how to
perform these two tasks.

Creating a Storage Object 16

Creating a storage object essentially involves indicating to QuickDraw 3D the
location and possibly also the size of the piece of physical storage you later
want to read data from or write data to. Once you’ve created a storage object,
you attach it to a file object and perform all I/O operations using file object
functions. Listing 16-1 illustrates how to create a storage object connected to an
open Macintosh file.

C H A P T E R 1 6

Storage Objects

16-6

Using Storage Objects

Listing 16-1

Creating a Macintosh storage object

myErr = FSpOpenDF(&myFSSpec, fsCurPerm, &myFRefNum);

if (!myErr)

myStorageObj = Q3MacintoshStorage_New(myFRefNum);

Listing 16-2 illustrates how to open a file and create a UNIX storage object
connected to that open file.

Listing 16-2

Creating a UNIX storage object

myFile = fopen("..:teacup.eb", "r");

if (myFile)

myStorageObj = Q3UnixStorage_New(myFile);

Listing 16-3 illustrates how to allocate a block of memory and create a storage
object connected to that block.

Listing 16-3

Creating a memory storage object

#define kBufferSize 256

myBuffer = malloc(kBufferSize);

if (myBuffer)

myStorageObj = Q3MemoryStorage_NewBuffer

(myBuffer, 0, kBufferSize);

In the code shown in Listing 16-1 through Listing 16-3, your application
specifically reserves the desired piece of the physical storage device, either by
opening a file or by allocating memory. In these cases, your application must
also make sure to close the file or deallocate the memory block after you’ve
closed or disposed of the associated storage object.

Note, however, that QuickDraw 3D provides two types of memory storage
functions. The function

Q3MemoryStorage_NewBuffer

 creates a new memory
storage object using a specified buffer. The function

Q3MemoryStorage_New

creates a new memory storage object but copies the data in the specified buffer

C H A P T E R 1 6

Storage Objects

Using Storage Objects

16-7

into its own internal memory. If you create a storage object by calling

Q3MemoryStorage_New

, you can dispose of the buffer once

Q3MemoryStorage_New

 returns.

IMPORTANT

Whenever you create a storage object associated with an
open file or an allocated memory block, you must close
the file or dispose of the memory yourself. Whenever
QuickDraw 3D opens a file or allocates memory to create
a storage object, it closes the file or disposes of the
memory itself.

▲

It’s possible, however, to have QuickDraw 3D create and manage a piece of
storage for you. For example, you can create a memory storage object by calling

Q3MemoryStorage_NewBuffer

 as follows:

myStorageObj = Q3MemoryStorage_NewBuffer(NULL, 0, 0);

Notice that the first parameter in this call is

NULL

; this value indicates that you
want QuickDraw 3D to allocate a buffer internally and automatically expand
the buffer whenever necessary. (The initial size of the buffer and the grow size
of the buffer are determined by internal QuickDraw 3D settings.) In addition,
when you close or dispose of the storage object, QuickDraw 3D disposes of any
memory it has allocated on your behalf.

You can also have QuickDraw 3D open and close files on your behalf. On the
Macintosh Operating System, you can call the

Q3FSSpecStorage_New

 function,
passing a file system specification structure describing a closed file. The
following line of code illustrates how to do this:

myStorageObj = Q3FSSpecStorage_New(&myFSSpec);

QuickDraw 3D opens the file and creates a storage object associated with
that file. When you later close or dispose of that storage object, QuickDraw 3D
also closes the associated Macintosh file. Similarly, you can call

Q3UnixPathStorage_New

 to have QuickDraw 3D open a file described by a
path name and create a new storage object associated with it. When you
later close or dispose of that storage object, QuickDraw 3D also closes the
associated file.

C H A P T E R 1 6

Storage Objects

16-8

Using Storage Objects

▲ W A R N I N G

No matter whether you opened a piece of storage (that is, a
file or a block of memory) yourself or allowed
QuickDraw 3D to open it for you, you must not access that
piece of storage once you’ve created a storage object to
represent it. QuickDraw 3D assumes that it has exclusive
access to all data in any part of a physical storage device
associated with an open storage object.

▲

Getting and Setting Storage Object Information 16

QuickDraw 3D provides routines that you can use to get or set some of the
information it maintains about storage objects. For example, you can get the file
reference number of the Macintosh file associated with a Macintosh storage
object by calling the function

Q3MacintoshStorage_Get

. Similarly, you can
determine the starting address and size of a buffer associated with a memory
storage object by calling

Q3MemoryStorage_GetBuffer

.

In general, the routines that get and set storage object information operate like
the get and set routines for other types of QuickDraw 3D objects, but with
several important differences:

■

For memory storage objects created by a call to

Q3MemoryStorage_NewBuffer

, the returned address is the address of the
actual buffer associated with the storage object,

not

 the address of a copy of
that buffer. In addition, that buffer may change locations in memory (but
only if QuickDraw 3D allocated the buffer on your behalf and writing data
to the storage object causes QuickDraw 3D to resize the buffer).

■

You cannot access subclass data using the get and set methods of a class. For
example, you cannot use

Q3MemoryStorage_Get

 or

Q3MemoryStorage_Set

with a handle storage object (of type

kQ3MemoryStorageTypeHandle

).
Similarly, you cannot use

Q3UnixStorage_Get

 or

Q3UnixStorage_Set

 with
a UNIX path name storage object (of type

kQ3UnixStorageTypePath

).

■

You cannot use the get or set methods with a storage object that is open.
A storage object is considered

open

whenever its associated storage is in
use—for example, when an application is reading data from a file object
attached to the storage object. (To be more specific, a storage object is open if
it has been attached to a file object by a call to the

Q3File_SetStorage

C H A P T E R 1 6

Storage Objects

Storage Objects Reference

16-9

function and that file object has been opened by a call to the
Q3File_OpenRead or Q3File_OpenWrite function.) A storage object is
considered closed at all other times. (Note that a storage object can be closed
even though the associated file on disk is open to the operating system.)

Storage Objects Reference 16

This section describes the routines you can use to create and manipulate
storage objects.

Storage Objects Routines 16

This section describes routines you can use to manage storage objects.

Managing Storage Objects 16

QuickDraw 3D provides several general routines for getting the type and size
of storage objects. It also provides routines you can use to get and set the
private data of a storage object.

Q3Storage_GetType 16

You can use the Q3Storage_GetType function to get the type of a storage object.

TQ3ObjectType Q3Storage_GetType (TQ3StorageObject storage);

storage A storage object.

C H A P T E R 1 6

Storage Objects

16-10 Storage Objects Reference

DESCRIPTION

The Q3Storage_GetType function returns, as its function result, the type of the
storage object specified by the storage parameter. The types of storage objects
currently supported by QuickDraw 3D are defined by these constants:

kQ3StorageTypeMemory

kQ3StorageTypeMacintosh

kQ3StorageTypeUnix

If the specified storage object is invalid or is not one of these types,
Q3Storage_GetType returns the value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Q3Storage_GetSize 16

You can use the Q3Storage_GetSize function to get the size of the data stored
in a storage object.

TQ3Status Q3Storage_GetSize (

TQ3StorageObject storage,

unsigned long *size);

storage A storage object.

size On entry, a pointer to a buffer. On exit, the number of bytes of
data stored in the specified storage object.

DESCRIPTION

The Q3Storage_GetSize function returns, through the size parameter, the
number of bytes of data stored in the storage object specified by the storage
parameter. That storage object must already be open when you call
Q3Storage_GetSize.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-11

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter
kQ3ErrorStorageNotOpen

Q3Storage_GetData 16

You can use the Q3Storage_GetData function to get the data stored in a
storage object.

TQ3Status Q3Storage_GetData (

TQ3StorageObject storage,

unsigned long offset,

unsigned long dataSize,

unsigned char *data,

unsigned long *sizeRead);

storage A storage object.

offset An offset into the private data associated with the specified
storage object.

dataSize The number of bytes of data from the specified storage object to
be returned in the specified buffer.

data On entry, a pointer to a buffer that is at least large enough to
contain the number of bytes of data specified by the dataSize
parameter. On exit, this buffer is filled with data from the
specified storage object.

sizeRead On exit, the number of bytes of data read from the specified
storage object.

DESCRIPTION

The Q3Storage_GetData function returns, through the data parameter, some
or all of the private data associated with the storage object specified by the
storage parameter. The data to be returned begins at an offset specified by the
offset parameter and extends for dataSize bytes from that location. On exit,

C H A P T E R 1 6

Storage Objects

16-12 Storage Objects Reference

the sizeRead parameter contains the number of bytes actually retrieved from
the storage object’s private data into the data buffer. If the value returned in
the sizeRead parameter is less than the number of bytes requested in the
dataSize parameter, then the end of the storage object’s private data occurs at
the distance offset + sizeRead from the beginning of the private data.

If the specified storage object is associated with a file object, that file object
must be closed before you call Q3Storage_GetData.

Q3Storage_SetData 16

You can use the Q3Storage_SetData function to set the data stored in a
storage object.

TQ3Status Q3Storage_SetData (

TQ3StorageObject storage,

unsigned long offset,

unsigned long dataSize,

const unsigned char *data,

unsigned long *sizeWritten);

storage A storage object.

offset An offset into the specified storage object.

dataSize The number of bytes of data from the specified buffer to be
written to the specified storage object.

data On entry, a pointer to a buffer that contains the data you want
to be written to the specified storage object.

sizeWritten On exit, the number of bytes of data written to the specified
storage object.

DESCRIPTION

The Q3Storage_SetData function sets the data associated with the
storage object specified by the storage parameter to the data specified
by the dataSize and data parameters. The data is written to the storage
object starting at the byte offset specified by the offset parameter.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-13

Q3Storage_SetData returns, in the sizeWritten parameter, the number of
bytes of data written to the storage object. If the value returned in the
sizeWritten parameter is less than the number of bytes requested in the
dataSize parameter, then the end of the storage object’s private data occurs at
the distance offset + sizeWritten from the beginning of the private data.

Creating and Accessing Memory Storage Objects 16

QuickDraw 3D provides routines for creating and managing memory
storage objects.

Q3MemoryStorage_New 16

You can use the Q3MemoryStorage_New function to create a new memory
storage object.

TQ3StorageObject Q3MemoryStorage_New (

const unsigned char *buffer,

unsigned long validSize);

buffer A pointer to a buffer in memory, or NULL.

validSize The size, in bytes, of the valid metafile data contained in the
specified buffer. If buffer is set to NULL, this parameter
specifies the initial size and also the grow size of the buffer that
QuickDraw 3D allocates internally.

DESCRIPTION

The Q3MemoryStorage_New function returns, as its function result, a new
memory storage object associated with the data in the buffer specified by the
buffer and validSize parameters. The data in the specified buffer is copied
into internal QuickDraw 3D memory, so you can dispose of the buffer if
Q3MemoryStorage_New returns successfully.

If you pass the value NULL in the buffer parameter, QuickDraw 3D allocates
a buffer of validSize bytes, increases the buffer by that size whenever
necessary, and later disposes of the buffer when the associated storage object

C H A P T E R 1 6

Storage Objects

16-14 Storage Objects Reference

is closed or disposed of. If buffer is set to NULL and validSize is set to 0,
QuickDraw 3D uses a default initial buffer and grow size.

If Q3MemoryStorage_New cannot create a new storage object, it returns the
value NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3MemoryStorage_NewBuffer 16

You can use the Q3MemoryStorage_NewBuffer function to create a
new memory storage object. The data you provide is not copied into
QuickDraw 3D memory.

TQ3StorageObject Q3MemoryStorage_NewBuffer (

unsigned char *buffer,

unsigned long validSize,

unsigned long bufferSize);

buffer A pointer to a buffer in memory, or NULL.

validSize The size, in bytes, of the valid metafile data contained in
the specified buffer. If buffer is set to NULL, this parameter
specifies the initial size and also the grow size of the buffer
that QuickDraw 3D allocates internally.

bufferSize The size, in bytes, of the specified buffer.

DESCRIPTION

The Q3MemoryStorage_NewBuffer function returns, as its function result, a
new memory storage object associated with the buffer specified by the buffer
and validSize parameters. The data in the specified buffer is not copied into
internal QuickDraw 3D memory, so your application must not access that
buffer until the associated storage object is closed or disposed of.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-15

If you pass the value NULL in the buffer parameter, QuickDraw 3D allocates
a buffer of validSize bytes, increases the buffer by that size whenever
necessary, and later disposes of the buffer when the associated storage object
is closed or disposed of. If buffer is set to NULL and validSize is set to 0,
QuickDraw 3D uses a default initial buffer and grow size.

The bufferSize parameter specifies the size of the specified buffer. The
validSize parameter specifies the size of the valid metafile data contained in
the buffer. The value of the validSize parameter should always be less than or
equal to the value of the bufferSize parameter. This allows you to maintain
other data in the buffer following the valid metafile data.

If Q3MemoryStorage_NewBuffer cannot create a new storage object, it returns
the value NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3MemoryStorage_Set 16

You can use the Q3MemoryStorage_Set function to set the data of a memory
storage object.

TQ3Status Q3MemoryStorage_Set (

TQ3StorageObject storage,

const unsigned char *buffer,

unsigned long validSize);

storage A memory storage object.

buffer A pointer to a contiguous block of memory to be associated
with the specified storage object, or NULL.

validSize The size, in bytes, of the valid metafile data contained in the
specified buffer. If buffer is set to NULL, this parameter
specifies the initial size and also the grow size of the buffer that
QuickDraw 3D allocates internally.

C H A P T E R 1 6

Storage Objects

16-16 Storage Objects Reference

DESCRIPTION

The Q3MemoryStorage_Set function sets the data for the memory storage
object specified by the storage parameter to the values specified in the buffer
and validSize parameters. The data in the specified buffer is copied into
internal QuickDraw 3D memory, so you can dispose of the buffer if
Q3MemoryStorage_Set returns successfully.

If you pass the value NULL in the buffer parameter, QuickDraw 3D allocates
a buffer of validSize bytes, increases the buffer by that size whenever
necessary, and later disposes of the buffer when the associated storage object
is closed or disposed of. If buffer is set to NULL and validSize is set to 0,
and if the buffer parameter was set to NULL when the storage object was
created, QuickDraw 3D uses a default initial buffer and grow size.

SPECIAL CONSIDERATIONS

You must not use Q3MemoryStorage_Set with an open memory storage object.

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter

Q3MemoryStorage_GetBuffer 16

You can use the Q3MemoryStorage_GetBuffer function to get the data of a
memory storage object.

TQ3Status Q3MemoryStorage_GetBuffer (

TQ3StorageObject storage,

unsigned char **buffer,

unsigned long *validSize,

unsigned long *bufferSize);

storage A memory storage object.

buffer On entry, a pointer to a pointer. On exit, a pointer to a
pointer to the block of memory associated with the specified
storage object.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-17

validSize On exit, the size, in bytes, of the valid metafile data contained in
the specified buffer.

bufferSize On exit, the size, in bytes, of the block of memory whose
address is returned through the buffer parameter.

DESCRIPTION

The Q3MemoryStorage_GetBuffer function returns, in the buffer and
bufferSize parameters, the address and size of the block of memory currently
associated with the memory storage object specified by the storage parameter.
Note that the returned address is the address of the storage object’s data, not of
a copy of that data. As a result, the returned pointer may become a dangling
pointer if the buffer holding the storage object’s data is dynamically reallocated
(perhaps because additional data was written to the object).

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter

Q3MemoryStorage_SetBuffer 16

You can use the Q3MemoryStorage_SetBuffer function to set the data of a
memory storage object.

TQ3Status Q3MemoryStorage_SetBuffer (

TQ3StorageObject storage,

unsigned char *buffer,

unsigned long validSize,

unsigned long bufferSize);

storage A memory storage object.

buffer A pointer to a block of memory to be associated with the
specified storage object, or NULL.

C H A P T E R 1 6

Storage Objects

16-18 Storage Objects Reference

validSize The size, in bytes, of the valid metafile data contained in the
specified buffer. If the value of buffer is NULL, this parameter
specifies the initial size and also the grow size of the buffer that
QuickDraw 3D allocates internally.

bufferSize The size, in bytes, of the specified buffer.

DESCRIPTION

The Q3MemoryStorage_SetBuffer function sets the buffer location, size, and
valid size of the memory storage object specified by the storage parameter to
the values specified in the buffer, bufferSize, and validSize parameters.

If you pass the value NULL in the buffer parameter, QuickDraw 3D allocates a
buffer of validSize bytes, increases the buffer by that size whenever
necessary, and later disposes of the buffer when the associated storage object is
closed or disposed of. If buffer is set to NULL and validSize is set to 0,
QuickDraw 3D uses a default initial buffer and grow size.

SPECIAL CONSIDERATIONS

You must not use Q3MemoryStorage_SetBuffer with an open memory
storage object.

Q3MemoryStorage_GetType 16

You can use the Q3MemoryStorage_GetType function to get the type of a
memory storage object.

TQ3ObjectType Q3MemoryStorage_GetType (TQ3StorageObject storage);

storage A memory storage object.

DESCRIPTION

The Q3MemoryStorage_GetType function returns, as its function result, the
type of the memory storage object specified by the storage parameter. The
types of memory storage objects currently supported by QuickDraw 3D are
defined by this constant:

kQ3MemoryStorageTypeHandle

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-19

If the specified memory storage object is invalid or is not of this type,
Q3MemoryStorage_GetType returns the value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorNoSubclass
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Creating and Accessing Handle Storage Objects 16

QuickDraw 3D provides routines for creating and managing handle
storage objects.

Q3HandleStorage_New 16

You can use the Q3HandleStorage_New function to create a new handle
storage object.

TQ3StorageObject Q3HandleStorage_New (

Handle handle,

unsigned long validSize);

handle A handle to a buffer in memory, or NULL.

validSize The size, in bytes, of the specified buffer.

DESCRIPTION

The Q3HandleStorage_New function returns, as its function result, a new
handle storage object associated with the buffer specified by the handle and
validSize parameters. Your application must not access that buffer until the
associated storage object is closed or disposed of. If Q3HandleStorage_New
cannot create a new storage object, it returns the value NULL. If you pass the
value NULL in the handle parameter, QuickDraw 3D allocates a buffer of the
specified size and later disposes of that buffer when the associated storage
object is closed or disposed of.

C H A P T E R 1 6

Storage Objects

16-20 Storage Objects Reference

ERRORS

kQ3ErrorOutOfMemory

Q3HandleStorage_Get 16

You can use the Q3HandleStorage_Get function to get information about a
handle storage object.

TQ3Status Q3HandleStorage_Get (

TQ3StorageObject storage,

Handle *handle,

unsigned long *validSize);

storage A handle storage object.

handle On entry, a pointer to a handle. On exit, a pointer to a
handle to the block of memory associated with the specified
storage object.

validSize On exit, the size, in bytes, of the block of memory whose
address is returned through the buffer parameter.

DESCRIPTION

The Q3HandleStorage_Get function returns, in the handle and validSize
parameters, the handle and size of the block of memory currently associated
with the handle storage object specified by the storage parameter. Note that
the returned handle is a handle to the storage object’s data, not of a copy of
that data.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-21

Q3HandleStorage_Set 16

You can use the Q3HandleStorage_Set function to set information about a
handle storage object.

TQ3Status Q3HandleStorage_Set (

TQ3StorageObject storage,

Handle handle,

unsigned long validSize);

storage A handle storage object.

handle A handle to a contiguous block of memory to be associated
with the specified storage object, or NULL.

validSize The size, in bytes, of the specified buffer.

DESCRIPTION

The Q3HandleStorage_Set function sets the buffer location and size of the
handle storage object specified by the storage parameter to the values
specified in the handle and validSize parameters. If you pass the value NULL
in the handle parameter, QuickDraw 3D allocates a buffer of the specified size
and later disposes of that buffer when the associated storage object is closed or
disposed of. If you pass NULL in handle and 0 in validSize, QuickDraw 3D
allocates a buffer of a private default size.

SPECIAL CONSIDERATIONS

You must not use Q3HandleStorage_Set with an open handle storage object.

ERRORS

kQ3ErrorInvalidObjectParameter

Creating and Accessing Macintosh Storage Objects 16

QuickDraw 3D provides routines for creating and managing Macintosh
storage objects.

C H A P T E R 1 6

Storage Objects

16-22 Storage Objects Reference

Q3MacintoshStorage_New 16

You can use the Q3MacintoshStorage_New function to create a new Macintosh
storage object.

TQ3StorageObject Q3MacintoshStorage_New (short fsRefNum);

fsRefNum A file reference number of the data fork of a Macintosh file. This
file must already be open.

DESCRIPTION

The Q3MacintoshStorage_New function returns, as its function result, a new
storage object associated with the Macintosh file specified by the fsRefNum
parameter. The specified file is assumed to be open, and it must remain open as
long as you use the returned storage object. In addition, you are responsible for
closing the file once the associated storage object has been closed or disposed
of. If Q3MacintoshStorage_New cannot create a new storage object, it returns
the value NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3MacintoshStorage_Get 16

You can use the Q3MacintoshStorage_Get function to get information about a
Macintosh storage object.

TQ3Status Q3MacintoshStorage_Get (

TQ3StorageObject storage,

short *fsRefNum);

storage A Macintosh storage object.

fsRefNum On exit, the file reference number of the Macintosh file
associated with the specified storage object.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-23

DESCRIPTION

The Q3MacintoshStorage_Get function returns, in the fsRefNum parameter,
the file reference number of the Macintosh file associated with the Macintosh
storage object specified by the storage parameter.

Q3MacintoshStorage_Set 16

You can use the Q3MacintoshStorage_Set function to set information about a
Macintosh storage object.

TQ3Status Q3MacintoshStorage_Set (

TQ3StorageObject storage,

short fsRefNum);

storage A Macintosh storage object.

fsRefNum A file reference number.

DESCRIPTION

The Q3MacintoshStorage_Set function sets the file reference number of the
file associated with the Macintosh storage object specified by the storage
parameter to the number specified by the fsRefNum parameter.

SPECIAL CONSIDERATIONS

You must not use Q3MacintoshStorage_Set with an open Macintosh
storage object.

ERRORS

kQ3ErrorStorageIsOpen

C H A P T E R 1 6

Storage Objects

16-24 Storage Objects Reference

Q3MacintoshStorage_GetType 16

You can use the Q3MacintoshStorage_GetType function to get the type of a
Macintosh storage object.

TQ3ObjectType Q3MacintoshStorage_GetType (

TQ3StorageObject storage);

storage A Macintosh storage object.

DESCRIPTION

The Q3MacintoshStorage_GetType function returns, as its function result, the
type of the Macintosh storage object specified by the storage parameter. The
types of Macintosh storage objects currently supported by QuickDraw 3D are
defined by this constant:

kQ3MacintoshStorageTypeFSSpec

If the specified memory storage object is invalid or is not of this type,
Q3MacintoshStorage_GetType returns the value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorNoSubclass
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Creating and Accessing FSSpec Storage Objects 16

QuickDraw 3D provides routines for creating and managing Macintosh storage
objects specified using a file system specification structure.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-25

Q3FSSpecStorage_New 16

You can use the Q3FSSpecStorage_New function to create a new memory
storage object specified using a file system specification structure.

TQ3StorageObject Q3FSSpecStorage_New (const FSSpec *fs);

fs A file system specification structure specifying the name and
location of a Macintosh file.

DESCRIPTION

The Q3FSSpecStorage_New function returns, as its function result, a new
storage object associated with the Macintosh file specified by the fs parameter.
The specified file is assumed to be closed. QuickDraw 3D opens the file, and,
when the associated storage object is closed or disposed of, QuickDraw 3D
closes the file. If Q3FSSpecStorage_New cannot create a new storage object, it
returns the value NULL.

ERRORS

kQ3ErrorOutOfMemory
kQ3ErrorNULLParameter

Q3FSSpecStorage_Get 16

You can use the Q3FSSpecStorage_Get function to get information about an
FSSpec storage object.

TQ3Status Q3FSSpecStorage_Get (

TQ3StorageObject storage,

FSSpec *fs);

storage A Macintosh FSSpec storage object.

fs On entry, a pointer to a file system specification structure. On
exit, a pointer to the file system specification structure
associated with the specified Macintosh FSSpec storage object.

C H A P T E R 1 6

Storage Objects

16-26 Storage Objects Reference

DESCRIPTION

The Q3FSSpecStorage_Get function returns, through the fs parameter, the file
system specification structure associated with the Macintosh FSSpec storage
object specified by the storage parameter.

Q3FSSpecStorage_Set 16

You can use the Q3FSSpecStorage_Set function to set information about an
FSSpec storage object.

TQ3Status Q3FSSpecStorage_Set (

TQ3StorageObject storage,

const FSSpec *fs);

storage A Macintosh FSSpec storage object.

fs A file system specification structure specifying the name and
location of a Macintosh file.

DESCRIPTION

The Q3FSSpecStorage_Set function sets the file system specification structure
of the file associated with the Macintosh FSSpec storage object specified by the
storage parameter to the structure specified by the fs parameter.

SPECIAL CONSIDERATIONS

You must not use Q3FSSpecStorage_Set with an open Macintosh FSSpec
storage object.

ERRORS

kQ3ErrorStorageIsOpen

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-27

Creating and Accessing UNIX Storage Objects 16

QuickDraw 3D provides routines for creating and managing UNIX
storage objects.

Note
You need to link your application with the standard
I/O library to use these functions. ◆

Q3UnixStorage_New 16

You can use the Q3UnixStorage_New function to create a new UNIX
storage object.

TQ3StorageObject Q3UnixStorage_New (FILE *stdFile);

stdFile A pointer to a file. This file must already be open.

DESCRIPTION

The Q3UnixStorage_New function returns, as its function result, a new UNIX
storage object associated with the file specified by the stdFile parameter. The
specified file is assumed to be open, and it must remain open as long as you
use the returned storage object. In addition, you are responsible for closing
the file once the associated storage object has been closed or disposed of.
If Q3UnixStorage_New cannot create a new storage object, it returns the
value NULL.

ERRORS

kQ3ErrorOutOfMemory
kQ3ErrorNULLParameter

C H A P T E R 1 6

Storage Objects

16-28 Storage Objects Reference

Q3UnixStorage_Get 16

You can use the Q3UnixStorage_Get function to get information about a UNIX
storage object.

TQ3Status Q3UnixStorage_Get (

TQ3StorageObject storage,

FILE **stdFile);

storage A UNIX storage object.

stdFile On entry, a pointer to a FILE structure. On exit, a pointer to
the FILE structure associated with the specified UNIX
storage object.

DESCRIPTION

The Q3UnixStorage_Get function returns, through the stdFile parameter, the
FILE structure associated with the UNIX storage object specified by the
storage parameter.

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter

Q3UnixStorage_Set 16

You can use the Q3UnixStorage_Set function to set information about a UNIX
storage object.

TQ3Status Q3UnixStorage_Set (

TQ3StorageObject storage,

FILE *stdFile);

storage A UNIX storage object.

stdFile A pointer to a FILE structure.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-29

DESCRIPTION

The Q3UnixStorage_Set function sets the FILE structure associated with the
UNIX storage object specified by the storage parameter to the structure
specified by the stdFile parameter.

SPECIAL CONSIDERATIONS

You must not use Q3UnixStorage_Set with an open UNIX storage object.

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter
kQ3ErrorStorageIsOpen

Q3UnixStorage_GetType 16

You can use the Q3UnixStorage_GetType function to get the type of a UNIX
storage object.

TQ3ObjectType Q3UnixStorage_GetType (TQ3StorageObject storage);

storage A UNIX storage object.

DESCRIPTION

The Q3UnixStorage_GetType function returns, as its function result, the type
of the UNIX storage object specified by the storage parameter. The types of
UNIX storage objects currently supported by QuickDraw 3D are defined by
this constant:

kQ3UnixStorageTypePath

If the specified memory storage object is invalid or is not of this type,
Q3UnixStorage_GetType returns the value kQ3ObjectTypeInvalid.

C H A P T E R 1 6

Storage Objects

16-30 Storage Objects Reference

ERRORS

kQ3ErrorNoSubclass
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Creating and Accessing UNIX Path Name Storage Objects 16

QuickDraw 3D provides routines for creating and managing UNIX storage
objects specified using a path name.

Note
You need to link your application with the standard I/O
library to use these functions. ◆

Q3UnixPathStorage_New 16

You can use the Q3UnixPathStorage_New function to create a new UNIX
storage object specified using a path name.

TQ3StorageObject Q3UnixPathStorage_New (const char *pathName);

pathName A path name of a file. The path name is a null-terminated C
string.

DESCRIPTION

The Q3UnixPathStorage_New function returns, as its function result, a new
storage object associated with the file specified by the pathName parameter. The
specified file is assumed to be closed. QuickDraw 3D opens the file (by calling
fopen) and, when the associated storage object is closed or disposed of,
QuickDraw 3D closes the file (by calling fclose). If Q3UnixPathStorage_New
cannot create a new storage object, it returns the value NULL.

ERRORS

kQ3ErrorOutOfMemory
kQ3ErrorNULLParameter

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 16-31

Q3UnixPathStorage_Get 16

You can use the Q3UnixPathStorage_Get function to get information about a
UNIX path name storage object.

TQ3Status Q3UnixPathStorage_Get (

TQ3StorageObject storage,

char *pathName);

storage A UNIX path name storage object.

pathName On entry, a pointer to a block of memory large enough to hold
a string of size kQ3StringMaximumLength. The path name of
the file associated with the specified storage object is copied
into that block of memory. The path name is a null-terminated
C string.

DESCRIPTION

The Q3UnixPathStorage_Get function returns, through the pathName
parameter, a copy of the path name of the file associated with the UNIX path
storage object specified by the storage parameter.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Q3UnixPathStorage_Set 16

You can use the Q3UnixPathStorage_Set function to set information about a
UNIX path name storage object.

TQ3Status Q3UnixPathStorage_Set (

TQ3StorageObject storage,

const char *pathName);

C H A P T E R 1 6

Storage Objects

16-32 Storage Objects Reference

storage A UNIX path name storage object.

pathName A pointer to the path name of a file. The path name is a
null-terminated C string. (A file does not yet need to exist in
that location.)

DESCRIPTION

The Q3UnixPathStorage_Set function sets the path name of the file associated
with the UNIX path name storage object specified by the storage parameter to
the string pointed to by the pathName parameter.

SPECIAL CONSIDERATIONS

You must not use Q3UnixPathStorage_Set with an open UNIX path name
storage object.

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter

C H A P T E R 1 6

Storage Objects

Summary of Storage Objects 16-33

Summary of Storage Objects 16

C Summary 16

Constants 16

#define kQ3StorageTypeMemory Q3_OBJECT_TYPE('m','e','m','s')

#define kQ3StorageTypeMacintosh Q3_OBJECT_TYPE('m','a','c','n')

#define kQ3StorageTypeUnix Q3_OBJECT_TYPE('u','x','s','t')

#define kQ3MemoryStorageTypeHandle Q3_OBJECT_TYPE('h','n','d','l')

#define kQ3MacintoshStorageTypeFSSpec Q3_OBJECT_TYPE('m','a','c','p')

#define kQ3UnixStorageTypePath Q3_OBJECT_TYPE('u','x','i','x')

Storage Objects Routines 16

Managing Storage Objects

TQ3ObjectType Q3Storage_GetType (

TQ3StorageObject storage);

TQ3Status Q3Storage_GetSize (TQ3StorageObject storage,

unsigned long *size);

TQ3Status Q3Storage_GetData (TQ3StorageObject storage,

unsigned long offset,

unsigned long dataSize,

unsigned char *data,

unsigned long *sizeRead);

C H A P T E R 1 6

Storage Objects

16-34 Summary of Storage Objects

TQ3Status Q3Storage_SetData (TQ3StorageObject storage,

unsigned long offset,

unsigned long dataSize,

const unsigned char *data,

unsigned long *sizeWritten);

Creating and Accessing Memory Storage Objects

TQ3StorageObject Q3MemoryStorage_New (

const unsigned char *buffer,

unsigned long validSize);

TQ3StorageObject Q3MemoryStorage_NewBuffer (

unsigned char *buffer,

unsigned long validSize,

unsigned long bufferSize);

TQ3Status Q3MemoryStorage_Set (TQ3StorageObject storage,

const unsigned char *buffer,

unsigned long validSize);

TQ3Status Q3MemoryStorage_GetBuffer (

TQ3StorageObject storage,

unsigned char **buffer,

unsigned long *validSize,

unsigned long *bufferSize);

TQ3Status Q3MemoryStorage_SetBuffer (

TQ3StorageObject storage,

unsigned char *buffer,

unsigned long validSize,

unsigned long bufferSize);

TQ3ObjectType Q3MemoryStorage_GetType (

TQ3StorageObject storage);

C H A P T E R 1 6

Storage Objects

Summary of Storage Objects 16-35

Creating and Accessing Handle Storage Objects

TQ3StorageObject Q3HandleStorage_New (

Handle handle, unsigned long validSize);

TQ3Status Q3HandleStorage_Get (TQ3StorageObject storage,

Handle *handle,

unsigned long *validSize);

TQ3Status Q3HandleStorage_Set (TQ3StorageObject storage,

Handle handle,

unsigned long validSize);

Creating and Accessing Macintosh Storage Objects

TQ3StorageObject Q3MacintoshStorage_New (

short fsRefNum);

TQ3Status Q3MacintoshStorage_Get (

TQ3StorageObject storage, short *fsRefNum);

TQ3Status Q3MacintoshStorage_Set (

TQ3StorageObject storage, short fsRefNum);

TQ3ObjectType Q3MacintoshStorage_GetType (

TQ3StorageObject storage);

Creating and Accessing FSSpec Storage Objects

TQ3StorageObject Q3FSSpecStorage_New (

const FSSpec *fs);

TQ3Status Q3FSSpecStorage_Get (TQ3StorageObject storage, FSSpec *fs);

TQ3Status Q3FSSpecStorage_Set (TQ3StorageObject storage, const FSSpec *fs);

Creating and Accessing UNIX Storage Objects

TQ3StorageObject Q3UnixStorage_New (

FILE *stdFile);

TQ3Status Q3UnixStorage_Get (TQ3StorageObject storage, FILE **stdFile);

C H A P T E R 1 6

Storage Objects

16-36 Summary of Storage Objects

TQ3Status Q3UnixStorage_Set (TQ3StorageObject storage, FILE *stdFile);

TQ3ObjectType Q3UnixStorage_GetType (

TQ3StorageObject storage);

Creating and Accessing UNIX Path Name Storage Objects

TQ3StorageObject Q3UnixPathStorage_New (

const char *pathName);

TQ3Status Q3UnixPathStorage_Get (

TQ3StorageObject storage,

char *pathName);

TQ3Status Q3UnixPathStorage_Set (

TQ3StorageObject storage,

const char *pathName);

Errors 16

kQ3ErrorAccessRestricted
kQ3ErrorBadFormatString
kQ3ErrorInvalidName
kQ3ErrorStorageInUse
kQ3ErrorStorageAlreadyOpen
kQ3ErrorStorageNotOpen
kQ3ErrorStorageIsOpen

C H A P T E R 1 7

Contents

17-1

Contents

Figure 17-0
Listing 17-0
Table 17-0

17 File Objects

About File Objects 17-3
Using File Objects 17-7

Creating a File Object 17-7
Reading Data from a File Object 17-8
Writing Data to a File Object 17-11

File Objects Reference 17-12
Constants 17-12

File Mode Flags 17-12
Data Structures 17-13

Unknown Object Data Structures 17-14
File Objects Routines 17-14

Creating File Objects 17-15
Attaching File Objects to Storage Objects 17-15
Accessing File Objects 17-17
Accessing Objects Directly 17-22
Setting Idle Methods 17-24
Reading and Writing File Subobjects 17-25
Reading and Writing File Data 17-27
Managing Unknown Objects 17-47
Managing View Hints Objects 17-52

Application-Defined Routines 17-65
Summary of File Objects 17-71

C Summary 17-71
Constants 17-71
Data Types 17-71

This document was created with FrameMaker 4.0.4

C H A P T E R 1 7

17-2

Contents

File Objects Routines 17-73
Application-Defined Routines 17-79

Errors, Warnings, and Notices 17-80

C H A P T E R 1 7

About File Objects

17-3

File Objects 17

This chapter describes file objects and the functions you can use to manipulate
them. You use file objects, together with storage objects, to read and write data
stored in the QuickDraw 3D Object Metafile format. A storage object connects a
physical storage device to a file object.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. You also need to know how to create and configure storage objects, as
explained in the chapter “Storage Objects.”

This chapter begins by describing file objects and their features. Then it shows
how to create and manipulate file objects. The section “File Objects Reference,”
beginning on page 17-12 provides a complete description of file objects and the
routines you can use to create and manipulate them.

About File Objects 17

A

file object

 (or, more briefly, a

file

) is a type of QuickDraw 3D object that you
use to read and write data that conforms to the

QuickDraw 3D Object
Metafile (3DMF),

 a standard file format intended to facilitate the interchange
of three-dimensional data among applications. You can use the 3DMF both as a
3D data storage format and as a 3D data interchange format. For example,
when a user saves a 3D model created by your application, you can write the
data to a file object. The data-writing methods of the file object and its
associated storage object ensure that the data in the piece of storage associated
with that storage object (for example, a file on disk or a block of memory)
conforms to the 3DMF specification. All other applications capable of handling
3DMF files can thus open and read that data.

By using file objects, you can insulate your application from having to know
the actual details of the QuickDraw 3D Object Metafile standard. You use file
object routines to read and write data in a piece of storage that conforms to the
3DMF and, if necessary, to get information about that storage. In all likelihood,
you’ll need to know about the details of the 3DMF only if you cannot use file
objects to access 3DMF data. For instance, you would need to know the
structure of the 3DMF if you wanted to read and write 3DMF files using a 3D
graphics system other than QuickDraw 3D.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 7

File Objects

17-4

About File Objects

Note

See

3D Metafile Reference

 for complete information about
the structure of the QuickDraw 3D Object Metafile.

◆

The relationship between file objects and storage objects is similar to that
between view objects and draw context objects. A draw context object receives
the raw data needed to draw an image on a particular window system, and the
associated view object is an abstraction in which you perform all drawing.
Similarly, a storage object receives the raw data read from or written to a
particular piece of storage, and the associated file object is an abstraction in
which you perform all I/O operations. View objects maintain information
about the current state of the drawing, and file objects maintain information
about the current state of I/O operations. Just as you must perform all drawing
in a rendering loop, between calls to

Q3View_StartRendering

 and

Q3View_EndRendering

, you must perform all file writing in a

writing loop,

between calls to

Q3View_StartWriting

 and

Q3View_EndWriting

. See “Writing
Data to a File Object,” beginning on page 17-11 for more information on
writing 3DMF data.

A QuickDraw 3D file object is of type

TQ3FileObject

, which is a type of
shared object. QuickDraw 3D currently provides no subclasses of the

TQ3FileObject

 type.

As mentioned earlier, the data associated with a file object must conform to the
QuickDraw 3D Object Metafile standard. That standard defines two general
forms for the 3D data: text form and binary form. A

text file

 is a stream of
ASCII characters with meaningful labels for each type of object contained in
the file (for example,

NURBCurve

 for a NURB curve). A

binary file

 is a stream of
raw binary data, the type of which is indicated by more cryptic object type
codes (for example,

nrbc

 for a NURB curve). The text form is most useful when
you’re writing and debugging your application, but the binary form is usually
smaller (requiring less storage space on disk or in memory) and can be read
and written much faster.

C H A P T E R 1 7

File Objects

About File Objects

17-5

IMPORTANT

Disk-based metafile data, whether a text file or a binary
file, should be contained in a file of type '

3DMF

'.

▲

In addition, there are three ways to organize the data in a text or binary file
object. A file object can be organized in normal mode, stream mode, or
database mode. In

normal mode,

 a file object contains a

table of contents

 that
lists all multiply-referenced objects in the file. This is usually the most compact
file object organization, but it requires random access to the file object data in
order to resolve references. (It might not, therefore, be the best mode to use
when transferring 3D data to a remote machine on a network.)

In

stream mode,

 a file object does not contain a table of contents and any
references to objects are simply copies of the objects themselves. This may
result in a larger file than normal mode, but it allows the file object to be
processed sequentially, without random access. In

database mode,

 a file object
contains a table of contents that lists

every

 object in the file, whether or not it is
referenced within the file. This organization is useful if you want to determine
what information a file object contains without having to read and process the
entire file. This would be useful, for example, for creating a catalog of textures.

Figure 17-1 shows a sample text file object organized in each of these three
ways. Once again, for complete information about the types of file objects and
the ways of organizing them, see the

3D Metafile Reference

.

C H A P T E R 1 7

File Objects

17-6

About File Objects

Figure 17-1

Types of file objects

To include in a metafile information about the lights, the renderer, the camera,
and other view settings, you can by create and write a view hints object.
A

view hints object

 is an object in a metafile that gives hints about how to
configure a scene. For instance, you can create a view hints object (by calling

3DMetafile (0 5 Database Label0>)

Label2:
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)

 Label3:
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Label4:
Translate (2 0 0)

Reference (1)

Label5:
Translate (0 0 -2)

Reference (1)

Label6:
Translate (-2 0 0)

Reference (1)

Label0:
TableOfContents (
 Label1> # next TOC
 6 # reference seed
 -1 # typeSeed
 1 # tocEntryType
 16 # tocEntrySize
 5 # nEntries
 1 Label2>
 Box
 2 Label3>
 GeometryAttributeSet
 3 Label4>
 Translate
 4 Label5>
 Translate
 5 Label6>
 Translate
)

3DMetafile (0 5 Normal Label0>)

Label2:
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Label11:
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Label3:
Translate (2 0 0)

Reference (1)

Label4:
Translate (0 0 -2)

Reference (1)

Label5:
Translate (-2 0 0)

Reference (1)

Label0:
TableOfContents (
 Label1> # next TOC
 2 # reference seed
 -1 # typeSeed
 0 # tocEntryType
 12 # tocEntrySize
 1 # nEntries
 1 Label2>
)

3DMetafile (0 5 Stream Label0>)

Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (2 0 0)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (0 0 -2)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (-2 0 0)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Normal organization Stream organization Database organization

C H A P T E R 1 7

File Objects

Using File Objects

17-7

Q3ViewHints_New

) and then record a view’s current settings by calling
functions like

Q3ViewHints_SetRenderer

 and

Q3ViewHints_SetCamera

.
Conversely, when you are reading objects from a metafile and you encounter a
view hints object in the file, you can use the information in that object to
configure a view object, thereby reconstructing the image as accurately as
possible. Or, you can choose to ignore the information in a view hints object
you find in a metafile.

Using File Objects 17

You use file objects to read 3DMF data from or write 3DMF data to a storage
object, which represents a physical storage device available on a computer.
Before you can access 3DMF data in a piece of storage, however, you need to
create a storage object to represent the physical storage device, create a file
object, and attach the file object to the storage object. This section describes
how to perform these tasks.

Creating a File Object 17

To access the data in a piece of storage that conforms to the 3DMF standard
(such as a file on disk or a block of memory on the Clipboard), you need to
create a new storage object, create a new file object, and attach the file object to
the storage object. Thereafter, you can open the file object and read the data in
it or write data to it. Listing 17-1 illustrates how to create storage and file
objects and attach them to one another.

The

MyGetInputFile

 function defined in Listing 17-1 calls the application-
defined routine

MyGetInputFileName

 to get the name of the disk file to open.
Then it calls

Q3FSSpecStorage_New

 to create a new storage object associated
with that disk file and

Q3File_New

 to create a new file object. If both creation
calls complete successfully,

MyGetInputFile

 calls

Q3File_SetStorage

 to
attach the file object to the storage object.

Note

See the chapter “Storage Objects” for complete
details on creating storage objects.

◆

C H A P T E R 1 7

File Objects

17-8

Using File Objects

Listing 17-1

Creating a new file object

TQ3FileObject MyGetInputFile (void)

{

TQ3FileObject myFileObj;

TQ3StorageObject myStorageObj;

FSSpec myFSSpec;

if (MyGetInputFileName(&myFSSpec) == kQ3False)

return(NULL);

/*Create new storage object and new file object.*/

if(((myStorageObj = Q3FSSpecStorage_New(&myFSSpec)) == NULL)

|| ((myFileObj = Q3File_New()) == NULL))

{

if (myStorageObj)

Q3Object_Dispose(myStorageObj);

return(NULL);

}

/*Set the storage for the file object.*/

Q3File_SetStorage(myFileObj, myStorageObj);

Q3Object_Dispose(myStorageObj);

return (myFileObj);

}

Notice that the call to

Q3File_SetStorage

 is followed immediately by a call to

Q3Object_Dispose

. The call to

Q3File_SetStorage

 increases the reference
count of the storage object, and the call to

Q3Object_Dispose

 simply decreases
that count.

Reading Data from a File Object 17

The data in an 3DMF file is organized into discrete units called

metafile objects

(or, more briefly, and despite the risk of confusion with QuickDraw 3D objects,

objects

). You read data from an 3DMF file by reading each individual metafile

C H A P T E R 1 7

File Objects

Using File Objects

17-9

object in it (by calling the

Q3File_ReadObject

 function), until you reach the
end of the file. Listing 17-2 illustrates how to read the metafile objects in an
3DMF file.

The

MyRead3DMFModel

 function defined in Listing 17-2 opens a file object and
sequentially reads each metafile object in the 3DMF file into a QuickDraw 3D
object.

MyRead3DMFModel

 determines the type of the QuickDraw 3D object
read. If the object is a view hints object,

MyRead3DMFModel

 returns that object in
the

viewHints

 parameter. If the object isn’t a view object, it must be some other
drawable QuickDraw 3D object. In that case,

MyRead3DMFModel

 either returns
that object in the

model

 parameter (if there are no more objects in the 3DMF
file) or adds it to a display group. When it executes successfully,

MyRead3DMFModel

 returns both a 3D model and a view hints object to its caller.

Listing 17-2

Reading metafile objects

TQ3Status MyRead3DMFModel

(TQ3FileObject file, TQ3Object *model, TQ3Object *viewHints)

{

TQ3Object myGroup;

TQ3Object myObject;

/*Initialize view hints and model to be returned.*/

*viewHints = NULL;

*model = NULL;

myGroup = NULL;

myObject = NULL;

/*Open the file object and exit gracefully if unsuccessful.*/

if (Q3File_OpenRead(file, NULL) != kQ3Success)

{

DoError("MyRead3DMFModel", "Reading failed %s", filename);

return kQ3Failure;

}

C H A P T E R 1 7

File Objects

17-10

Using File Objects

while (Q3File_IsEndOfFile(file) == kQ3False)

{

myObject = NULL;

/*Read a metafile object from the file object.*/

myObject = Q3File_ReadObject(file);

if (myObject == NULL)

continue;

/*Save a view hints object, and add any drawable objects to a group.*/

if (Q3Object_IsType(myObject, kQ3SharedTypeViewHints))

{

if (*viewHints == NULL)

{

*viewHints = myObject;

myObject = NULL;

}

}

else if (Q3Object_IsDrawable(myObject))

{

if (myGroup)

{

Q3Group_AddObject(myGroup, myObject);

}

else if (*model == NULL)

{

*model = myObject;

myObject = NULL;

}

else

{

myGroup = Q3DisplayGroup_New();

Q3Group_AddObject(myGroup, *model);

Q3Group_AddObject(myGroup, myObject);

Q3Object_Dispose(*model);

*model = myGroup;

C H A P T E R 1 7

File Objects

Using File Objects

17-11

}

}

if (myObject != NULL)

Q3Object_Dispose(myObject);

}

if (Q3Error_Get(NULL) != kQ3ErrorNone)

{

if (*model != NULL) {

Q3Object_Dispose(*model);

*model = NULL;

}

if (*viewHints != NULL) {

Q3Object_Dispose(*viewHints);

*viewHints = NULL;

}

return (kQ3Failure);

}

 return kQ3Success;

}

Writing Data to a File Object 17

To write a model or other 3D data into a file conforming to the QuickDraw 3D
Object Metafile format, you can use submit calls (such as

Q3Object_Submit

)
with an open file object that is attached to a storage object. Depending on the
complexity of the model and the amount of available memory, QuickDraw 3D
might need to traverse the model more than once to write the data to the target
physical storage device. Accordingly, you should perform all write operations
within a

writing loop,

 bracketed by calls to

Q3View_StartWriting

 and

Q3View_EndWriting

. Listing 17-3 illustrates a simple writing loop.

C H A P T E R 1 7

File Objects

17-12

File Objects Reference

Listing 17-3

Writing 3D data to a file object

Q3View_StartWriting(myView, myFileObj);

do {

Q3Object_Submit(myModel, myView);

Q3Polyline_Submit(&myAnimatedData, myView);

Q3TriGrid_Submit(&myBumpExtrapolationGrid, myView);

} while (Q3View_EndWriting(myView) == kQ3ViewStatusRetraverse);

File Objects Reference 17

This section describes the constants, data structures, and routines that you can
use to create and manage file objects.

Constants 17

This section describes the constants you can use to specify file modes for
file objects.

File Mode Flags 17

QuickDraw 3D defines a set of

file mode flags

 to specify a file object’s current
file mode. The file mode is returned to you when you call

Q3File_OpenRead,
Q3Open_Write, or Q3File_GetMode.

typedef enum TQ3FileModeMasks {

kQ3FileModeNormal = 0,

kQ3FileModeStream = 1 << 0,

kQ3FileModeDatabase = 1 << 1,

kQ3FileModeText = 1 << 2

} TQ3FileModeMasks;

C H A P T E R 1 7

File Objects

File Objects Reference 17-13

Constant descriptions

kQ3FileModeNormal

Set if the file object is organized in normal mode. A file
object is in normal mode if it contains a table of contents
that lists all referenced objects in the file object. Normal
mode is the most compact metafile representation.

kQ3FileModeStream

Set if the file object is organized in stream mode. A file is in
stream mode if there are no internal references in the file.
You can use stream mode for reading or writing
unidirectional streams, but a file in stream mode is usually
larger than a file in normal mode.

kQ3FileModeDatabase

Set if the file object is organized in database mode. A file
object is in database mode if the file object lists in its table
of contents all shared objects contained in the file object,
whether or not those objects are multiply referenced.

kQ3FileModeText Set if the file object is a text file. The file object is read
as text, using tokens and behaviors appropriate for text
file objects.

You can combine the kQ3FileModeText mask with any of the other masks,
and you can combine the kQ3FileModeStream and kQ3FileModeDatabase
masks in a single file mode.

Data Structures 17

This section describes the data structures provided by QuickDraw 3D for
accessing the data in a text or binary unknown object.

C H A P T E R 1 7

File Objects

17-14 File Objects Reference

Unknown Object Data Structures 17

QuickDraw 3D returns data about unknown text or binary data objects in an
unknown text data structure or an unknown binary data structure. An
unknown text data structure is defined by the TQ3UnknownTextData data type.

typedef struct TQ3UnknownTextData {

char *objectName; /*'\0' terminated*/

char *contents; /*'\0' terminated*/

} TQ3UnknownTextData;

Field descriptions
objectName A pointer to the name of the unknown text object. This

name is a C string terminated by the null character (‘\0’).
contents A pointer to the contents of the unknown text object. This

string is a C string terminated by the null character (‘\0’).
An unknown binary data structure is defined by the TQ3UnknownBinaryData
data type.

typedef struct TQ3UnknownBinaryData {

TQ3ObjectType objectType;

unsigned long size;

TQ3Endian byteOrder;

char *contents;

} TQ3UnknownBinaryData;

Field descriptions
objectType The type of the data in the unknown binary object.
size The size, in bytes, of the data in the unknown binary object.
byteOrder The order in which the bytes in a word are addressed. This

field must contain kQ3EndianBig or kQ3EndianLittle.
contents A pointer to a copy of the data of the unknown

binary object.

File Objects Routines 17

This section describes routines you can use to create and manage file objects.

C H A P T E R 1 7

File Objects

File Objects Reference 17-15

Creating File Objects 17

QuickDraw 3D provides a routine that you can use to create a file object.

Q3File_New 17

You can use the Q3File_New function to create a new file object.

TQ3FileObject Q3File_New (void);

DESCRIPTION

The Q3File_New function returns, as its function result, a new file object. If
Q3File_New cannot create a new file object, it returns the value NULL.

ERRORS

kQ3ErrorOutOfMemory

Attaching File Objects to Storage Objects 17

To read data from or write data to a file object, you must first attach the file
object to a storage object. QuickDraw 3D provides routines you can use to get
and set the current storage object for a file object.

Q3File_GetStorage 17

You can use the Q3File_GetStorage function to get the current storage object
for a file object.

TQ3Status Q3File_GetStorage (

TQ3FileObject file,

TQ3StorageObject *storage);

C H A P T E R 1 7

File Objects

17-16 File Objects Reference

file A file object.

storage On exit, the storage object currently attached to the specified
file object.

DESCRIPTION

The Q3File_GetStorage function returns, in the storage parameter, the
storage object currently attached to the file object specified by the file
parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3File_SetStorage 17

You can use the Q3File_SetStorage function to set the storage object for a
file object.

TQ3Status Q3File_SetStorage (

TQ3FileObject file,

TQ3StorageObject storage);

file A file object.

storage A storage object, or NULL.

DESCRIPTION

The Q3File_SetStorage function attaches the file object specified by the file
parameter to the storage object specified by the storage parameter. The
reference count of the storage object is incremented. You can pass the value
NULL in the storage parameter to clear a file object’s storage.

You cannot attach the same storage object to more than one file object.

C H A P T E R 1 7

File Objects

File Objects Reference 17-17

ERRORS

kQ3ErrorFileAlreadyOpen
kQ3ErrorInvalidObject
kQ3ErrorStorageInUse

Accessing File Objects 17

QuickDraw 3D provides routines that you can use to open file objects, access
information about them, and read and write their data.

Q3File_OpenRead 17

You can use the Q3File_OpenRead function to open a file object for reading.

TQ3Status Q3File_OpenRead (

TQ3FileObject file,

TQ3FileMode *mode);

file A file object.

mode On exit, a set of bit flags that specify the file mode of the
specified file object. Set this field to NULL if you do not want a
file mode to be returned.

DESCRIPTION

The Q3File_OpenRead function opens for reading the file object specified by
the file parameter and returns, in the mode parameter, the file mode of the file
object. See “File Mode Flags” on page 17-12 for a description of the available
file mode flags.

ERRORS

kQ3ErrorOSError
kQ3ErrorOutOfMemory

C H A P T E R 1 7

File Objects

17-18 File Objects Reference

Q3File_OpenWrite 17

You can use the Q3File_OpenWrite function to open a file object for writing.

TQ3Status Q3File_OpenWrite (

TQ3FileObject file,

TQ3FileMode mode);

file A file object.

mode On exit, a set of bit flags that specify the file mode of the
specified file object. Set this field to NULL if you do not want a
file mode to be returned.

DESCRIPTION

The Q3File_OpenWrite function opens for writing the file object specified by
the file parameter and returns the file mode of the file object in the mode
parameter. See “File Mode Flags” on page 17-12 for a description of the
available file mode flags.

ERRORS

kQ3ErrorOSError
kQ3ErrorOutOfMemory

Q3File_IsOpen 17

You can use the Q3File_IsOpen function to determine whether a file object
is open.

TQ3Status Q3File_IsOpen (TQ3FileObject file, TQ3Boolean *isOpen);

file A file object.

isOpen On exit, a Boolean value that indicates whether the specified file
is open (kQ3True) or closed (kQ3False).

C H A P T E R 1 7

File Objects

File Objects Reference 17-19

DESCRIPTION

The Q3File_IsOpen function returns, in the isOpen parameter, a Boolean value
that indicates whether the file object specified by the file parameter is open
(kQ3True) or closed (kQ3False).

ERRORS

kQ3ErrorFileNotOpen
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Q3File_Close 17

You can use the Q3File_Close function to close a file object.

TQ3Status Q3File_Close (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_Close function closes the file object specified by the file
parameter. Q3File_Close flushes any caches associated with the file and
releases that memory for other uses. You should close a file object only when
all operations on the file have completed successfully and you no longer
need to keep the file object open.

ERRORS

kQ3ErrorFileInUse
kQ3ErrorInvalidObjectParameter
kQ3ErrorOSError

C H A P T E R 1 7

File Objects

17-20 File Objects Reference

Q3File_Cancel 17

You can use the Q3File_Cancel function to cancel a file object.

TQ3Status Q3File_Cancel (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_Cancel function removes from memory any data associated with
the file object specified by the file parameter and disposes of the file object
itself. You should call Q3File_Cancel when some fatal error occurs in your
application or simply when you’re finished using a file object. Once the file
object has been canceled, you can no longer read data from it or write data to it.
In all likelihood, the file object is corrupt after you call the Q3File_Cancel
function.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorOSError

Q3File_GetMode 17

You can use the Q3File_GetMode function to determine an open file object’s
current file mode.

TQ3Status Q3File_GetMode (

TQ3FileObject file,

TQ3FileMode *mode);

file A file object. This file object must be open.

mode On exit, the current file mode of the specified file object.

C H A P T E R 1 7

File Objects

File Objects Reference 17-21

DESCRIPTION

The Q3File_GetMode function returns, in the mode parameter, a set of flags that
encodes the current file mode of the file object specified by the file parameter.
See “File Mode Flags” on page 17-12 for a complete description of the available
file mode flags.

ERRORS

kQ3ErrorFileNotOpen
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Q3File_GetVersion 17

You can use the Q3File_GetVersion function to get the version of an open
file object.

TQ3Status Q3File_GetVersion (

TQ3FileObject file,

TQ3FileVersion *version);

file A file object.

version On entry, a pointer to a file version. On exit, the current version
of the specified file object.

DESCRIPTION

The Q3File_GetVersion function returns, through the version parameter, the
current version of the file object specified by the file parameter.

ERRORS

kQ3ErrorFileNotOpen
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

C H A P T E R 1 7

File Objects

17-22 File Objects Reference

Accessing Objects Directly 17

QuickDraw 3D provides low-level routines that you can use to find and
manipulate objects in a file by reading sequentially through all the objects in it.

Q3File_GetNextObjectType 17

You can use the Q3File_GetNextObjectType function to get the type of the
next object in a file.

TQ3ObjectType Q3File_GetNextObjectType (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_GetNextObjectType function returns, as its function result, the
type of the next object in the file object specified by the file parameter.
Depending on the type of that object, you can then call Q3File_ReadObject to
read it or Q3File_SkipObject to skip it.

If an error occurs, Q3File_GetNextObjectType returns the value
kQ3ObjectTypeInvalid.

Q3File_IsNextObjectOfType 17

You can use the Q3File_IsNextObjectOfType function to determine whether
the next object in a file is of a certain type.

TQ3Boolean Q3File_IsNextObjectOfType (

TQ3FileObject file,

TQ3ObjectType ofType);

file A file object.

ofType An object type.

C H A P T E R 1 7

File Objects

File Objects Reference 17-23

DESCRIPTION

The Q3File_IsNextObjectOfType function returns, as its function result, a
Boolean value that indicates whether the next object in the file object specified
by the file parameter is of the type specified by the ofType parameter
(kQ3True) or not (kQ3False).

Q3File_ReadObject 17

You can use the Q3File_ReadObject function to read the next object in a file.

TQ3Object Q3File_ReadObject (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_ReadObject function returns, as its function result, the next
object in the file specified by the file parameter. If an error occurs,
Q3File_ReadObject returns the value NULL.

Q3File_SkipObject 17

You can use the Q3File_SkipObject function to skip over an object in a file.

TQ3Status Q3File_SkipObject (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_SkipObject function skips the next object in the file object
specified by the file parameter. Note that Q3File_SkipObject skips the next
object whether or not you have already called Q3File_GetNextObjectType to
get information about that object’s type.

C H A P T E R 1 7

File Objects

17-24 File Objects Reference

Q3File_IsEndOfFile 17

You can use the Q3File_IsEndOfFile function to determine whether the file
position of a file object is at the end of the file.

TQ3Boolean Q3File_IsEndOfFile (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_IsEndOfFile function returns, as its function result, a Boolean
value that indicates whether the current file position of the file object specified
by the file parameter is at the end of the file (kQ3True) or not (kQ3False).

ERRORS

kQ3ErrorFileNotOpen
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Setting Idle Methods 17

QuickDraw 3D provides a function that you can use to set a file object’s idle
method. QuickDraw 3D executes your idle method occasionally during lengthy
file operations. See “Application-Defined Routines” on page 17-65 for
information on writing an idle method.

C H A P T E R 1 7

File Objects

File Objects Reference 17-25

Q3File_SetIdleMethod 17

You can use the Q3File_SetIdleMethod function to set a file object’s
idle method.

TQ3Status Q3File_SetIdleMethod (

TQ3FileObject file,

TQ3FileIdleMethod idle,

const void *idleData);

file A file object.

idle A pointer to an idle method. See page 17-69 for information on
idle methods.

idlerData A pointer to an application-defined block of data. This pointer
is passed to the idler callback routine when it is executed.

DESCRIPTION

The Q3File_SetIdleMethod function sets the idle method of the file object
specified by the file parameter to the function specified by the idle
parameter. The idlerData parameter is passed to your idle method whenever
it is executed.

Reading and Writing File Subobjects 17

QuickDraw 3D provides functions that you can use to read QuickDraw 3D
objects that are subobjects of custom objects. In general, you should call these
functions only within your custom read data method.

C H A P T E R 1 7

File Objects

17-26 File Objects Reference

Q3File_IsEndOfData 17

You can use the Q3File_IsEndOfData function to determine whether there is
more data for your application to read.

TQ3Boolean Q3File_IsEndOfData (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_IsEndOfData function returns, as its function result, a Boolean
value that indicates whether there is more data to be read from the file object
specified by the file parameter (kQ3True) or not (kQ3False).

SPECIAL CONSIDERATIONS

You should call this function only within a custom read data method.

Q3File_IsEndOfContainer 17

You can use the Q3File_IsEndOfContainer function to determine whether
there are more subobjects of a custom object for your application to read.

TQ3Boolean Q3File_IsEndOfContainer (

TQ3FileObject file,

TQ3Object rootObject);

file A file object.

rootObject A root object in the specified file object.

DESCRIPTION

The Q3File_IsEndOfContainer function returns, as its function result, a
Boolean value that indicates whether more subobjects remain to be read from a
custom object specified by the rootObject parameter in the file object specified
by the file parameter (kQ3True) or not (kQ3False).

C H A P T E R 1 7

File Objects

File Objects Reference 17-27

SPECIAL CONSIDERATIONS

You should call this function only within a custom read data method.

Reading and Writing File Data 17

QuickDraw 3D provides routines that you can use to access custom data in a
file object. In all cases, the reading or writing occurs at the current file position,
and the file position is advanced if the read or write operation completes
successfully.

IMPORTANT

You should call the _Read functions only in a custom read
data method (of type kQ3MethodTypeObjectReadData),
and you should call the _Write functions only in a custom
write method (of type kQ3MethodTypeObjectWrite). ▲

These functions can read and write data in either text or binary files.

Q3Uns8_Read 17

You can use the Q3Uns8_Read function to read an unsigned 8-byte value from a
file object.

TQ3Status Q3Uns8_Read (TQ3Uns8 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an unsigned 8-byte value.

file A file object.

DESCRIPTION

The Q3Uns8_Read function returns, in the block of memory pointed to by the
data parameter, the unsigned 8-byte value read from the current position in the
file object specified by the file parameter.

C H A P T E R 1 7

File Objects

17-28 File Objects Reference

Q3Uns8_Write 17

You can use the Q3Uns8_Write function to write an unsigned 8-byte value to a
file object.

TQ3Status Q3Uns8_Write (const TQ3Uns8 data, TQ3FileObject file);

data A pointer to an unsigned 8-byte value.

file A file object.

DESCRIPTION

The Q3Uns8_Write function writes the unsigned 8-byte value pointed to by the
data parameter to the file object specified by the file parameter.

Q3Uns16_Read 17

You can use the Q3Uns16_Read function to read an unsigned 16-byte value
from a file object.

TQ3Status Q3Uns16_Read (TQ3Uns16 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an unsigned 16-byte value.

file A file object.

DESCRIPTION

The Q3Uns16_Read function returns, in the block of memory pointed to by the
data parameter, the unsigned 16-byte value read from the current position in
the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-29

Q3Uns16_Write 17

You can use the Q3Uns16_Write function to write an unsigned 16-byte value to
a file object.

TQ3Status Q3Uns16_Write (const TQ3Uns16 data, TQ3FileObject

file);

data A pointer to an unsigned 16-byte value.

file A file object.

DESCRIPTION

The Q3Uns16_Write function writes the unsigned 16-byte value pointed to by
the data parameter to the file object specified by the file parameter.

Q3Uns32_Read 17

You can use the Q3Uns32_Read function to read an unsigned 32-byte value
from a file object.

TQ3Status Q3Uns32_Read (TQ3Uns32 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an unsigned 32-byte value.

file A file object.

DESCRIPTION

The Q3Uns32_Read function returns, in the block of memory pointed to by the
data parameter, the unsigned 32-byte value read from the current position in
the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

17-30 File Objects Reference

Q3Uns32_Write 17

You can use the Q3Uns32_Write function to write an unsigned 32-byte value to
a file object.

TQ3Status Q3Uns32_Write (const TQ3Uns32 data, TQ3FileObject

file);

data A pointer to an unsigned 32-byte value.

file A file object.

DESCRIPTION

The Q3Uns32_Write function writes the unsigned 32-byte value pointed to by
the data parameter to the file object specified by the file parameter.

Q3Int32_Read 17

You can use the Q3Int32_Read function to read a signed 32-byte value from a
file object.

TQ3Status Q3Int32_Read (TQ3Int32 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold a
signed 32-byte value.

file A file object.

DESCRIPTION

The Q3Int32_Read function returns, in the block of memory pointed to by the
data parameter, the signed 32-byte value read from the current position in the
file object specified by the file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-31

Q3Int32_Write 17

You can use the Q3Int32_Write function to write a signed 32-byte value to a
file object.

TQ3Status Q3Int32_Write (const TQ3Int32 data, TQ3FileObject

file);

data A pointer to a signed 32-byte value.

file A file object.

DESCRIPTION

The Q3Int32_Write function writes the signed 32-byte value pointed to by the
data parameter to the file object specified by the file parameter.

Q3Uns64_Read 17

You can use the Q3Uns64_Read function to read an unsigned 64-byte value
from a file object.

TQ3Status Q3Uns64_Read (TQ3Uns64 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an unsigned 64-byte value.

file A file object.

DESCRIPTION

The Q3Uns64_Read function returns, in the block of memory pointed to by the
data parameter, the unsigned 64-byte value read from the current position in
the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

17-32 File Objects Reference

Q3Uns64_Write 17

You can use the Q3Uns64_Write function to write an unsigned 64-byte value to
a file object.

TQ3Status Q3Uns64_Write (const TQ3Uns64 data, TQ3FileObject

file);

data A pointer to an unsigned 64-byte value.

file A file object.

DESCRIPTION

The Q3Uns64_Write function writes the unsigned 64-byte value pointed to by
the data parameter to the file object specified by the file parameter.

Q3Float32_Read 17

You can use the Q3Float32_Read function to read a floating-point 32-byte
value from a file object.

TQ3Status Q3Float32_Read (TQ3Float32 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold a
floating-point 32-byte value.

file A file object.

DESCRIPTION

The Q3Float32_Read function returns, in the block of memory pointed to by
the data parameter, the floating-point 32-byte value read from the current
position in the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-33

Q3Float32_Write 17

You can use the Q3Float32_Write function to write a floating-point 32-byte
value to a file object.

TQ3Status Q3Float32_Write (

const TQ3Float32 data,

TQ3FileObject file);

data A pointer to a floating-point 32-byte value.

file A file object.

DESCRIPTION

The Q3Float32_Write function writes the floating-point 32-byte value pointed
to by the data parameter to the file object specified by the file parameter.

Q3Float64_Read 17

You can use the Q3Float64_Read function to read a floating-point 64-byte
value from a file object.

TQ3Status Q3Float64_Read (TQ3Float64 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold a
floating-point 64-byte value.

file A file object.

DESCRIPTION

The Q3Float64_Read function returns, in the block of memory pointed to by
the data parameter, the floating-point 64-byte value read from the current
position in the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

17-34 File Objects Reference

Q3Float64_Write 17

You can use the Q3Float64_Write function to write a floating-point 64-byte
value to a file object.

TQ3Status Q3Float64_Write (

const TQ3Float64 data,

TQ3FileObject file);

data A pointer to a floating-point 64-byte value.

file A file object.

DESCRIPTION

The Q3Float64_Write function writes the floating-point 64-byte value pointed
to by the data parameter to the file object specified by the file parameter.

Q3Size_Pad 17

You can use the Q3Size_Pad function to determine the number of bytes
occupied by a longword-aligned block.

TQ3Size Q3Size_Pad (TQ3Size size);

size The size, in bytes, of an object or structure.

DESCRIPTION

The Q3Size_Pad function returns, as its function result, the number of bytes it
would take to contain a longword-aligned block whose size, before alignment,
is specified by the size parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-35

Q3String_Read 17

You can use the Q3String_Read function to read a string from a file object.

TQ3Status Q3String_Read (

char *data,

unsigned long *length,

TQ3FileObject file);

data On entry, a pointer to a buffer whose length is of size
kQ3StringMaximumLength, or NULL. On exit, a pointer to the
string read from the specified file object. If this parameter is set
to NULL on entry, no string is read, but its length is returned in
the length parameter.

length On exit, the number of characters actually copied into the
specified buffer. If data is set to NULL on entry, this parameter
returns the length of the string.

file A file object.

DESCRIPTION

The Q3String_Read function returns, in the data parameter, a pointer to the
next string in the file object specified by the file parameter. The string data is
7-bit ASCII, with standard escape sequences for any special characters in the
string. The Q3String_Read function also returns, in the length parameter, the
length of the string.

Q3String_Write 17

You can use the Q3String_Write function to write a string to a file object.

TQ3Status Q3String_Write (const char *data, TQ3FileObject file);

data A pointer to a string.

file A file object.

C H A P T E R 1 7

File Objects

17-36 File Objects Reference

DESCRIPTION

The Q3String_Write function writes the string data pointed to by the data
parameter to the file object specified by the file parameter. The number of
bytes written to the file object is equal to Q3Size_Pad(strlen(data)+1).

Q3RawData_Read 17

You can use the Q3RawData_Read function to read raw data from a file object.

TQ3Status Q3RawData_Read (

unsigned char *data,

unsigned long size,

TQ3FileObject file);

data On entry, a pointer to a buffer whose length is of the specified
size. On exit, a pointer to the raw data read from the specified
file object.

size On entry, the number of bytes of raw data to be read from the
specified file object into the specified buffer. On exit, the
number of bytes actually copied into the specified buffer.

file A file object.

DESCRIPTION

The Q3RawData_Read function returns, in the data parameter, a pointer to the
next size bytes of raw data in the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-37

Q3RawData_Write 17

You can use the Q3RawData_Write function to write raw data to a file object.

TQ3Status Q3RawData_Write (

const unsigned char *data,

unsigned long size,

TQ3FileObject file);

data On entry, a pointer to a buffer of raw data whose length is of
the specified size.

size On entry, the number of bytes of raw data to be read from the
specified buffer and written to the specified file object. On exit,
the number of bytes actually written to the file object.

file A file object.

DESCRIPTION

The Q3RawData_Write function writes the raw data pointed to by the data
parameter to the file object specified by the file parameter. The number of
bytes written to the file object is equal to Q3Size_Pad(size). If the number of
bytes written to the file object is greater than size, Q3RawData_Write pads the
data to the nearest 4-byte boundary with 0’s.

In text files, raw data is output in hexadecimal form.

C H A P T E R 1 7

File Objects

17-38 File Objects Reference

Q3Point2D_Read 17

You can use the Q3Point2D_Read function to read a two-dimensional point
from a file object.

TQ3Status Q3Point2D_Read (

TQ3Point2D *point2D,

TQ3FileObject file);

point2D On entry, a pointer to a block of memory large enough to hold a
two-dimensional point.

file A file object.

DESCRIPTION

The Q3Point2D_Read function returns, in the block of memory pointed to by
the point2D parameter, the two-dimensional point read from the current
position in the file object specified by the file parameter.

Q3Point2D_Write 17

You can use the Q3Point2D_Write function to write a two-dimensional point to
a file object.

TQ3Status Q3Point2D_Write (

const TQ3Point2D *point2D,

TQ3FileObject file);

point2D A pointer to a two-dimensional point.

file A file object.

DESCRIPTION

The Q3Point2D_Write function writes the two-dimensional point pointed to by
the point2D parameter to the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-39

Q3Point3D_Read 17

You can use the Q3Point3D_Read function to read a three-dimensional point
from a file object.

TQ3Status Q3Point3D_Read (

TQ3Point3D *point3D,

TQ3FileObject file);

point3D On entry, a pointer to a block of memory large enough to hold a
three-dimensional point.

file A file object.

DESCRIPTION

The Q3Point3D_Read function returns, in the block of memory pointed to by
the point3D parameter, the three-dimensional point read from the current
position in the file object specified by the file parameter.

Q3Point3D_Write 17

You can use the Q3Point3D_Write function to write a three-dimensional point
to a file object.

TQ3Status Q3Point3D_Write (

const TQ3Point3D *point3D,

TQ3FileObject file);

point3D A pointer to a three-dimensional point.

file A file object.

DESCRIPTION

The Q3Point3D_Write function writes the three-dimensional point pointed to
by the point3D parameter to the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

17-40 File Objects Reference

Q3RationalPoint3D_Read 17

You can use the Q3RationalPoint3D_Read function to read a rational three-
dimensional point from a file object.

TQ3Status Q3RationalPoint3D_Read (

TQ3RationalPoint3D *point3D,

TQ3FileObject file);

point3D On entry, a pointer to a block of memory large enough to hold a
rational three-dimensional point.

file A file object.

DESCRIPTION

The Q3RationalPoint3D_Read function returns, in the block of memory
pointed to by the point3D parameter, the rational three-dimensional point read
from the current position in the file object specified by the file parameter.

Q3RationalPoint3D_Write 17

You can use the Q3RationalPoint3D_Write function to write a rational
three-dimensional point to a file object.

TQ3Status Q3RationalPoint3D_Write (

const TQ3RationalPoint3D *point3D,

TQ3FileObject file);

point3D A pointer to a rational three-dimensional point.

file A file object.

DESCRIPTION

The Q3RationalPoint3D_Write function writes the rational three-dimensional
point pointed to by the point3D parameter to the file object specified by the
file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-41

Q3RationalPoint4D_Read 17

You can use the Q3RationalPoint4D_Read function to read a rational four-
dimensional point from a file object.

TQ3Status Q3RationalPoint4D_Read (

TQ3RationalPoint4D *point4D,

TQ3FileObject file);

point4D On entry, a pointer to a block of memory large enough to hold a
rational four-dimensional point.

file A file object.

DESCRIPTION

The Q3RationalPoint4D_Read function returns, in the block of memory
pointed to by the point4D parameter, the rational four-dimensional point read
from the current position in the file object specified by the file parameter.

Q3RationalPoint4D_Write 17

You can use the Q3RationalPoint4D_Write function to write a rational four-
dimensional point to a file object.

TQ3Status Q3RationalPoint4D_Write (

const TQ3RationalPoint4D *point4D,

TQ3FileObject file);

point4D A pointer to a rational four-dimensional point.

file A file object.

DESCRIPTION

The Q3RationalPoint4D_Write function writes the rational four-dimensional
point pointed to by the point4D parameter to the file object specified by the
file parameter.

C H A P T E R 1 7

File Objects

17-42 File Objects Reference

Q3Vector2D_Read 17

You can use the Q3Vector2D_Read function to read a two-dimensional vector
from a file object.

TQ3Status Q3Vector2D_Read (

TQ3Vector2D *vector2D,

TQ3FileObject file);

vector2D On entry, a pointer to a block of memory large enough to hold a
two-dimensional vector.

file A file object.

DESCRIPTION

The Q3Vector2D_Read function returns, in the block of memory pointed to by
the vector2D parameter, the two-dimensional vector read from the current
position in the file object specified by the file parameter.

Q3Vector2D_Write 17

You can use the Q3Vector2D_Write function to write a two-dimensional vector
to a file object.

TQ3Status Q3Vector2D_Write (

const TQ3Vector2D *vector2D,

TQ3FileObject file);

vector2D A pointer to a two-dimensional vector.

file A file object.

DESCRIPTION

The Q3Vector2D_Write function writes the two-dimensional vector pointed to
by the vector2D parameter to the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-43

Q3Vector3D_Read 17

You can use the Q3Vector3D_Read function to read a three-dimensional vector
from a file object.

TQ3Status Q3Vector3D_Read (

TQ3Vector3D *vector3D,

TQ3FileObject file);

vector3D On entry, a pointer to a block of memory large enough to hold a
three-dimensional vector.

file A file object.

DESCRIPTION

The Q3Vector3D_Read function returns, in the block of memory pointed to by
the vector3D parameter, the three-dimensional vector read from the current
position in the file object specified by the file parameter.

Q3Vector3D_Write 17

You can use the Q3Vector3D_Write function to write a three-dimensional
vector to a file object.

TQ3Status Q3Vector3D_Write (

const TQ3Vector3D *vector3D,

TQ3FileObject file);

vector3D A pointer to a three-dimensional vector.

file A file object.

DESCRIPTION

The Q3Vector3D_Write function writes the three-dimensional vector pointed
to by the vector3D parameter to the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

17-44 File Objects Reference

Q3Matrix4x4_Read 17

You can use the Q3Matrix4x4_Read function to read a 4-by-4 matrix from a
file object.

TQ3Status Q3Matrix4x4_Read (

TQ3Matrix4x4 *matrix4x4,

TQ3FileObject file);

matrix4x4 On entry, a pointer to a block of memory large enough to hold a
4-by-4 matrix.

file A file object.

DESCRIPTION

The Q3Matrix4x4_Read function returns, in the block of memory pointed to by
the matrix4x4 parameter, the 4-by-4 matrix read from the current position in
the file object specified by the file parameter.

Q3Matrix4x4_Write 17

You can use the Q3Matrix4x4_Write function to write a 4-by-4 matrix to a
file object.

TQ3Status Q3Matrix4x4_Write (

const TQ3Matrix4x4 *matrix4x4,

TQ3FileObject file);

matrix4x4 A pointer to a 4-by-4 matrix.

file A file object.

DESCRIPTION

The Q3Matrix4x4_Write function writes the 4-by-4 matrix pointed to by the
matrix4x4 parameter to the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-45

Q3Tangent2D_Read 17

You can use the Q3Tangent2D_Read function to read a two-dimensional
tangent from a file object.

TQ3Status Q3Tangent2D_Read (

TQ3Tangent2D *tangent2D,

TQ3FileObject file);

tangent2D On entry, a pointer to a block of memory large enough to hold a
two-dimensional tangent.

file A file object.

DESCRIPTION

The Q3Tangent2D_Read function returns, in the block of memory pointed to by
the tangent2D parameter, the two-dimensional tangent read from the current
position in the file object specified by the file parameter.

Q3Tangent2D_Write 17

You can use the Q3Tangent2D_Write function to write a two-dimensional
tangent to a file object.

TQ3Status Q3Tangent2D_Write (

const TQ3Tangent2D *tangent2D,

TQ3FileObject file);

tangent2D A pointer to a two-dimensional tangent.

file A file object.

DESCRIPTION

The Q3Tangent2D_Write function writes the two-dimensional tangent pointed
to by the tangent2D parameter to the file object specified by the file
parameter.

C H A P T E R 1 7

File Objects

17-46 File Objects Reference

Q3Tangent3D_Read 17

You can use the Q3Tangent3D_Read function to read a three-dimensional
tangent from a file object.

TQ3Status Q3Tangent3D_Read (

TQ3Tangent3D *tangent3D,

TQ3FileObject file);

tangent3D On entry, a pointer to a block of memory large enough to hold a
three-dimensional tangent.

file A file object.

DESCRIPTION

The Q3Tangent3D_Read function returns, in the block of memory pointed to by
the tangent3D parameter, the three-dimensional tangent read from the current
position in the file object specified by the file parameter.

Q3Tangent3D_Write 17

You can use the Q3Tangent3D_Write function to write a three-dimensional
tangent to a file object.

TQ3Status Q3Tangent3D_Write (

const TQ3Tangent3D *tangent3D,

TQ3FileObject file);

tangent3D A pointer to a three-dimensional tangent.

file A file object.

DESCRIPTION

The Q3Tangent3D_Write function writes the three-dimensional tangent
pointed to by the tangent3D parameter to the file object specified by the file
parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-47

Q3Comment_Write 17

You can use the Q3Comment_Write function to write a comment to a file object.

TQ3Status Q3Comment_Write (

char *comment,

TQ3FileObject file);

comment A pointer to a null-terminated C string.

file A file object.

DESCRIPTION

The Q3Comment_Write function writes the string of characters pointed to by
the comment parameter to the file object specified by the file parameter.
QuickDraw 3D currently supports writing comments to text files only; if you
call Q3Comment_Write to write a comment to a binary file, QuickDraw 3D
ignores the call. In addition, you cannot currently use QuickDraw 3D to read
comments from a file.

Managing Unknown Objects 17

QuickDraw 3D creates an unknown object when it encounters an unrecognized
type of object while reading a metafile. Your application might know how to
handle objects of that type, so QuickDraw 3D provides routines that you can
use to get the type and contents of an unknown object.

Note
You cannot explicitly create an unknown object. ◆

C H A P T E R 1 7

File Objects

17-48 File Objects Reference

Q3Unknown_GetType 17

You can use the Q3Unknown_GetType function to get the type of an
unknown object.

TQ3ObjectType Q3Unknown_GetType (TQ3UnknownObject unknownObject);

unknownObject

An unknown object.

DESCRIPTION

The Q3Unknown_GetType function returns, as its function result, the type of the
unknown object specified by the unknownObject parameter. If successful,
Q3Unknown_GetType returns one of these constants:

kQ3UnknownTypeBinary

kQ3UnknownTypeText

If the type cannot be determined or is invalid, Q3Unknown_GetType returns the
value kQ3ObjectTypeInvalid.

Q3Unknown_GetDirtyState 17

You can use the Q3Unknown_GetDirtyState function to get the current dirty
state of an unknown object.

TQ3Status Q3Unknown_GetDirtyState (

TQ3UnknownObject unknownObject,

TQ3Boolean *isDirty);

unknownObject

An unknown object.

isDirty On exit, a Boolean value that indicates whether the specified
unknown object is dirty (kQ3True) or not (kQ3False).

C H A P T E R 1 7

File Objects

File Objects Reference 17-49

DESCRIPTION

The Q3Unknown_GetDirtyState function returns, in the isDirty parameter,
the current dirty state of the unknown object specified by the unknownObject
parameter. The dirty state of an unknown object is a Boolean value that
indicates whether an unknown object is preserved in its original state
(kQ3False) or should be updated when written back to the file object from
which it was originally read (kQ3True).

An unknown object is marked as dirty when it’s first read into memory. You
can mark the object as not dirty (by calling Q3Unknown_SetDirtyState) if you
know that no state or contextual information has changed in the object. The
application that generated the unknown data is responsible for either
discarding any dirty data or attempting to preserve it.

Q3Unknown_SetDirtyState 17

You can use the Q3Unknown_SetDirtyState function to set the dirty state of an
unknown object.

TQ3Status Q3Unknown_SetDirtyState (

TQ3UnknownObject unknownObject,

TQ3Boolean isDirty);

unknownObject

An unknown object.

isDirty A Boolean value that indicates whether the specified unknown
object is dirty (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3Unknown_SetDirtyState function sets the dirty state of the unknown
object specified by the unknownObject parameter to the Boolean value passed
in the isDirty parameter.

C H A P T E R 1 7

File Objects

17-50 File Objects Reference

Q3UnknownText_GetData 17

You can use the Q3UnknownText_GetData function to get the data of an
unknown text object.

TQ3Status Q3UnknownText_GetData (

TQ3UnknownObject unknownObject,

TQ3UnknownTextData *unknownTextData);

unknownObject

An unknown text object.

unknownTextData

A pointer to an unknown text data structure.

DESCRIPTION

The Q3UnknownText_GetData function returns, in the objectName and
contents fields of the unknown text data structure pointed to by the
unknownTextData parameter, pointers to the name and contents of an
unknown text object (that is, an unknown object of type kQ3UnknownTypeText)
specified by the unknownObject parameter. The contents field of the
unknown text data structure points to the data stored in the text metafile,
excluding any excess white space and any delimiter characters (that is,
outermost parentheses).

Your application is responsible for allocating the memory occupied by the
unknownTextData parameter. Q3UnknownText_GetData allocates memory to
hold the name and contents pointed to by the fields of that structure. You must
make certain to call Q3UnknownText_EmptyData to release the memory
allocated by Q3UnknownText_GetData when you are finished using the data.

C H A P T E R 1 7

File Objects

File Objects Reference 17-51

Q3UnknownText_EmptyData 17

You can use the Q3UnknownText_EmptyData function to dispose of the memory
allocated by a previous call to Q3UnknownText_GetData.

TQ3Status Q3UnknownText_EmptyData (

TQ3UnknownTextData *unknownTextData);

unknownTextData

A pointer to an unknown text data structure that was filled in
by a previous call to Q3UnknownText_GetData.

DESCRIPTION

The Q3UnknownText_EmptyData function deallocates the memory pointed
to by the fields of the unknownTextData parameter. If successful,
Q3UnknownText_EmptyData sets those fields to the value NULL.

Q3UnknownBinary_GetData 17

You can use the Q3UnknownBinary_GetData function to get the data of an
unknown binary object.

TQ3Status Q3UnknownBinary_GetData (

TQ3UnknownObject unknownObject,

TQ3UnknownBinaryData *unknownBinaryData);

unknownObject

An unknown binary object.

unknownBinaryData

A pointer to an unknown binary data structure.

DESCRIPTION

The Q3UnknownBinary_GetData function returns, in the contents field of the
unknown binary data structure pointed to by the unknownBinaryData

C H A P T E R 1 7

File Objects

17-52 File Objects Reference

parameter, a pointer to a copy of the contents of the unknown binary object
(that is, an unknown object of type kQ3UnknownTypeBinary) specified by the
unknownObject parameter. Q3UnknownBinary_GetData also returns, in the
objectType and size fields of the unknown binary data structure, the type of
the unknown binary object and the size, in bytes, of the data pointed to by the
contents field.

Your application is responsible for allocating the memory occupied by the
unknownBinaryData parameter. Q3UnknownBinary_GetData allocates memory
to hold the data pointed to by the contents field of that structure. You must
make certain to call Q3UnknownBinary_EmptyData to release the memory
allocated by Q3UnknownBinary_GetData when you are finished using the data.

Q3UnknownBinary_EmptyData 17

You can use the Q3UnknownBinary_EmptyData function to dispose of the
memory allocated by a previous call to Q3UnknownBinary_GetData.

TQ3Status Q3UnknownBinary_EmptyData (

TQ3UnknownBinaryData *unknownBinaryData);

unknownBinaryData

A pointer to an unknown binary data structure that was filled
in by a previous call to Q3UnknownBinary_GetData.

DESCRIPTION

The Q3UnknownBinary_EmptyData function deallocates the memory pointed to
by the contents field of the unknownBinaryData parameter. If successful,
Q3UnknownBinary_EmptyData sets that field to the value NULL. It also sets the
objectType and size fields to default values.

Managing View Hints Objects 17

QuickDraw 3D provides routines that you can use to create and manage view
hints objects. A view hints object is an object in a metafile that gives hints about
how to render a scene. You can use that information to configure a view object,
or you can choose to ignore it.

C H A P T E R 1 7

File Objects

File Objects Reference 17-53

Q3ViewHints_New 17

You can use the Q3ViewHints_New function to create a new view hints object.

TQ3ViewHintsObject Q3ViewHints_New (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3ViewHints_New function returns, as its function result, a new view hints
object that incorporates the view configuration information of the view object
specified by the view parameter.

Q3ViewHints_GetRenderer 17

You can use the Q3ViewHints_GetRenderer function to get the renderer
associated with a view hints object.

TQ3Status Q3ViewHints_GetRenderer (

TQ3ViewHintsObject viewHints,

TQ3RendererObject *renderer);

viewHints A view hints object.

renderer On exit, the renderer currently associated with the specified
view hints object.

DESCRIPTION

The Q3ViewHints_GetRenderer function returns, in the renderer parameter,
the renderer currently associated with the view hints object specified by the
viewHints parameter. The reference count of that renderer is incremented.

C H A P T E R 1 7

File Objects

17-54 File Objects Reference

Q3ViewHints_SetRenderer 17

You can use the Q3ViewHints_SetRenderer function to set the renderer
associated with a view hints object.

TQ3Status Q3ViewHints_SetRenderer (

TQ3ViewHintsObject viewHints,

TQ3RendererObject renderer);

viewHints A view hints object.

renderer A renderer object.

DESCRIPTION

The Q3ViewHints_SetRenderer function attaches the renderer specified by the
renderer parameter to the view hints object specified by the viewHints
parameter. The reference count of the specified renderer is incremented. In
addition, if some other renderer was already attached to the specified view
hints object, the reference count of that renderer is decremented.

Q3ViewHints_GetCamera 17

You can use the Q3ViewHints_GetCamera function to get the camera associated
with a view hints object.

TQ3Status Q3ViewHints_GetCamera (

TQ3ViewHintsObject viewHints,

TQ3CameraObject *camera);

viewHints A view hints object.

camera On exit, the camera object currently associated with the
specified view hints object.

C H A P T E R 1 7

File Objects

File Objects Reference 17-55

DESCRIPTION

The Q3ViewHints_GetCamera function returns, in the camera parameter, the
camera currently associated with the view hints object specified by the
viewHints parameter. The reference count of that camera is incremented.

Q3ViewHints_SetCamera 17

You can use the Q3ViewHints_SetCamera function to set the camera associated
with a view hints object.

TQ3Status Q3ViewHints_SetCamera (

TQ3ViewHintsObject viewHints,

TQ3CameraObject camera);

viewHints A view hints object.

camera A camera object.

DESCRIPTION

The Q3ViewHints_SetCamera function attaches the camera specified by the
camera parameter to the view hints object specified by the viewHints
parameter. The reference count of the specified camera is incremented. In
addition, if some other camera was already attached to the specified view hints
object, the reference count of that camera is decremented.

Q3ViewHints_GetLightGroup 17

You can use the Q3ViewHints_GetLightGroup function to get the light group
associated with a view hints object.

TQ3Status Q3ViewHints_GetLightGroup (

TQ3ViewHintsObject viewHints,

TQ3GroupObject *lightGroup);

C H A P T E R 1 7

File Objects

17-56 File Objects Reference

viewHints A view hints object.

lightGroup On exit, the light group currently associated with the specified
view hints object.

DESCRIPTION

The Q3ViewHints_GetLightGroup function returns, in the lightGroup
parameter, the light group currently associated with the view hints object
specified by the viewHints parameter. The reference count of that light group
is incremented.

Q3ViewHints_SetLightGroup 17

You can use the Q3ViewHints_SetLightGroup function to set the light group
associated with a view hints object.

TQ3Status Q3ViewHints_SetLightGroup (

TQ3ViewHintsObject viewHints,

TQ3GroupObject lightGroup);

viewHints A view hints object.

lightGroup A light group.

DESCRIPTION

The Q3ViewHints_SetLightGroup function attaches the light group specified
by the lightGroup parameter to the view hints object specified by the
viewHints parameter. The reference count of the specified light group is
incremented. In addition, if some other light group was already attached to the
specified view hints object, the reference count of that light group is
decremented.

C H A P T E R 1 7

File Objects

File Objects Reference 17-57

Q3ViewHints_GetAttributeSet 17

You can use the Q3ViewHints_GetAttributeSet function to get the current
attribute set associated with a view hints object.

TQ3Status Q3ViewHints_GetAttributeSet (

TQ3ViewHintsObject viewHints,

TQ3AttributeSet *attributeSet);

viewHints A view hints object.

attributeSet

On exit, the attribute set currently associated with the specified
view hints object.

DESCRIPTION

The Q3ViewHints_GetAttributeSet function returns, in the attributeSet
parameter, the current attribute set of the view hints object specified by the
viewHints parameter. The reference count of the attribute set is incremented.

Q3ViewHints_SetAttributeSet 17

You can use the Q3ViewHints_SetAttributeSet function to set the attribute
set associated with a view hints object.

TQ3Status Q3ViewHints_SetAttributeSet (

TQ3ViewHintsObject viewHints,

TQ3AttributeSet attributeSet);

viewHints A view hints object.

attributeSet

An attribute set.

C H A P T E R 1 7

File Objects

17-58 File Objects Reference

DESCRIPTION

The Q3ViewHints_SetAttributeSet function attaches the attribute set
specified by the attributeSet parameter to the view hints object specified by
the viewHints parameter. The reference count of the specified attribute set is
incremented. In addition, if some other attribute set was already attached to the
specified view hints object, the reference count of that attribute set is
decremented.

Q3ViewHints_GetDimensionsState 17

You can use the Q3ViewHints_GetDimensionsState function to get the
dimension state associated with a view hints object.

TQ3Status Q3ViewHints_GetDimensionsState (

TQ3ViewHintsObject viewHints,

TQ3Boolean *isValid);

viewHints A view hints object.

isValid On exit, the current dimension state of the specified view
hints object.

DESCRIPTION

The Q3ViewHints_GetDimensionsState function returns, in the isValid
parameter, a Boolean value that indicates whether the dimensions in the view
hints object specified by the viewHints parameter are to be used (kQ3True) or
not (kQ3False).

C H A P T E R 1 7

File Objects

File Objects Reference 17-59

Q3ViewHints_SetDimensionsState 17

You can use the Q3ViewHints_SetDimensionsState function to set the
dimension state associated with a view hints object.

TQ3Status Q3ViewHints_SetDimensionsState (

TQ3ViewHintsObject viewHints,

TQ3Boolean isValid);

viewHints A view hints object.

isValid A dimension state.

DESCRIPTION

The Q3ViewHints_SetDimensionsState function sets the dimension state of
the view hints object specified by the viewHints parameter to the value passed
in the isValid parameter.

Q3ViewHints_GetDimensions 17

You can use the Q3ViewHints_GetDimensions function to get the dimensions
associated with a view hints object.

TQ3Status Q3ViewHints_GetDimensions (

TQ3ViewHintsObject viewHints,

unsigned long *width,

unsigned long *height);

viewHints A view hints object.

width On exit, the width of the specified view hints object.

height On exit, the height of the specified view hints object.

C H A P T E R 1 7

File Objects

17-60 File Objects Reference

DESCRIPTION

The Q3ViewHints_GetDimensions function returns, in the width and height
parameters, the current width and height associated with the view hints object
specified by the viewHints parameter.

Q3ViewHints_SetDimensions 17

You can use the Q3ViewHints_SetDimensions function to set the dimensions
associated with a view hints object.

TQ3Status Q3ViewHints_SetDimensions (

TQ3ViewHintsObject viewHints,

unsigned long width,

unsigned long height);

viewHints A view hints object.

width The desired width of the view hints object.

height The desired height of the view hints object.

DESCRIPTION

The Q3ViewHints_SetDimensions function sets the width and height of the
view hints object specified by the viewHints parameter to the values passed in
the width and height parameters.

Q3ViewHints_GetMaskState 17

You can use the Q3ViewHints_GetMaskState function to get the mask state
associated with a view hints object.

TQ3Status Q3ViewHints_GetMaskState (

TQ3ViewHintsObject viewHints,

TQ3Boolean *isValid);

C H A P T E R 1 7

File Objects

File Objects Reference 17-61

viewHints A view hints object.

isValid On exit, the current mask state of the specified view hints object.

DESCRIPTION

The Q3ViewHints_GetMaskState function returns, in the isValid parameter, a
Boolean value that determines whether the mask associated with the view
hints object specified by the viewHints parameter is to be used (kQ3True) or
not (kQ3False).

Q3ViewHints_SetMaskState 17

You can use the Q3ViewHints_SetMaskState function to set the mask state
associated with a view hints object.

TQ3Status Q3ViewHints_SetMaskState (

TQ3ViewHintsObject viewHints,

TQ3Boolean isValid);

viewHints A view hints object.

isValid The desired mask state of the specified view hints object.

DESCRIPTION

The Q3ViewHints_SetMaskState function sets the mask state of the view hints
object specified by the viewHints parameter to the value specified in the
isValid parameter. Set isValid to kQ3True if you want the mask enabled and
to kQ3False otherwise.

C H A P T E R 1 7

File Objects

17-62 File Objects Reference

Q3ViewHints_GetMask 17

You can use the Q3ViewHints_GetMask function to get the mask associated
with a view hints object.

TQ3Status Q3ViewHints_GetMask (

TQ3ViewHintsObject viewHints,

TQ3Bitmap *mask);

viewHints A view hints object.

mask On exit, the mask of the specified view hints object.

DESCRIPTION

The Q3ViewHints_GetMask function returns, in the mask parameter, the current
mask for the view hints object specified by the viewHints parameter. The mask
is a bitmap whose bits determine whether or not corresponding pixels in the
drawing destination are drawn or are masked out. Q3ViewHints_GetMask
allocates memory internally for the returned bitmap; when you’re done
using the bitmap, you should call the Q3Bitmap_Empty function to dispose of
that memory.

Q3ViewHints_SetMask 17

You can use the Q3ViewHints_SetMask function to set the mask associated
with a view hints object.

TQ3Status Q3ViewHints_SetMask (

TQ3ViewHintsObject viewHints,

const TQ3Bitmap *mask);

viewHints A view hints object.

mask The desired mask of the specified view hints object.

C H A P T E R 1 7

File Objects

File Objects Reference 17-63

DESCRIPTION

The Q3ViewHints_SetMask function sets the mask of the view hints object
specified by the viewHints parameter to the bitmap specified in the mask
parameter. Q3ViewHints_SetMask copies the bitmap to internal QuickDraw 3D
memory, so you can dispose of the specified bitmap after calling
Q3ViewHints_SetMask.

Q3ViewHints_GetClearImageMethod 17

You can use the Q3ViewHints_GetClearImageMethod function to get the
image clearing method associated with a view hints object.

TQ3Status Q3ViewHints_GetClearImageMethod (

TQ3ViewHintsObject viewHints,

TQ3DrawContextClearImageMethod *clearMethod);

viewHints A view hints object.

clearMethod On exit, the current image clearing method of the specified
view hints object. See “Draw Context Data Structure” on
page 12-9 for the values that can be returned in this parameter.

DESCRIPTION

The Q3ViewHints_GetClearImageMethod function returns, in the
clearMethod parameter, a constant that indicates the current image clearing
method for the view hints object specified by the viewHints parameter.

C H A P T E R 1 7

File Objects

17-64 File Objects Reference

Q3ViewHints_SetClearImageMethod 17

You can use the Q3ViewHints_SetClearImageMethod function to set the image
clearing method associated with a view hints object.

TQ3Status Q3ViewHints_SetClearImageMethod (

TQ3ViewHintsObject viewHints,

TQ3DrawContextClearImageMethod clearMethod);

viewHints A view hints object.

clearMethod The desired image clearing method of the specified view hints
object. See “Draw Context Data Structure” on page 12-9 for the
values that can be passed in this parameter.

DESCRIPTION

The Q3ViewHints_SetClearImageMethod function sets the image clearing
method of the view hints object specified by the viewHints parameter to the
value specified in the clearMethod parameter.

Q3ViewHints_GetClearImageColor 17

You can use the Q3ViewHints_GetClearImageColor function to get the image
clearing color associated with a view hints object.

TQ3Status Q3ViewHints_GetClearImageColor (

TQ3ViewHintsObject viewHints,

TQ3ColorARGB *color);

viewHints A view hints object.

color On exit, the current image clearing color of the specified view
hints object.

C H A P T E R 1 7

File Objects

File Objects Reference 17-65

DESCRIPTION

The Q3ViewHints_GetClearImageColor function returns, in the color
parameter, a constant that indicates the current image clearing color for the
view hints object specified by the viewHints parameter.

Q3ViewHints_SetClearImageColor 17

You can use the Q3ViewHints_SetClearImageColor function to set the image
clearing color associated with a view hints object.

TQ3Status Q3ViewHints_SetClearImageColor (

TQ3ViewHintsObject viewHints,

const TQ3ColorARGB *color);

viewHints A view hints object.

color The desired image clearing color of the specified view
hints object.

DESCRIPTION

The Q3ViewHints_SetClearImageColor function sets the image clearing color
of the view hints object specified by the viewHints parameter to the value
specified in the color parameter.

Application-Defined Routines 17

This section describes the I/O methods you can implement to handle a
custom object type. Your custom methods are reported to QuickDraw 3D
by your object metahandler. This section also describes how to write a file
idler callback routine.

Note
For information about defining an object metahandler and
about the basic methods for handling custom objects, see
the chapter “QuickDraw 3D Objects.” ◆

C H A P T E R 1 7

File Objects

17-66 File Objects Reference

These I/O methods define how QuickDraw 3D handles your custom objects
when reading them from or writing them to a metafile. Each distinct object in a
metafile consists of a root object that determines the object’s type and default
data. Some types of objects can have child objects attached to them, which add
information to the parent object or override the parent’s default data. A parent
object and its child (or children) are encapsulated in a container, the first object
in which is always the parent object.

To read a custom object from a file, you need to define a read data method for
the custom object. To write a custom object to a file, you need to define two I/O
methods for the custom object: a traversal method and a write method.

TQ3ObjectReadDataMethod 17

You can define a method to read an object of your custom type and any
attached subobjects from a file object.

typedef TQ3Status (*TQ3ObjectReadDataMethod) (

TQ3Object parentObject,

TQ3FileObject file);

parentObject

An object to attach your custom data to.

file A file object.

DESCRIPTION

Your TQ3ObjectReadDataMethod function should read an object and any
attached subobjects from the current location in the file object specified by
the file parameter and attach that object to the object specified by the
parentObject parameter. If the object read is a custom element (or a custom
attribute), you should allocate space on the stack and call Q3Set_Add (or
Q3AttributeSet_Add) on the object specified by the parentObject parameter,
which is a set (or an attribute set). If the object read is not an element, you
should attach your custom data to the object specified by the parentObject
parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 17-67

On entrance to your custom read method, you should read the custom object
data using the primitive data type _Read functions described in “Reading and
Writing File Data,” beginning on page 17-27 (for example, Q3Uns64_Read and
Q3Point3D_Read). In general, you know the structure of the custom object
data, so you can stop reading when you’ve read an entire object. Alternatively,
you can read data until the function Q3File_IsEndOfData returns kQ3True.

Once you’ve read the custom object data, you should read any subobjects
attached to the object. Because a metafile object has subobjects only if it is in a
container, you can use the Q3File_IsEndOfContainer function to determine
whether there are any subobjects (if Q3File_IsEndOfContainer returns
kQ3False, there are subobjects to read). If you have created an object, pass it to
Q3File_IsEndOfContainer so that the subobjects with automatic attachment
methods can be attached to your object. Otherwise, pass the value NULL to
Q3File_IsEndOfContainer to have all subobjects returned to you. Note that
when you call Q3File_IsEndOfContainer, all unread parent object data is
skipped and a warning is issued.

At this point, you can use the functions that retrieve subobjects (for example,
Q3File_GetNextObjectType and Q3File_ReadObject) to iterate through the
subobjects until Q3File_IsEndOfContainer returns kQ3True.

RESULT CODES

Your TQ3ObjectReadDataMethod function should return kQ3Success if it is
successful and kQ3Failure otherwise.

TQ3ObjectTraverseMethod 17

You can define a method to traverse a custom object and write its data and the
data of any attached subobjects to a file.

typedef TQ3Status (*TQ3ObjectTraverseMethod) (

TQ3Object object,

TQ3FileObject file);

object A QuickDraw 3D object.

file A file object.

C H A P T E R 1 7

File Objects

17-68 File Objects Reference

DESCRIPTION

Your TQ3ObjectTraverseMethod method should perform a number of
operations necessary to write the object specified by the object parameter, as
well as any subobjects attached to it, to the file specified by the file parameter.

First, your traverse method should determine whether the specified object
should be written to the file. It’s possible that you won’t want to write certain
types of custom objects or certain types of data associated with a custom object.
If you decide not to write the specified object and its subobjects to the file, your
traverse method should return kQ3Success without calling any _Submit
functions.

Next, you should calculate the size on disk of your custom object. This size
must be aligned on a 4-byte boundary. Then you should retrieve whatever
view state information you need to preserve. The state of the view is not valid
in your custom object write method, but it is valid in your traverse method;
if you need view state information in your write method, you can pass a
temporary buffer to it.

Once you’ve preserved whatever view state information you need, you should
submit your data by calling Q3View_SubmitWriteData. Then you should
submit subobjects by calling the appropriate _Submit functions. You must call
Q3View_SubmitWriteData before calling _Submit functions to submit any
subobjects.

RESULT CODES

Your TQ3ObjectTraverseMethod function should return kQ3Success if it is
successful and kQ3Failure otherwise.

TQ3ObjectWriteMethod 17

You can define a method to write an object of your custom type to a file object.

typedef TQ3Status (*TQ3ObjectWriteMethod) (

const void *object,

TQ3FileObject file);

object A QuickDraw 3D object.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 17-69

DESCRIPTION

Your TQ3ObjectWriteMethod function should write the root object data of the
object specified by the object parameter, starting at the current location in
the file object specified by the file parameter. You should use the primitive
data type _Write functions described in “Reading and Writing File Data,”
beginning on page 17-27 (for example, Q3Uns64_Write and Q3Point3D_Write).

RESULT CODES

Your TQ3ObjectWriteMethod function should return kQ3Success if it is
successful and kQ3Failure otherwise.

TQ3FileIdleMethod 17

You can define an idle method to receive occasional callbacks to your
application during lengthy file operations.

typedef TQ3Status (*TQ3FileIdleMethod) (

TQ3FileObject file,

const void *idlerData);

file A file object.

idlerData A pointer to an application-defined block of data.

DESCRIPTION

Your TQ3FileIdleMethod function is called occasionally during lengthy file
operations. You can use an idle method to provide a method for the user to
cancel the lengthy operation (for example, by clicking a button or pressing a
key sequence such as Command-period).

If your idle method returns kQ3Success, QuickDraw 3D continues its current
operation. If your idle method returns kQ3Failure, QuickDraw 3D cancels its
current operation and returns kQ3ViewStatusCancelled the next time you call
Q3View_EndWriting.

There is currently no way to indicate how often you want your idle method to
be called. You can read the time maintained by the Operating System if you

C H A P T E R 1 7

File Objects

17-70 File Objects Reference

need to determine the amount of time that has elapsed since your idle method
was last called.

SPECIAL CONSIDERATIONS

You must not call any QuickDraw 3D routines inside your idle method.

C H A P T E R 1 7

File Objects

Summary of File Objects 17-71

Summary of File Objects 17

C Summary 17

Constants 17

typedef enum TQ3FileModeMasks {

kQ3FileModeNormal = 0,

kQ3FileModeStream = 1 << 0,

kQ3FileModeDatabase = 1 << 1,

kQ3FileModeText = 1 << 2

} TQ3FileModeMasks;

#define kQ3OldVersion Q3FileVersion(0,2)

#define kQ3CurrentVersion Q3FileVersion(0,5)

#define kQ3StringMaximumLength 1024

Unknown Object Types

#define kQ3UnknownTypeBinary Q3_OBJECT_TYPE('u','k','b','n')

#define kQ3UnknownTypeText Q3_OBJECT_TYPE('u','k','t','x')

Data Types 17

Basic Types

typedef unsigned long TQ3FileVersion;

typedef unsigned long TQ3FileMode;

C H A P T E R 1 7

File Objects

17-72 Summary of File Objects

typedef unsigned char TQ3Uns8; /*1-byte unsigned integer*/

typedef signed char TQ3Int8; /*1-byte signed integer*/

typedef unsigned short TQ3Uns16; /*2-byte unsigned integer*/

typedef signed short TQ3Int16; /*2-byte signed integer*/

typedef unsigned long TQ3Uns32; /*4-byte unsigned integer*/

typedef signed long TQ3Int32; /*4-byte signed integer*/

typedef struct TQ3Uns64 {

unsigned long hi;

unsigned long lo;

} TQ3Uns64; /*8-byte unsigned integer*/

typedef struct TQ3Int64 {

signed long hi;

unsigned long lo;

} TQ3Uns64; /*8-byte signed integer*/

typedef float TQ3Float32; /*4-byte floating-pt number*/

typedef double TQ3Float64; /*8-byte floating-pt number*/

typedef TQ3Uns32 TQ3Size;

Unknown Object Data Types

typedef struct TQ3UnknownTextData {

char *objectName; /*'\0' terminated*/

char *contents; /*'\0' terminated*/

} TQ3UnknownTextData;

typedef struct TQ3UnknownBinaryData {

TQ3ObjectType objectType;

unsigned long size;

TQ3Endian byteOrder;

char *contents;

} TQ3UnknownBinaryData;

C H A P T E R 1 7

File Objects

Summary of File Objects 17-73

File Objects Routines 17

Creating File Objects

TQ3FileObject Q3File_New (void);

Attaching File Objects to Storage Objects

TQ3Status Q3File_GetStorage (TQ3FileObject file,

TQ3StorageObject *storage);

TQ3Status Q3File_SetStorage (TQ3FileObject file, TQ3StorageObject storage);

Accessing File Objects

TQ3Status Q3File_OpenRead (TQ3FileObject file, TQ3FileMode *mode);

TQ3Status Q3File_OpenWrite (TQ3FileObject file, TQ3FileMode mode);

TQ3Status Q3File_IsOpen (TQ3FileObject file, TQ3Boolean *isOpen);

TQ3Status Q3File_Close (TQ3FileObject file);

TQ3Status Q3File_Cancel (TQ3FileObject file);

TQ3Status Q3File_GetMode (TQ3FileObject file, TQ3FileMode *fileMode);

TQ3Status Q3File_GetVersion (TQ3FileObject file, TQ3FileVersion *version);

Accessing Objects Directly

TQ3ObjectType Q3File_GetNextObjectType (

TQ3FileObject file);

TQ3Boolean Q3File_IsNextObjectOfType (

TQ3FileObject file,

TQ3ObjectType ofType);

TQ3Object Q3File_ReadObject (TQ3FileObject file);

TQ3Status Q3File_SkipObject (TQ3FileObject file);

TQ3Boolean Q3File_IsEndOfFile (TQ3FileObject file);

C H A P T E R 1 7

File Objects

17-74 Summary of File Objects

Setting Idle Methods

TQ3Status Q3File_SetIdleMethod(TQ3FileObject file,

TQ3FileIdleMethod idle,

const void *idleData);

Reading and Writing File Subobjects

TQ3Boolean Q3File_IsEndOfData (TQ3FileObject file);

TQ3Boolean Q3File_IsEndOfContainer (

TQ3FileObject file,

TQ3Object rootObject);

Reading and Writing File Data

TQ3Status Q3Uns8_Read (TQ3Uns8 *data, TQ3FileObject file);

TQ3Status Q3Uns8_Write (const TQ3Uns8 data, TQ3FileObject file);

TQ3Status Q3Uns16_Read (TQ3Uns16 *data, TQ3FileObject file);

TQ3Status Q3Uns16_Write (const TQ3Uns16 data, TQ3FileObject file);

TQ3Status Q3Uns32_Read (TQ3Uns32 *data, TQ3FileObject file);

TQ3Status Q3Uns32_Write (const TQ3Uns32 data, TQ3FileObject file);

TQ3Status Q3Int32_Read (TQ3Int32 *data, TQ3FileObject file);

TQ3Status Q3Int32_Write (const TQ3Int32 data, TQ3FileObject file);

TQ3Status Q3Uns64_Read (TQ3Uns64 *data, TQ3FileObject file);

TQ3Status Q3Uns64_Write (const TQ3Uns64 data, TQ3FileObject file);

TQ3Status Q3Float32_Read (TQ3Float32 *data, TQ3FileObject file);

TQ3Status Q3Float32_Write (const TQ3Float32 data, TQ3FileObject file);

TQ3Status Q3Float64_Read (TQ3Float64 *data, TQ3FileObject file);

TQ3Status Q3Float64_Write (const TQ3Float64 data, TQ3FileObject file);

TQ3Size Q3Size_Pad (TQ3Size size);

C H A P T E R 1 7

File Objects

Summary of File Objects 17-75

TQ3Status Q3String_Read (char *data,

unsigned long *length,

TQ3FileObject file);

TQ3Status Q3String_Write (const char *data, TQ3FileObject file);

TQ3Status Q3RawData_Read (unsigned char *data,

unsigned long size,

TQ3FileObject file);

TQ3Status Q3RawData_Write (const unsigned char *data,

unsigned long size,

TQ3FileObject file);

TQ3Status Q3Point2D_Read (TQ3Point2D *point2D, TQ3FileObject file);

TQ3Status Q3Point2D_Write (const TQ3Point2D *point2D,

TQ3FileObject file);

TQ3Status Q3Point3D_Read (TQ3Point3D *point3D, TQ3FileObject file);

TQ3Status Q3Point3D_Write (const TQ3Point3D *point3D,

TQ3FileObject file);

TQ3Status Q3RationalPoint3D_Read (

TQ3RationalPoint3D *point3D,

TQ3FileObject file);

TQ3Status Q3RationalPoint3D_Write (

const TQ3RationalPoint3D *point3D,

TQ3FileObject file);

TQ3Status Q3RationalPoint4D_Read (

TQ3RationalPoint4D *point4D,

TQ3FileObject file);

TQ3Status Q3RationalPoint4D_Write (

const TQ3RationalPoint4D *point4D,

TQ3FileObject file);

TQ3Status Q3Vector2D_Read (TQ3Vector2D *vector2D, TQ3FileObject file);

C H A P T E R 1 7

File Objects

17-76 Summary of File Objects

TQ3Status Q3Vector2D_Write (const TQ3Vector2D *vector2D,

TQ3FileObject file);

TQ3Status Q3Vector3D_Read (TQ3Vector3D *vector3D, TQ3FileObject file);

TQ3Status Q3Vector3D_Write (const TQ3Vector3D *vector3D,

TQ3FileObject file);

TQ3Status Q3Matrix4x4_Read (TQ3Matrix4x4 *matrix4x4,

TQ3FileObject file);

TQ3Status Q3Matrix4x4_Write (const TQ3Matrix4x4 *matrix4x4,

TQ3FileObject file);

TQ3Status Q3Tangent2D_Read (TQ3Tangent2D *tangent2D,

TQ3FileObject file);

TQ3Status Q3Tangent2D_Write (const TQ3Tangent2D *tangent2D,

TQ3FileObject file);

TQ3Status Q3Tangent3D_Read (TQ3Tangent3D *tangent3D,

TQ3FileObject file);

TQ3Status Q3Tangent3D_Write (const TQ3Tangent3D *tangent3D,

TQ3FileObject file);

TQ3Status Q3Comment_Write (char *comment, TQ3FileObject file);

Managing Unknown Objects

TQ3ObjectType Q3Unknown_GetType (

TQ3UnknownObject unknownObject);

TQ3Status Q3Unknown_GetDirtyState (

TQ3UnknownObject unknownObject,

TQ3Boolean *isDirty);

TQ3Status Q3Unknown_SetDirtyState (

TQ3UnknownObject unknownObject,

TQ3Boolean isDirty);

C H A P T E R 1 7

File Objects

Summary of File Objects 17-77

TQ3Status Q3UnknownText_GetData (

TQ3UnknownObject unknownObject,

TQ3UnknownTextData *unknownTextData);

TQ3Status Q3UnknownText_EmptyData (

TQ3UnknownTextData *unknownTextData);

TQ3Status Q3UnknownBinary_GetData (

TQ3UnknownObject unknownObject,

TQ3UnknownBinaryData *unknownBinaryData);

TQ3Status Q3UnknownBinary_EmptyData (

TQ3UnknownBinaryData *unknownBinaryData);

Managing View Hints Objects

TQ3ViewHintsObject Q3ViewHints_New (

TQ3ViewObject view);

TQ3Status Q3ViewHints_GetRenderer (

TQ3ViewHintsObject viewHints,

TQ3RendererObject *renderer);

TQ3Status Q3ViewHints_SetRenderer (

TQ3ViewHintsObject viewHints,

TQ3RendererObject renderer);

TQ3Status Q3ViewHints_GetCamera (

TQ3ViewHintsObject viewHints,

TQ3CameraObject *camera);

TQ3Status Q3ViewHints_SetCamera (

TQ3ViewHintsObject viewHints,

TQ3CameraObject camera);

TQ3Status Q3ViewHints_GetLightGroup (

TQ3ViewHintsObject viewHints,

TQ3GroupObject *lightGroup);

C H A P T E R 1 7

File Objects

17-78 Summary of File Objects

TQ3Status Q3ViewHints_SetLightGroup (

TQ3ViewHintsObject viewHints,

TQ3GroupObject lightGroup);

TQ3Status Q3ViewHints_GetAttributeSet (

TQ3ViewHintsObject viewHints,

TQ3AttributeSet *attributeSet);

TQ3Status Q3ViewHints_SetAttributeSet (

TQ3ViewHintsObject viewHints,

TQ3AttributeSet attributeSet);

TQ3Status Q3ViewHints_GetDimensionsState (

TQ3ViewHintsObject viewHints,

TQ3Boolean *isValid);

TQ3Status Q3ViewHints_SetDimensionsState (

TQ3ViewHintsObject viewHints,

TQ3Boolean isValid);

TQ3Status Q3ViewHints_GetDimensions (

TQ3ViewHintsObject viewHints,

unsigned long *width,

unsigned long *height);

TQ3Status Q3ViewHints_SetDimensions (

TQ3ViewHintsObject viewHints,

unsigned long width,

unsigned long height);

TQ3Status Q3ViewHints_GetMaskState (

TQ3ViewHintsObject viewHints,

TQ3Boolean *isValid);

TQ3Status Q3ViewHints_SetMaskState (

TQ3ViewHintsObject viewHints,

TQ3Boolean isValid);

TQ3Status Q3ViewHints_GetMask (TQ3ViewHintsObject viewHints,

TQ3Bitmap *mask);

C H A P T E R 1 7

File Objects

Summary of File Objects 17-79

TQ3Status Q3ViewHints_SetMask (TQ3ViewHintsObject viewHints,

const TQ3Bitmap *mask);

TQ3Status Q3ViewHints_GetClearImageMethod (

TQ3ViewHintsObject viewHints,

TQ3DrawContextClearImageMethod *clearMethod);

TQ3Status Q3ViewHints_SetClearImageMethod (

TQ3ViewHintsObject viewHints,

TQ3DrawContextClearImageMethod clearMethod);

TQ3Status Q3ViewHints_GetClearImageColor (

TQ3ViewHintsObject viewHints,

TQ3ColorARGB *color);

TQ3Status Q3ViewHints_SetClearImageColor (

TQ3ViewHintsObject viewHints,

const TQ3ColorARGB *color);

Version Macros

#define Q3FileVersion(majorVersion, minorVersion) \

(TQ3FileVersion) ((((TQ3Uns32) majorVersion & 0xFFFF) << 16) | \

((TQ3Uns32) minorVersion & 0xFFFF))

Application-Defined Routines 17

typedef TQ3Status (*TQ3ObjectReadDataMethod) (

TQ3Object parentObject,

TQ3FileObject file);

typedef TQ3Status (*TQ3ObjectTraverseMethod) (

TQ3Object object,

TQ3FileObject file);

typedef TQ3Status (*TQ3ObjectWriteMethod) (

const void *object,

TQ3FileObject file);

C H A P T E R 1 7

File Objects

17-80 Summary of File Objects

typedef TQ3Status (*TQ3FileIdleMethod) (

TQ3FileObject file,

const void *idlerData);

Errors, Warnings, and Notices 17

kQ3ErrorNoStorageSetForFile
kQ3ErrorEndOfFile
kQ3ErrorFileCancelled
kQ3ErrorInvalidMetafile
kQ3ErrorInvalidMetafilePrimitive
kQ3ErrorInvalidMetafileLabel
kQ3ErrorInvalidMetafileObject
kQ3ErrorInvalidMetafileSubObject
kQ3ErrorInvalidSubObjectForObject
kQ3ErrorUnresolvableReference
kQ3ErrorUnknownObject
kQ3ErrorFileAlreadyOpen
kQ3ErrorFileNotOpen
kQ3ErrorFileIsOpen
kQ3ErrorBeginWriteAlreadyCalled
kQ3ErrorBeginWriteNotCalled
kQ3ErrorEndWriteNotCalled
kQ3ErrorReadStateInactive
kQ3ErrorStateUnavailable
kQ3ErrorWriteStateInactive
kQ3ErrorSizeNotLongAligned
kQ3ErrorFileModeRestriction
kQ3ErrorInvalidHexString
kQ3ErrorWroteMoreThanSize
kQ3ErrorWroteLessThanSize
kQ3ErrorReadLessThanSize
kQ3ErrorReadMoreThanSize
kQ3ErrorSizeMismatch
kQ3ErrorStringExceedsMaximumLength
kQ3ErrorNonUniqueLabel
kQ3ErrorUnmatchedEndGroup
kQ3WarningFilePointerResolutionFailed
kQ3WarningStringExceedsMaximumLength
kQ3NoticeFileAliasWasChanged

C H A P T E R 1 8

Contents

18-1

Contents

Figure 18-0
Listing 18-0
Table 18-0

18 QuickDraw 3D Pointing Device
Manager

About the QuickDraw 3D Pointing Device Manager 18-3
Controllers 18-4
Controller States 18-7
Trackers 18-7

Using the QuickDraw 3D Pointing Device Manager 18-8
Controlling a Camera Position With a Pointing Device 18-8

QuickDraw 3D Pointing Device Manager Reference 18-11
Data Structures 18-11

Controller Data Structure 18-11
QuickDraw 3D Pointing Device Manager Routines 18-12

Creating and Managing Controllers 18-12
Managing Controller States 18-32
Creating and Managing Trackers 18-33

Application-Defined Routines 18-47
Summary of the QuickDraw 3D Pointing Device Manager 18-51

C Summary 18-51
Constants 18-51
Data Types 18-51
QuickDraw 3D Pointing Device Manager Routines 18-51
Application-Defined Routines 18-57

This document was created with FrameMaker 4.0.4

C H A P T E R 1 8

About the QuickDraw 3D Pointing Device Manager

18-3

QuickDraw 3D Pointing Device Manager 18

This chapter describes the QuickDraw 3D Pointing Device Manager, a set of
functions that you can use to manage three-dimensional pointing devices. By
using this manager, you ensure that your application’s users can interact with
the three-dimensional objects modeled in your windows in a simple and
natural manner, using the input devices that are available on their computers.

To use this chapter, you should already be familiar with creating and
manipulating views, as described in the chapter “View Objects.” If you are
developing a 3D pointing device (which allows the user to control locations in
three dimensions), you need to read the information on trackers and controllers
in this chapter, as well as the information on writing device drivers in the book

Inside Macintosh: Devices

.

This chapter begins by describing controllers and trackers. Then it provides
some sample code illustrating how to use the routines in the QuickDraw 3D
Pointing Device Manager. The chapter ends with a complete reference for this
manager.

About the QuickDraw 3D Pointing Device Manager 18

The

QuickDraw 3D Pointing Device Manager

 is a set of functions that you
can use to manage three-dimensional pointing devices.

The QuickDraw 3D Pointing Device Manager contains several kinds of
routines, including routines you can use to

■

determine what kinds of pointing devices are available on a particular
computer

■

configure one or more of those devices to control items in a 3D model (such
as the position of an object or a camera)

The following sections describe these tasks and the routines you can use to
perform them.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-4

About the QuickDraw 3D Pointing Device Manager

Controllers 18

In order for a user to interact successfully with the objects in a three-
dimensional model, it’s necessary for the computer to provide some means of
manipulating positions along three independent axes. Most existing computer
systems support only two-dimensional input devices, such as mouse pointers
or graphics tablets. QuickDraw 3D provides a standard interface between
applications and devices that allows users to work with any available 3D
pointing devices. In addition, the QuickDraw 3D Pointing Device Manager
provides routines that you can use to determine what kinds of 3D pointing
devices are available and to assign certain of them to specific uses in
your application.

A

3D pointing device

 is any physical device capable of controlling movements
or specifying positions in three-dimensional space. QuickDraw 3D represents
3D pointing devices as

controller objects

 (or, more briefly,

controllers

). A user
can attach more than one 3D pointing device to a computer. Accordingly,
QuickDraw 3D can support more than one controller at a time. When several
3D pointing devices are present, they can all contribute to the movement of a
single user interface element (such as the position of the selected object), or
they can control different elements. For example, a particular 3D pointing
device can be dedicated to controlling a view’s camera, and another 3D
pointing device can drive the position of the selected object.

The position and orientation of a single element in your application’s user
interface are represented by a

tracker object

 (or, more briefly, a

tracker

). For
instance, the position and orientation of a selected object are represented by a
tracker, as is any other interface element you’ve assigned to some controller.
Each controller can affect only one tracker, but a tracker can be affected by one
or more controllers. Figure 18-1 illustrates a possible arrangement of devices,
controllers, and trackers.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

About the QuickDraw 3D Pointing Device Manager

18-5

Figure 18-1

A sample configuration of input devices, controllers, and trackers

The controller object associated with a particular 3D pointing device is usually
created by a device driver, the software that communicates with the device
using whatever low-level protocols are appropriate for the device. The device
can be connected to the computer through a serial port, via ADB connections,
through an expansion card, or by other means. The device driver receives data
from the device and passes it to the associated controller. As already indicated,
a controller is associated with exactly one tracker. Changes in the position or
orientation of the pointing device thereby result in changes in the position or
orientation of the associated tracker.

IMPORTANT

By default, a controller contributes to the position of the
system’s cursor. You can, if you wish, reassign a particular
controller to control the position or orientation of some
other user interface element.

▲

All controllers are capable of controlling positions, and some controllers are
capable of controlling orientations as well. Pointing devices contain one or
more buttons; the associated controller must be capable of reading button
states (up or down) from the pointing device and reporting those states to the
tracker. Currently, QuickDraw 3D supports up to 32 buttons on a 3D pointing
device. More generally, a pointing device may support additional input and

Cursor
(system)

TQ3Controller TQ3Tracker Application

Space ball
(driver)

Camera modelCamera
(application)

Default

Roller mouse
(driver)

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-6

About the QuickDraw 3D Pointing Device Manager

output modes as well. For example, it’s possible to construct a 3D pointing
device that contains a number of dials and alphanumeric displays labeling
those dials. The device’s controller must then be able to communicate
information about dials and labels between the device and an application using
that device.

Any piece of information, beyond the standard position, orientation, and
buttons, that the user sends to the application by means of an input device is
called a

controller value.

 Any piece of information sent from the application to
the input device is called a

controller channel.

 A dial position, for example, is a
controller value, whereas an alphanumeric label generated by the application is
a controller channel.

In general, your application does not need to communicate with controllers
directly. As already indicated, controllers are almost always created by their
associated device drivers, which read data from the devices and pass it to
the associated controller. Moreover, a controller is by default connected to
the cursor. Your application needs to access a controller only to assign it to
some interface element other than the cursor or to read controller data other
than position, orientation, and button states. To get information about
other controller values, for instance, you need to call routines that query the
controller directly.

QuickDraw 3D maintains a list of all the controllers that are available on a
computer. A controller is identified by its signature, which is a string that
uniquely identifies the manufacturer and model of the controller. You can
search for a controller by signature by calling QuickDraw 3D Pointing Device
Manager routines. Once a controller is added to the list of available controllers,
it cannot be removed from it, but it can be made inactive. If for some reason a
device becomes unavailable, the device driver should mark the controller as
inactive. The device might later become available, in which case the driver can
reactivate the controller. You should always check that a controller is active
before directly accessing a controller from the list of controllers.

Note

Because controllers may be shared by multiple
applications, you cannot dispose of a controller. Instead,
you can decommission the controller by calling

Q3Controller_Decommission

. Decommissioning a
controller makes it inoperative for any application.

◆

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

About the QuickDraw 3D Pointing Device Manager

18-7

Controller States 18

When your application is inactive, some other application might use a
particular pointing device your application was using. That other application
might also reset some of the controller channels. As a result, you need to
keep track of the current controller state across the times your application
is inactive. A

controller state object

 (or, more briefly, a

controller state

)
consists mainly of the current channels and other settings of a controller.
When your application is about to be inactivated, you should call the
function

Q3ControllerState_SaveAndReset

 to save the current controller
state. Then, when your application is reactivated, you should call

Q3ControllerState_Restore

 to restore the proper controller state.

Trackers 18

A tracker is a kind of QuickDraw 3D object that controls the position,
orientation, and button state of a specific element in your application’s user
interface. QuickDraw 3D always provides a tracker that controls the location
and orientation of the system cursor. You can create additional trackers and
attach them to other visible elements of your application’s user interface. As
suggested earlier, you can attach a 3D pointing device to a view’s camera and
then let users control the camera’s position and orientation using the device. If
the device has one or more buttons, you could let users turn the lights on and
off using those buttons.

Note

This is not necessarily a good human interface
for turning lights on and off; it is intended only
for illustrative purposes.

◆

All the controllers currently reporting data to a particular tracker, whether
absolute or relative, jointly contribute to the button states of the tracker. The
button state of a tracker button of a particular index is the logical OR of the
button states of all controller buttons of that index.

You can determine that a tracker has moved in one or both of two ways. You
can poll for a

tracker serial number,

 which changes every time the coordinates
of the tracker are updated by a controller. Or, you can install a

tracker notify
function

 that is called whenever the coordinates of a tracker change by more
than a specified amount (the

tracker thresholds

). Your tracker notify function
can respond itself to the change, or it can just wake up your application. These
two techniques can also be combined.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-8

Using the QuickDraw 3D Pointing Device Manager

Using the QuickDraw 3D Pointing Device Manager 18

This section shows how to use some of the routines in the QuickDraw 3D
Pointing Device Manager. In particular, it shows how to reassign a 3D pointing
device to control a camera’s position.

Controlling a Camera Position With a Pointing Device 18

By default, a 3D pointing device contributes to the position and orientation of
the cursor. You can, however, reassign a particular pointing device so that it
controls some other element in a user interface view, such as the position and
orientation of the view’s camera. To do this, you must first find the pointing
device. Then you need to disconnect the device from the cursor and connect it
to the desired user interface element.

Suppose that the pointing box you want to reassign is a knob box, which
consists of a set of 12 knobs and associated alphanumeric displays. Six of
the knobs control the standard position and orientation values, and the
remaining 6 knobs are device-specific. Listing 18-1 shows first how to search
for the knob box.

Listing 18-1

Searching for a particular 3D pointing device

TQ3ControllerRef gBoxController = NULL;

TQ3TrackerObject gBoxTracker = NULL;

unsigned long gBoxSerialNumber = 0;

void MyFindKnobBox (void)

{

TQ3ControllerRef controller;

char mySig[256]; /*controller signature*/

char *boxSig =

"Knob Systems, Inc.::Knob Box Grandé";

TQ3Boolean isActive;

/*Find the box controller.*/

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

Using the QuickDraw 3D Pointing Device Manager

18-9

for (Q3Controller_Next(NULL, &controller); controller != NULL;

Q3Controller_Next(controller, &controller)) {

Q3Controller_GetSignature(controller, mySig, 256);

Q3Controller_GetActivation(controller, &isActive);

if (isActive && strncmp(mySig, boxSig, strlen(boxSig))

== 0)

gBoxController = controller;

}

/*If we found a knob box, remember it.*/

if (gBoxController != NULL) {

gBoxTracker = Q3Tracker_New(MyBoxNotifyFunc);

if (gBoxTracker != NULL) {

Q3Tracker_SetNotifyThresholds(gBoxTracker, 0.05, 0.05);

}

Q3Controller_SetTracker(gBoxController, gBoxTracker);

}

}

Once you’ve found a knob box, you must connect it to the camera, but only for
as long as your application’s window is active. When the window is inactive,
the box should revert to its previous function. Listing 18-2 defines two
functions you should call when your application becomes active or inactive.

Listing 18-2

Activating and deactivating a pointing device

void MyOnActivation (void)

{

/*Any knob box data goes to your tracker.*/

if (gBoxController != NULL)

Q3Controller_SetTracker(gBoxController, gBoxTracker);

}

void MyOnDeactivation (void)

{

/*Any knob box data goes to the default tracker.*/

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-10

Using the QuickDraw 3D Pointing Device Manager

if (gBoxController != NULL)

Q3Controller_SetTracker(gBoxController, NULL);

}

As long as the knob box is attached to a view’s camera, your application
receives notification of changes in the knob box through the notify function

MyBoxNotifyFunc

, defined in Listing 18-3.

MyBoxNotifyFunc

 may be called at
interrupt time. On Macintosh computers, you should wake up your process so
that it can poll the tracker. This ensures that the application will recover control
from the

WaitNextEvent

 function.

Listing 18-3

Receiving notification of changes in a pointing device

TQ3Status MyBoxNotifyFunc (TQ3TrackerObject tracker,

TQ3ControllerRef controller)

{

MyOSWakeUpMyProcess(); /*wake up app; poll for data later*/

return(kQ3Success);

}

The

MyPollKnobBox

 function defined in Listing 18-4 shows how to poll for data
from the device. Your application’s idle procedure should call

MyPollKnobBox

.

Listing 18-4

Polling for data from a pointing device

void MyPollKnobBox (void)

{

TQ3Boolean changed;

TQ3Point3D position;

TQ3Vector3D delta;

/*Get the current knob positions.*/

changed = kQ3False;

if (gBoxTracker != NULL) {

Q3Tracker_GetPosition(gBoxTracker, &position, &delta,

&changed, &gBoxSerialNumber);

}

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference

18-11

/*Move camera and redraw if positions are new.*/

if (changed) {

MyComputeCameraFromKnobBox(&position, &orientation);

MyRedrawScene();

}

}

QuickDraw 3D Pointing Device Manager Reference 18

This section describes the QuickDraw 3D data structures and routines that
you can use to manage controllers and controller states, trackers, cursors,
and color schemes.

Data Structures 18

This section describes the data structure that you use to create a new controller
object. In general, only device drivers need to create controller objects.

Controller Data Structure 18

You use a

controller data structure

 to specify information when creating a new
controller object. A controller data structure is defined by the

TQ3ControllerData

 data type.

typedef struct TQ3ControllerData {

char *signature;

unsigned long valueCount;

unsigned long channelCount;

TQ3ChannelGetMethod channelGetMethod;

TQ3ChannelSetMethod channelSetMethod;

} TQ3ControllerData;

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-12

QuickDraw 3D Pointing Device Manager Reference

Field descriptions

signature

The controller’s signature. A signature is a null-terminated
C string that uniquely identifies the manufacturer and
model of a controller device. You are responsible for
defining your controller’s signature.

valueCount

The number of values supported by the controller.

channelCount

The number of channels supported by the controller. If the
value in this field is greater than 0, you may define
optional routines that get and set those channels.

channelGetMethod

A pointer to a controller’s channel-getting method. See
page 18-47 for information on this method. This field is
valid only if the value in the

channelCount

 field is greater
than 0. You may, however, pass

NULL

 in this field if the
controller cannot report the current channels.

channelSetMethod

A pointer to a controller’s channel-setting method. See
page 18-48 for information on this method. This field is
valid only if the value in the

channelCount

 field is greater
than 0. You may, however, pass

NULL

 in this field if the
controller cannot set the channels.

QuickDraw 3D Pointing Device Manager Routines 18

This section describes routines you can use to manage various aspects of your
application’s user interface or to create and manage controllers and trackers.

Creating and Managing Controllers 18

QuickDraw 3D provides routines that you can use to create and manipulate
controller objects.

Note

Some of these functions are intended for use only by
controller device drivers. You should not call those
functions from within applications.

◆

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference

18-13

Q3Controller_New 18

You can use the

Q3Controller_New

 function to create a new controller.

TQ3ControllerRef Q3Controller_New (

const TQ3ControllerData *controllerData);

controllerData

A pointer to a controller data structure.

DESCRIPTION

The

Q3Controller_New

 function returns, as its function result, a reference
to a new controller object having the characteristics specified by the

controllerData

 parameter. The new controller object is initially made
active and is associated with the system cursor’s tracker. You can call

Q3Controller_SetTracker

 to associate the controller with some other
tracker. The serial number of the new controller object is set to 1. If

Q3Controller_New

 cannot create a new controller, it returns

NULL.

You cannot delete a controller, but you can make it no longer operational. See
the description of Q3Controller_Decommission (page 18-15) for details.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

SEE ALSO

See “Controller Data Structure” on page 18-11 for a description of the fields of
the controller data structure.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-14 QuickDraw 3D Pointing Device Manager Reference

Q3Controller_GetListChanged 18

You can use the Q3Controller_GetListChanged function to determine
whether the list of available controllers has changed.

TQ3Status Q3Controller_GetListChanged (

TQ3Boolean *listChanged,

unsigned long *serialNumber);

listChanged On exit, a Boolean value that indicates whether the list of
available controllers has changed (kQ3True) or not (kQ3False).

serialNumber

On entry, a serial number of the list of available controllers. On
exit, the current serial number of that list.

DESCRIPTION

The Q3Controller_GetListChanged function returns, in the listChanged
parameter, a Boolean value that indicates whether the list of available
controllers has changed since the time the serial number passed in the
serialNumber parameter was generated. If the list has changed, the new serial
number is returned in the serialNumber parameter; otherwise, the
serialNumber parameter is unchanged.

Q3Controller_Next 18

You can use the Q3Controller_Next function to read through the list of
available controllers.

TQ3Status Q3Controller_Next (

TQ3ControllerRef controllerRef,

TQ3ControllerRef *nextControllerRef);

controllerRef

A reference to a controller, or NULL.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-15

nextControllerRef

On exit, a reference to the controller that immediately follows
the specified controller. If the value in the controllerRef
parameter is NULL, this parameter returns a reference to the first
controller.

DESCRIPTION

The Q3Controller_Next function returns, in the nextControllerRef
parameter, a reference to the controller that immediately follows the
controller specified by the controllerRef parameter. To get the first
controller in the list, pass the value NULL in the controllerRef parameter.
If the controller specified by the controllerRef parameter is the last
controller in the list, nextControllerRef is set to NULL.

Q3Controller_Decommission 18

You can use the Q3Controller_Decommission function to make a
controller inactive.

TQ3Status Q3Controller_Decommission (

TQ3ControllerRef controllerRef);

controllerRef

A reference to a controller.

DESCRIPTION

The Q3Controller_Decommission function makes the controller specified by
the controllerRef parameter inactive. Any remaining references to a
controller that has been decommissioned are still valid, but the controller is no
longer operational. (In other words, when the specified controller is referred to
by an application or process other than the one that created it, reasonable
default values are returned, not kQ3Failure.) Decommissioning a controller
might cause the notify function of the tracker currently associated with the
specified controller to be called.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-16 QuickDraw 3D Pointing Device Manager Reference

SPECIAL CONSIDERATIONS

The Q3Controller_Decommission function should be called only by the
application or process that created the specified controller.

Q3Controller_GetActivation 18

You can use the Q3Controller_GetActivation function to get the activation
state of a controller.

TQ3Status Q3Controller_GetActivation (

TQ3ControllerRef controllerRef,

TQ3Boolean *active);

controllerRef

A reference to a controller.

active On exit, a Boolean value that indicates whether the specified
controller is active (kQ3True) or inactive (kQ3False).

DESCRIPTION

The Q3Controller_GetActivation function returns, in the active parameter,
a Boolean value that indicates whether the controller specified by the
controllerRef parameter is currently active or inactive.

Q3Controller_SetActivation 18

You can use the Q3Controller_SetActivation function to set the activation
state of a controller.

TQ3Status Q3Controller_SetActivation (

TQ3ControllerRef controllerRef,

TQ3Boolean active);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-17

controllerRef

A reference to a controller.

active A Boolean value that indicates whether the specified controller
is to be made active (kQ3True) or inactive (kQ3False).

DESCRIPTION

The Q3Controller_SetActivation function sets the activation state of the
controller specified by the controllerRef parameter to the value specified in
the active parameter. If the activation state of a controller is changed, the
serial number of the list of available controllers is incremented. A controller
should be inactive if it is temporarily off-line.

The notify function of the tracker currently associated with the specified
controller might be called when Q3Controller_SetActivation is called.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

Q3Controller_GetSignature 18

You can use the Q3Controller_GetSignature function to get the signature of
a controller.

TQ3Status Q3Controller_GetSignature (

TQ3ControllerRef controllerRef,

char *signature,

unsigned long numChars);

controllerRef

A reference to a controller.

signature On entry, a pointer to a buffer that is to be filled with the
signature of the specified controller.

numChars On entry, the size of the buffer pointed to by the signature
parameter.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-18 QuickDraw 3D Pointing Device Manager Reference

DESCRIPTION

The Q3Controller_GetSignature function returns, through the signature
parameter, the signature of the controller specified by the controllerRef
parameter. You are responsible for allocating a buffer whose address is passed
in the signature parameter and whose size is passed in the numChars
parameter. If the signature is larger than the specified size, the signature is
truncated to fit in the buffer.

Q3Controller_GetChannel 18

You can use the Q3Controller_GetChannel function to get a controller channel.

TQ3Status Q3Controller_GetChannel (

TQ3ControllerRef controllerRef,

unsigned long channel,

void *data,

unsigned long *dataSize);

controllerRef

A reference to a controller.

channel An index into the list of channels associated with the specified
controller. This value is always greater than or equal to 0 and
less than the channel count specified at the time
Q3Controller_New was called.

data On exit, a pointer to the current value of the specified controller
channel. The data type of the returned channel is
controller-specific.

dataSize On entry, the number of bytes in the specified buffer. On exit,
the number of bytes actually written to that buffer.

DESCRIPTION

The Q3Controller_GetChannel function returns, through the data parameter,
the current controller channel specified by the controllerRef and channel
parameters. You are responsible for allocating memory for the data buffer and
passing the size of that buffer in the dataSize parameter.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-19

Q3Controller_GetChannel returns, in the dataSize parameter, the number
of bytes written to the data buffer.

Q3Controller_SetChannel 18

You can use the Q3Controller_SetChannel function to set a controller channel.

TQ3Status Q3Controller_SetChannel (

TQ3ControllerRef controllerRef,

unsigned long channel,

const void *data,

unsigned long dataSize);

controllerRef

A reference to a controller.

channel An index into the list of channels associated with the specified
controller. This value is always greater than or equal to 0 and
less than the channel count specified at the time
Q3Controller_New was called.

data On entry, a pointer to a buffer that contains the desired value of
the specified controller channel. The data type of the channel is
controller-specific. If this field contains the value NULL, the
specified channel is reset to a default or inactive value.

dataSize On entry, the number of bytes of data in the specified buffer.

DESCRIPTION

The Q3Controller_SetChannel function sets the controller channel specified
by the controllerRef and channel parameters to the data whose address is
passed in the data parameter. The dataSize parameter specifies the number of
bytes in the data buffer.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-20 QuickDraw 3D Pointing Device Manager Reference

Q3Controller_GetValueCount 18

You can use the Q3Controller_GetValueCount function to get the number of
values of a controller.

TQ3Status Q3Controller_GetValueCount (

TQ3ControllerRef controllerRef,

unsigned long *valueCount);

controllerRef

A reference to a controller.

valueCount On exit, the number of values supported by the specified
controller.

DESCRIPTION

The Q3Controller_GetValueCount function returns, in the valueCount
parameter, the number of values supported by the controller specified by the
controllerRef parameter.

Q3Controller_SetTracker 18

You can use the Q3Controller_SetTracker function to set the tracker
associated with a controller.

TQ3Status Q3Controller_SetTracker (

TQ3ControllerRef controllerRef,

TQ3TrackerObject tracker);

controllerRef

A reference to a controller.

tracker A tracker object.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-21

DESCRIPTION

The Q3Controller_SetTracker function associates the tracker specified by the
tracker parameter with the controller specified by the controllerRef
parameter. If the value of the tracker parameter is NULL, the controller is
attached to the system cursor tracker. Changing a controller’s tracker might
cause the notify functions of both the previous tracker and the new tracker to
be called.

Q3Controller_HasTracker 18

You can use the Q3Controller_HasTracker function to determine whether a
controller is currently associated with a tracker.

TQ3Status Q3Controller_HasTracker (

TQ3ControllerRef controllerRef,

TQ3Boolean *hasTracker);

controllerRef

A reference to a controller.

hasTracker On exit, a Boolean value that indicates whether the specified
controller is currently associated with an active tracker
(kQ3True) or not (kQ3False).

DESCRIPTION

The Q3Controller_HasTracker function returns, in the hasTracker
parameter, a Boolean value that indicates whether the controller specified by
the controllerRef parameter is active and is currently associated with an
active tracker.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-22 QuickDraw 3D Pointing Device Manager Reference

Q3Controller_Track2DCursor 18

You can use the Q3Controller_Track2DCursor function to determine whether
a controller is currently affecting the two-dimensional system cursor.

TQ3Status Q3Controller_Track2DCursor (

TQ3ControllerRef controllerRef,

TQ3Boolean *track2DCursor);

controllerRef

A reference to a controller.

track2DCursor

On exit, a Boolean value that indicates whether the specified
controller is currently affecting the two-dimensional system
cursor (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3Controller_Track2DCursor function returns, in the track2DCursor
parameter, a Boolean value that indicates whether the controller specified by
the controllerRef parameter is currently affecting the two-dimensional
system cursor but the z axis values and orientation of the system cursor tracker
are being ignored. If the specified controller is not attached to the system cursor
tracker or if that controller is inactive, track2DCursor is set to kQ3False.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-23

Q3Controller_Track3DCursor 18

You can use the Q3Controller_Track3DCursor function to determine whether
a controller is currently affecting the depth information also being used with
the system cursor.

TQ3Status Q3Controller_Track3DCursor (

TQ3ControllerRef controllerRef,

TQ3Boolean *track3DCursor);

controllerRef

A reference to a controller.

track3DCursor

On exit, a Boolean value that indicates whether the specified
controller is currently affecting the system cursor and the depth
is being used (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3Controller_Track3DCursor function returns, in the track3DCursor
parameter, a Boolean value that indicates whether the controller specified by
the controllerRef parameter is currently affecting the two-dimensional
system cursor and the z axis values and orientation of the system cursor tracker
are not being ignored. If the specified controller is not attached to the system
cursor tracker or if that controller is inactive, track3DCursor is set to kQ3False.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-24 QuickDraw 3D Pointing Device Manager Reference

Q3Controller_GetButtons 18

You can use the Q3Controller_GetButtons function to get the button state of
a controller.

TQ3Status Q3Controller_GetButtons (

TQ3ControllerRef controllerRef,

unsigned long *buttons);

controllerRef

A reference to a controller.

buttons On exit, the current button state value of the specified controller.

DESCRIPTION

The Q3Controller_GetButtons function returns, in the buttons parameter,
the current button state value of the controller specified by the controllerRef
parameter.

Q3Controller_SetButtons 18

You can use the Q3Controller_SetButtons function to set the button state of
a controller.

TQ3Status Q3Controller_SetButtons (

TQ3ControllerRef controllerRef,

unsigned long buttons);

controllerRef

A reference to a controller.

buttons A button state value.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-25

DESCRIPTION

The Q3Controller_SetButtons function sets the button state of the controller
specified by the controllerRef parameter to the button state value passed
in the buttons parameter. If the specified controller is inactive,
Q3Controller_SetButtons has no effect. Changing a controller’s button
state might cause the notify function of the tracker currently associated with
that controller to be called.

Q3Controller_GetTrackerPosition 18

You can use the Q3Controller_GetTrackerPosition function to get the
position of a controller’s tracker.

TQ3Status Q3Controller_GetTrackerPosition (

TQ3ControllerRef controllerRef,

TQ3Point3D *position);

controllerRef

A reference to a controller.

position On exit, the current position of the tracker associated with the
specified controller.

DESCRIPTION

The Q3Controller_GetTrackerPosition function returns, in the position
parameter, the current position of the tracker associated with the controller
specified by the controllerRef parameter. If no tracker is currently associated
with that controller, Q3Controller_GetTrackerPosition returns the position
of the system cursor’s tracker. Q3Controller_GetTrackerPosition has no
effect if the controller is inactive.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-26 QuickDraw 3D Pointing Device Manager Reference

Q3Controller_SetTrackerPosition 18

You can use the Q3Controller_SetTrackerPosition function to set the
position of a controller’s tracker.

TQ3Status Q3Controller_SetTrackerPosition (

TQ3ControllerRef controllerRef,

const TQ3Point3D *position);

controllerRef

A reference to a controller.

position The desired position of the tracker associated with the specified
controller.

DESCRIPTION

The Q3Controller_SetTrackerPosition function changes the position of the
tracker currently associated with the controller specified by the controllerRef
parameter to the position specified in the position parameter. If no tracker is
currently associated with that controller, Q3Controller_SetTrackerPosition
changes the position of the system cursor’s tracker.
Q3Controller_SetTrackerPosition has no effect if the controller is inactive.

Note
Calling Q3Controller_SetTrackerPosition might cause
the notify function of the controller’s tracker to be called. ◆

Q3Controller_MoveTrackerPosition 18

You can use the Q3Controller_MoveTrackerPosition function to move a
controller’s tracker relative to its current position.

TQ3Status Q3Controller_MoveTrackerPosition (

TQ3ControllerRef controllerRef,

const TQ3Vector3D *delta);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-27

controllerRef

A reference to a controller.

delta A three-dimensional vector specifying a relative change in the
position of the tracker associated with the specified controller.

DESCRIPTION

The Q3Controller_MoveTrackerPosition function changes the position
of the tracker currently associated with the controller specified by the
controllerRef parameter by the relative amount specified in the delta
parameter. If no tracker is currently associated with that controller,
Q3Controller_MoveTrackerPosition changes the position of
the system cursor’s tracker relative to its current position.
Q3Controller_MoveTrackerPosition has no effect if the controller is inactive.

Note
Calling Q3Controller_MoveTrackerPosition
might cause the notify function of the controller’s
tracker to be called. ◆

Q3Controller_GetTrackerOrientation 18

You can use the Q3Controller_GetTrackerOrientation function to get the
current orientation of a controller’s tracker.

TQ3Status Q3Controller_GetTrackerOrientation (

TQ3ControllerRef controllerRef,

TQ3Quaternion *orientation);

controllerRef

A reference to a controller.

orientation On exit, the current orientation of the tracker associated with
the specified controller.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-28 QuickDraw 3D Pointing Device Manager Reference

DESCRIPTION

The Q3Controller_GetTrackerOrientation function returns, in the
orientation parameter, the current orientation of the tracker associated
with the controller specified by the controllerRef parameter. If no
tracker is currently associated with that controller,
Q3Controller_GetTrackerOrientation returns the orientation of the
system cursor’s tracker. Q3Controller_GetTrackerOrientation has
no effect if the controller is inactive.

Q3Controller_SetTrackerOrientation 18

You can use the Q3Controller_SetTrackerOrientation function to set the
orientation of a controller’s tracker.

TQ3Status Q3Controller_SetTrackerOrientation (

TQ3ControllerRef controllerRef,

const TQ3Quaternion *orientation);

controllerRef

A reference to a controller.

orientation The desired orientation of the tracker associated with the
specified controller.

DESCRIPTION

The Q3Controller_SetTrackerOrientation function changes the orientation
of the tracker currently associated with the controller specified by the
controllerRef parameter to the orientation specified in the orientation
parameter. If no tracker is currently associated with that controller,
Q3Controller_SetTrackerOrientation changes the orientation of the system
cursor’s tracker. Q3Controller_SetTrackerOrientation has no effect if the
controller is inactive.

Note
Calling Q3Controller_SetTrackerOrientation
might cause the notify function of the controller’s
tracker to be called. ◆

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-29

Q3Controller_MoveTrackerOrientation 18

You can use the Q3Controller_MoveTrackerOrientation function to reorient
a controller’s tracker relative to its current orientation.

TQ3Status Q3Controller_MoveTrackerOrientation (

TQ3ControllerRef controllerRef,

const TQ3Quaternion *delta);

controllerRef

A reference to a controller.

delta The desired relative change in the orientation of the tracker
associated with the specified controller.

DESCRIPTION

The Q3Controller_MoveTrackerOrientation function changes the
orientation of the tracker currently associated with the controller specified
by the controllerRef parameter by the relative amount specified in the
delta parameter. If no tracker is currently associated with that controller,
Q3Controller_MoveTrackerOrientation changes the orientation of
the system cursor’s tracker relative to its current orientation.
Q3Controller_MoveTrackerOrientation has no effect if the controller
is inactive.

Note
Calling Q3Controller_MoveTrackerOrientation
might cause the notify function of the controller’s
tracker to be called. ◆

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-30 QuickDraw 3D Pointing Device Manager Reference

Q3Controller_GetValues 18

You can use the Q3Controller_GetValues function to get the list of values
of a controller.

TQ3Status Q3Controller_GetValues (

TQ3ControllerRef controllerRef,

unsigned long valueCount,

float *values,

TQ3Boolean *changed,

unsigned long *serialNumber);

controllerRef

A reference to a controller.

valueCount The number of elements in the array pointed to by the values
parameter.

values On entry, a pointer to an array of controller values. The size of
the array is determined by the number of elements in the array
(as specified by the valueCount parameter) and the size of a
controller value (which is controller-dependent).

changed On exit, a Boolean value that indicates whether the specified
array of values was changed (kQ3True) or not (kQ3False).

serialNumber

On entry, a controller serial number, or NULL.

DESCRIPTION

The Q3Controller_GetValues function returns, in the values parameter, a
pointer to an array that contains the current values for the controller specified
in the controllerRef parameter. The valueCount parameter specifies the
number of elements in the array (which you must already have allocated).
Q3Controller_GetValues might fill in fewer elements if the controller does
not support the specified number of values.

If the value of the serialNumber parameter is NULL, Q3Controller_GetValues
fills in the values array and returns the value kQ3True in the changed
parameter. Otherwise, the value specified in the serialNumber parameter is
compared with the controller’s current serial number. If the two serial numbers

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-31

are identical, Q3Controller_GetValues leaves the values array and the
serialNumber parameter unchanged and returns the value kQ3False in the
changed parameter. If the two serial number differ, Q3Controller_GetValues
fills in the values array, updates the serialNumber parameter, and returns the
value kQ3True in the changed parameter.

If the specified controller is inactive, the values array and the changed
parameter are unchanged.

Q3Controller_SetValues 18

You can use the Q3Controller_SetValues function to set the list of values
of a controller.

TQ3Status Q3Controller_SetValues (

TQ3ControllerRef controllerRef,

const float *values,

unsigned long valueCount);

controllerRef

A reference to a controller.

values A pointer to an array of controller values. The size of the array
is determined by the number of elements in the array (as
specified by the valueCount parameter) and the size of a
controller value (which is controller-dependent).

valueCount The number of elements in the array pointed to by the values
parameter.

DESCRIPTION

The Q3Controller_SetValues function copies the data specified in the values
parameter into the value list of the controller specified by the controllerRef
parameter. Q3Controller_SetValues copies the number of elements specified
by the valueCount parameter.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-32 QuickDraw 3D Pointing Device Manager Reference

Managing Controller States 18

QuickDraw 3D provides routines that you can use to save and restore the states
of all the channels associated with a controller. You should save the controller
states when your application becomes inactive and restore them when it
becomes active once again.

Q3ControllerState_New 18

You can use the Q3ControllerState_New function to create a new controller
state object.

TQ3ControllerStateObject Q3ControllerState_New (

TQ3ControllerRef controllerRef);

controllerRef

A reference to a controller.

DESCRIPTION

The Q3ControllerState_New function returns, as its function result,
a reference to a new controller state object for the controller specified
by the controllerRef parameter. You need to call
Q3ControllerState_SaveAndReset to actually fill in the new controller
state object with the current channels. If Q3ControllerState_New cannot
create a new controller state object, it returns NULL.

Q3ControllerState_SaveAndReset 18

You can use the Q3ControllerState_SaveAndReset function to save the
current state of a controller.

TQ3Status Q3ControllerState_SaveAndReset (

TQ3ControllerStateObject

controllerStateObject);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-33

controllerStateObject

A controller state object.

DESCRIPTION

The Q3ControllerState_SaveAndReset function saves the current state of
the controller that is associated with the controller state object specified by
the controllerStateObject parameter. Q3ControllerState_SaveAndReset
also resets those channels to their inactive states. You should call
Q3ControllerState_SaveAndReset to save a controller’s channels when
your application becomes inactive.

Q3ControllerState_Restore 18

You can use the Q3ControllerState_Restore function to restore a saved set
of controller state values.

TQ3Status Q3ControllerState_Restore (

TQ3ControllerStateObject

controllerStateObject);

controllerStateObject

A controller state object.

DESCRIPTION

The Q3ControllerState_Restore function sets the channels of the
controller associated with the controller state object specified by the
controllerStateObject parameter to the channels saved in that
state object.

Creating and Managing Trackers 18

QuickDraw 3D provides routines that you can use to create and manipulate
tracker objects.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-34 QuickDraw 3D Pointing Device Manager Reference

Q3Tracker_New 18

You can use the Q3Tracker_New function to create a new tracker.

TQ3TrackerObject Q3Tracker_New (TQ3TrackerNotifyFunc notifyFunc);

notifyFunc A pointer to a tracker notify function. See page 18-50 for
information on writing a tracker notify function.

DESCRIPTION

The Q3Tracker_New function returns, as its function result, a reference to a new
tracker object. The notifyFunc parameter specifies the tracker’s notify
function, which is called whenever the position or orientation of the tracker
changes. If you want to poll for such changes instead of being notified, set
notifyFunc to NULL. The new tracker is active and has both its position
threshold and its orientation threshold set to 0. If Q3Tracker_New cannot create
a new tracker, it returns NULL.

Q3Tracker_GetNotifyThresholds 18

You can use the Q3Tracker_GetNotifyThresholds function to get the current
notify thresholds of a tracker.

TQ3Status Q3Tracker_GetNotifyThresholds (

TQ3TrackerObject trackerObject,

float *positionThresh,

float *orientationThresh);

trackerObject

A tracker object.

positionThresh

On exit, the current position threshold of the specified tracker.

orientationThresh

On exit, the current orientation threshold (in radians) of the
specified tracker.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-35

DESCRIPTION

The Q3Tracker_GetNotifyThresholds function returns, in the
positionThresh and orientationThresh parameters, the current position
and orientation thresholds of the tracker specified by the trackerObject
parameter. These thresholds determine whether or not a change in position or
orientation is large enough to cause QuickDraw 3D to call the tracker’s notify
function. Both thresholds for a new tracker are set to 0.

Q3Tracker_SetNotifyThresholds 18

You can use the Q3Tracker_SetNotifyThresholds function to set the notify
thresholds of a tracker.

TQ3Status Q3Tracker_SetNotifyThresholds (

TQ3TrackerObject trackerObject,

float positionThresh,

float orientationThresh);

trackerObject

A tracker object.

positionThresh

The desired position threshold of the specified tracker.

orientationThresh

The desired orientation threshold (in radians) of the specified
tracker.

DESCRIPTION

The Q3Tracker_SetNotifyThresholds function sets the position and
orientation thresholds of the tracker specified by the trackerObject parameter
to the values in the positionThresh and orientationThresh parameters.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-36 QuickDraw 3D Pointing Device Manager Reference

Q3Tracker_GetActivation 18

You can use the Q3Tracker_GetActivation function to get the activation state
of a tracker.

TQ3Status Q3Tracker_GetActivation (

TQ3TrackerObject trackerObject,

TQ3Boolean *active);

trackerObject

A tracker object.

active On exit, a Boolean value that indicates whether the specified
tracker is active (kQ3True) or inactive (kQ3False).

DESCRIPTION

The Q3Tracker_GetActivation function returns, in the active parameter,
a Boolean value that indicates whether the tracker specified by the
trackerObject parameter is currently active or inactive.

Q3Tracker_SetActivation 18

You can use the Q3Tracker_SetActivation function to set the activation state
of a tracker.

TQ3Status Q3Tracker_SetActivation (

TQ3TrackerObject trackerObject,

TQ3Boolean active);

trackerObject

A tracker object.

active A Boolean value that indicates whether the specified tracker is
to be made active (kQ3True) or inactive (kQ3False).

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-37

DESCRIPTION

The Q3Tracker_SetActivation function sets the activation state of the tracker
specified by the trackerObject parameter to the value specified in the active
parameter. If the activation state of a tracker is changed, the serial number of
the tracker is incremented.

Q3Tracker_GetEventCoordinates 18

You can use the Q3Tracker_GetEventCoordinates function to get the
settings (coordinates) of a tracker that were recorded at a particular
moment (typically, the time of a button click) by a previous call to
Q3Tracker_SetEventCoordinates.

TQ3Status Q3Tracker_GetEventCoordinates (

TQ3TrackerObject trackerObject,

unsigned long timeStamp,

unsigned long *buttons,

TQ3Point3D *position,

TQ3Quaternion *orientation);

trackerObject

A tracker object.

timeStamp A time stamp.

buttons On exit, the button state value of the specified tracker at the
specified time.

position On exit, the position of the specified tracker at the specified
time. If the tracker is absolute, this parameter contains the
absolute coordinates of the tracker. If the tracker is relative, this
parameter contains the change in position since the last call to
Q3Tracker_GetEventCoordinates.

orientation On exit, the orientation of the specified tracker at the
specified time.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-38 QuickDraw 3D Pointing Device Manager Reference

DESCRIPTION

The Q3Tracker_GetEventCoordinates function returns, in the buttons,
position, and orientation parameters, the button state value, position,
and orientation of the tracker specified by the trackerObject parameter,
at the time specified by the timeStamp parameter. You can set any of the
buttons, position, and orientation parameters to NULL to prevent
Q3Tracker_GetEventCoordinates from returning a value in that parameter.

Q3Tracker_GetEventCoordinates selects the set of event coordinates whose
time stamp is closest to the value specified in the timeStamp parameter. Any
event coordinate sets that are older are discarded from the tracker’s ring buffer.
If the ring buffer is empty, Q3Tracker_GetEventCoordinates returns
kQ3Failure.

Q3Tracker_SetEventCoordinates 18

You can use the Q3Tracker_SetEventCoordinates function to record the
settings (coordinates) of a tracker at a particular time.

TQ3Status Q3Tracker_SetEventCoordinates (

TQ3TrackerObject trackerObject,

unsigned long timeStamp,

unsigned long buttons,

const TQ3Point3D *position,

const TQ3Quaternion *orientation);

trackerObject

A tracker object.

timeStamp A time stamp.

buttons The button state value of the specified tracker, or NULL.

position The position of the specified tracker, or NULL.

orientation The orientation (in radians) of the specified tracker, or NULL.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-39

DESCRIPTION

The Q3Tracker_SetEventCoordinates function places into the ring buffer of
event coordinates for the tracker specified by the trackerObject parameter
the values specified in the buttons, position, and orientation parameters.
The event coordinates are marked with the time stamp specified by the
timeStamp parameter. If the tracker’s ring buffer is full, the oldest item in the
buffer is discarded.

Note
A tracker’s ring buffer can contain up to 10 items.
Time stamps of items in the buffer increase from
oldest to newest. ◆

Q3Tracker_GetButtons 18

You can use the Q3Tracker_GetButtons function to get the button state
of a tracker.

TQ3Status Q3Tracker_GetButtons (

TQ3TrackerObject trackerObject,

unsigned long *buttons);

trackerObject

A tracker object.

buttons On exit, the current button state value of the specified tracker.

DESCRIPTION

The Q3Tracker_GetButtons function returns, in the buttons parameter, the
current button state of the tracker specified by the trackerObject parameter.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-40 QuickDraw 3D Pointing Device Manager Reference

Q3Tracker_ChangeButtons 18

You can use the Q3Tracker_ChangeButtons function to change the button
state of a tracker.

TQ3Status Q3Tracker_ChangeButtons (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

unsigned long buttons,

unsigned long buttonMask);

trackerObject

A tracker object.

controllerRef

A reference to a controller.

buttons The desired button state value of the specified tracker.

buttonMask A button mask.

DESCRIPTION

The Q3Tracker_ChangeButtons function sets the button state of the tracker
specified by the trackerObject parameter to the value specified in the
buttons parameter. The buttonMask parameter specifies a button mask for
the tracker. A bit in the mask should be set if the corresponding button has
changed since the last call to Q3Tracker_ChangeButtons.

The notify function of the specified tracker object may be called when the
Q3Tracker_ChangeButtons function is executed. If, however, the tracker is
inactive when Q3Tracker_ChangeButtons is called, the tracker’s activation
count for the buttons is updated but the notify function is not called.

Note
The controllerRef parameter is used only
by the tracker’s notify function. ◆

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-41

Q3Tracker_GetPosition 18

You can use the Q3Tracker_GetPosition function to get the position
of a tracker.

TQ3Status Q3Tracker_GetPosition (

TQ3TrackerObject trackerObject,

TQ3Point3D *position,

TQ3Vector3D *delta,

TQ3Boolean *changed,

unsigned long *serialNumber);

trackerObject

A tracker object.

position On exit, the current position of the specified tracker.

delta On exit, the change in position since the last call to
Q3Tracker_GetPosition.

changed On exit, a Boolean value that indicates whether the position or
delta parameter was changed (kQ3True) or not (kQ3False).

serialNumber

On entry, a tracker serial number, or NULL. On output, the
current tracker serial number.

DESCRIPTION

The Q3Tracker_GetPosition function returns, in the position parameter, the
current position of the tracker specified by the trackerObject parameter. In
addition, it can return, in the delta parameter, the relative change in position
since the previous call to Q3Tracker_GetPosition.

On entry, if the value of delta is NULL, the relative contribution is combined
into the reported position. If the value of delta is not NULL, then delta is set to
the relative motion that has been accumulated since the previous call to
Q3Tracker_GetPosition. In either case, the position accumulator is set to
(0, 0, 0) by this function.

If the value of the serialNumber parameter is NULL, Q3Tracker_GetPosition
fills in the position and delta parameters and returns the value kQ3True in

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-42 QuickDraw 3D Pointing Device Manager Reference

the changed parameter. Otherwise, the value specified in the serialNumber
parameter is compared with the tracker’s current serial number. If the two
serial numbers are identical, Q3Tracker_GetPosition leaves the two
coordinate parameters and the serialNumber parameter unchanged and
returns the value kQ3False in the changed parameter. If the two serial number
differ, Q3Tracker_GetPosition fills in the two coordinate parameters, updates
the serialNumber parameter, and returns the value kQ3True in the changed
parameter.

If the specified tracker is inactive, then the position parameter is set to the
point (0, 0, 0), the delta parameter is set to (0, 0, 0) if it is non-NULL, and the
changed parameter is set to kQ3False if it is non-NULL.

Q3Tracker_SetPosition 18

You can use the Q3Tracker_SetPosition function to set the position
of a tracker.

TQ3Status Q3Tracker_SetPosition (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

const TQ3Point3D *position);

trackerObject

A tracker object.

controllerRef

A reference to a controller.

position The desired position of the specified tracker.

DESCRIPTION

The Q3Tracker_SetPosition function sets the position of the tracker specified
by the trackerObject and controllerRef parameters to the value specified
in the position parameter. If the specified tracker is inactive,
Q3Tracker_SetPosition has no effect.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-43

Note
Calling Q3Tracker_SetPosition might cause the
notify function of the tracker to be called. ◆

Q3Tracker_MovePosition 18

You can use the Q3Tracker_MovePosition function to move the position of a
tracker relative to its current position.

TQ3Status Q3Tracker_MovePosition (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

const TQ3Vector3D *delta);

trackerObject

A tracker object.

controllerRef

A reference to a controller.

delta The desired change in position of the specified tracker.

DESCRIPTION

The Q3Tracker_MovePosition function adds the value specified by the delta
parameter to the position of the tracker specified by the trackerObject and
controllerRef parameters. If the specified tracker is inactive,
Q3Tracker_MovePosition has no effect.

Note
Calling Q3Tracker_MovePosition might cause the
notify function of the tracker to be called. ◆

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-44 QuickDraw 3D Pointing Device Manager Reference

Q3Tracker_GetOrientation 18

You can use the Q3Tracker_GetOrientation function to get the current
orientation of a tracker.

TQ3Status Q3Tracker_GetOrientation (

TQ3TrackerObject trackerObject,

TQ3Quaternion *orientation,

TQ3Quaternion *delta,

TQ3Boolean *changed,

unsigned long *serialNumber);

trackerObject

A tracker object.

orientation On exit, the current orientation of the specified tracker.

delta On exit, the change in orientation since the last call to
Q3Tracker_GetOrientation.

changed On exit, a Boolean value that indicates whether the
orientation or delta parameters was changed (kQ3True) or
not (kQ3False).

serialNumber

On entry, a tracker serial number, or NULL. On output, the
current tracker serial number.

DESCRIPTION

The Q3Tracker_GetOrientation function returns, in the orientation
parameter, the current orientation of the tracker specified by the
trackerObject parameter. In addition, it may return, in the delta
parameter, the relative change in orientation since the previous call to
Q3Tracker_GetOrientation.

On entry, if the value of delta is NULL, the relative contribution is combined
into the reported orientation. If the value of delta is not NULL, then delta is set
to the relative motion that has been accumulated since the previous call to
Q3Tracker_GetOrientation. In either case, the orientation accumulator is set
to identity by this function.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-45

If the value of the serialNumber parameter is NULL,
Q3Tracker_GetOrientation fills in the orientation and delta parameters
and returns the value kQ3True in the changed parameter. Otherwise, the
value specified in the serialNumber parameter is compared with the
tracker’s current serial number. If the two serial numbers are identical,
Q3Tracker_GetOrientation leaves the two coordinate parameters and
the serialNumber parameter unchanged and returns the value kQ3False
in the changed parameter. If the two serial number differ,
Q3Tracker_GetOrientation fills in the two coordinate parameters, updates
the serialNumber parameter, and returns the value kQ3True in the changed
parameter.

If the specified tracker is inactive, then the orientation parameter is set to
identity, the delta parameter is set to identity if it is non-NULL, and the
changed parameter is set to kQ3False if it is non-NULL.

Q3Tracker_SetOrientation 18

You can use the Q3Tracker_SetOrientation function to set the orientation of
a tracker.

TQ3Status Q3Tracker_SetOrientation (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

const TQ3Quaternion *orientation);

trackerObject

A tracker object.

controllerRef

A reference to a controller.

orientation The desired orientation (in radians) of the specified tracker,
or NULL.

DESCRIPTION

The Q3Tracker_SetOrientation function sets the orientation of the tracker
specified by the trackerObject and controllerRef parameters to the value

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-46 QuickDraw 3D Pointing Device Manager Reference

specified in the orientation parameter. If the specified tracker is inactive,
Q3Tracker_SetOrientation has no effect.

Note
Calling Q3Tracker_SetOrientation might cause the
notify function of the tracker to be called. ◆

Q3Tracker_MoveOrientation 18

You can use the Q3Tracker_MoveOrientation function to set the orientation of
a tracker relative to its current orientation.

TQ3Status Q3Tracker_MoveOrientation (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

const TQ3Quaternion *delta);

trackerObject

A tracker object.

controllerRef

A reference to a controller.

delta The desired change in orientation of the specified tracker.

DESCRIPTION

The Q3Tracker_MoveOrientation function adds the value specified by the
delta parameter to the orientation of the tracker specified by the
trackerObject and controllerRef parameters. If the specified tracker is
inactive, Q3Tracker_MoveOrientation has no effect.

Note
Calling Q3Tracker_MoveOrientation might cause the
notify function of the tracker to be called. ◆

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-47

Application-Defined Routines 18

This section describes the routines you might need to define when using the
routines in the QuickDraw 3D Pointing Device Manager.

TQ3ChannelGetMethod 18

You can define a function that QuickDraw 3D calls to get a channel
of a controller.

typedef TQ3Status (*TQ3ChannelGetMethod) (

TQ3ControllerRef controllerRef,

unsigned long channel,

void *data,

unsigned long *dataSize);

controllerRef

A reference to a controller.

channel An index into the list of channels associated with the specified
controller. This value is always greater than or equal to 0 and
less than the channel count specified at the time
Q3Controller_New was called.

data On entry, a pointer to a buffer. You should put the current value
of the specified controller channel into this buffer.

dataSize On exit, the number of bytes of data written to the
specified buffer.

DESCRIPTION

Your TQ3ChannelGetMethod function should return, in the buffer pointed to by
the data parameter, the current value of the controller channel specified by the
controllerRef and channel parameters. Your function should also return, in
the dataSize parameter, the size of that data. QuickDraw 3D allocates memory
for the data buffer before it calls your function and deallocates the memory
after your function has returned. The maximum number of bytes that the data
buffer can hold is defined by a constant:

#define kQ3ControllerSetChannelMaxDataSize 256

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-48 QuickDraw 3D Pointing Device Manager Reference

SPECIAL CONSIDERATIONS

You need to define a channel-getting method only if you are writing a device
driver for a controller. You can, however, call Q3Controller_GetChannel at
any time to invoke a controller’s channel-getting method.

RESULT CODES

Your channel-getting method should return kQ3Success if it is able to return
the requested information and kQ3Failure otherwise.

SEE ALSO

See the description of Q3Controller_GetChannel on page 18-18 for
information on getting a controller’s channels.

TQ3ChannelSetMethod 18

You can define a function that QuickDraw 3D calls to set a channel
of a controller.

typedef TQ3Status (*TQ3ChannelSetMethod) (

TQ3ControllerRef controllerRef,

unsigned long channel,

const void *data,

unsigned long dataSize);

controllerRef

A reference to a controller.

channel An index into the list of channels associated with the specified
controller. This value is always greater than or equal to 0
and less than the channel count specified at the time
Q3Controller_New was called.

data On entry, a pointer to a buffer that contains the desired value of
the specified controller channel. If this field contains the value
NULL, you should reset the specified channel to a default or
inactive value.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 18-49

dataSize On entry, the number of bytes of data in the specified buffer.

DESCRIPTION

Your TQ3ChannelSetMethod function should set the controller channel
specified by the controllerRef and channel parameters to the value specified
by the data parameter. The dataSize parameter specifies the number of bytes
in the data buffer. QuickDraw 3D allocates memory for the data buffer before it
calls your function and deallocates the memory after your function has
returned. The maximum number of bytes that the data buffer can hold is
defined by a constant:

#define kQ3ControllerSetChannelMaxDataSize 256

SPECIAL CONSIDERATIONS

You need to define a channel-setting method only if you are writing a device
driver for a controller. You can, however, call Q3Controller_SetChannel at
any time to invoke a controller’s channel-setting method.

RESULT CODES

Your channel-setting method should return kQ3Success if it is able to set the
specified channel to the specified value and kQ3Failure otherwise.

SEE ALSO

See the description of Q3Controller_SetChannel on page 18-19 for
information on setting a controller’s channels.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-50 QuickDraw 3D Pointing Device Manager Reference

TQ3TrackerNotifyFunc 18

You can define a tracker notify function that QuickDraw 3D calls when a
controller associated with a tracker has new data.

typedef TQ3Status (*TQ3TrackerNotifyFunc) (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef);

trackerObject

A tracker object.

controllerRef

A reference to a controller.

DESCRIPTION

Your TQ3TrackerNotifyFunc function is called whenever any controller
associated with a tracker has new data to be processed and the data meets or
exceeds the current position and orientation thresholds for the tracker. The
affected controller and tracker are passed in the controllerRef and
trackerObject parameters. Your tracker notify function might, for example,
schedule your application to awaken and redraw the scene.

SPECIAL CONSIDERATIONS

Your tracker notify function might be called at interrupt time, but it is never
called reentrantly.

RESULT CODES

Your tracker notify function should return kQ3Success if it is successful and
kQ3Failure otherwise.

SEE ALSO

See the description of Q3Tracker_New on page 18-34 for information on setting
the notify function of a tracker.

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

Summary of the QuickDraw 3D Pointing Device Manager 18-51

Summary of the QuickDraw 3D Pointing Device Manager 18

C Summary 18

Constants 18

#define kQ3ControllerSetChannelMaxDataSize 256

Data Types 18

Controller Data Types

typedef struct TQ3ControllerData {

char *signature;

unsigned long valueCount;

unsigned long channelCount;

TQ3ChannelGetMethod channelGetMethod;

TQ3ChannelSetMethod channelSetMethod;

} TQ3ControllerData;

typedef void *TQ3ControllerRef;

QuickDraw 3D Pointing Device Manager Routines 18

Creating and Managing Controllers

TQ3ControllerRef Q3Controller_New (

const TQ3ControllerData *controllerData);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-52 Summary of the QuickDraw 3D Pointing Device Manager

TQ3Status Q3Controller_GetListChanged (

TQ3Boolean *listChanged,

unsigned long *serialNumber);

TQ3Status Q3Controller_Next (TQ3ControllerRef controllerRef,

TQ3ControllerRef *nextControllerRef);

TQ3Status Q3Controller_Decommission (

TQ3ControllerRef controllerRef);

TQ3Status Q3Controller_GetActivation (

TQ3ControllerRef controllerRef,

TQ3Boolean *active);

TQ3Status Q3Controller_SetActivation (

TQ3ControllerRef controllerRef,

TQ3Boolean active);

TQ3Status Q3Controller_GetSignature (

TQ3ControllerRef controllerRef,

char *signature,

unsigned long numChars);

TQ3Status Q3Controller_GetChannel (

TQ3ControllerRef controllerRef,

unsigned long channel,

void *data,

unsigned long *dataSize);

TQ3Status Q3Controller_SetChannel (

TQ3ControllerRef controllerRef,

unsigned long channel,

const void *data,

unsigned long dataSize);

TQ3Status Q3Controller_GetValueCount (

TQ3ControllerRef controllerRef,

unsigned long *valueCount);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

Summary of the QuickDraw 3D Pointing Device Manager 18-53

TQ3Status Q3Controller_SetTracker (

TQ3ControllerRef controllerRef,

TQ3TrackerObject tracker);

TQ3Status Q3Controller_HasTracker (

TQ3ControllerRef controllerRef,

TQ3Boolean *hasTracker);

TQ3Status Q3Controller_Track2DCursor (

TQ3ControllerRef controllerRef,

TQ3Boolean *track2DCursor);

TQ3Status Q3Controller_Track3DCursor (

TQ3ControllerRef controllerRef,

TQ3Boolean *track3DCursor);

TQ3Status Q3Controller_GetButtons (

TQ3ControllerRef controllerRef,

unsigned long *buttons);

TQ3Status Q3Controller_SetButtons (

TQ3ControllerRef controllerRef,

unsigned long buttons);

TQ3Status Q3Controller_GetTrackerPosition (

TQ3ControllerRef controllerRef,

TQ3Point3D *position);

TQ3Status Q3Controller_SetTrackerPosition (

TQ3ControllerRef controllerRef,

const TQ3Point3D *position);

TQ3Status Q3Controller_MoveTrackerPosition (

TQ3ControllerRef controllerRef,

const TQ3Vector3D *delta);

TQ3Status Q3Controller_GetTrackerOrientation (

TQ3ControllerRef controllerRef,

TQ3Quaternion *orientation);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-54 Summary of the QuickDraw 3D Pointing Device Manager

TQ3Status Q3Controller_SetTrackerOrientation (

TQ3ControllerRef controllerRef,

const TQ3Quaternion *orientation);

TQ3Status Q3Controller_MoveTrackerOrientation (

TQ3ControllerRef controllerRef,

const TQ3Quaternion *delta);

TQ3Status Q3Controller_GetValues (

TQ3ControllerRef controllerRef,

unsigned long valueCount,

float *values,

TQ3Boolean *changed,

unsigned long *serialNumber);

TQ3Status Q3Controller_SetValues (

TQ3ControllerRef controllerRef,

const float *values,

unsigned long valueCount);

Managing Controller States

TQ3ControllerStateObject Q3ControllerState_New (

TQ3ControllerRef controllerRef);

TQ3Status Q3ControllerState_SaveAndReset (

TQ3ControllerStateObject

controllerStateObject);

TQ3Status Q3ControllerState_Restore (

TQ3ControllerStateObject

controllerStateObject);

Creating and Managing Trackers

TQ3TrackerObject Q3Tracker_New(TQ3TrackerNotifyFunc notifyFunc);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

Summary of the QuickDraw 3D Pointing Device Manager 18-55

TQ3Status Q3Tracker_GetNotifyThresholds (

TQ3TrackerObject trackerObject,

float *positionThresh,

float *orientationThresh);

TQ3Status Q3Tracker_SetNotifyThresholds (

TQ3TrackerObject trackerObject,

float positionThresh,

float orientationThresh);

TQ3Status Q3Tracker_GetActivation (

TQ3TrackerObject trackerObject,

TQ3Boolean *active);

TQ3Status Q3Tracker_SetActivation (

TQ3TrackerObject trackerObject,

TQ3Boolean active);

TQ3Status Q3Tracker_GetEventCoordinates (

TQ3TrackerObject trackerObject,

unsigned long timeStamp,

unsigned long *buttons,

TQ3Point3D *position,

TQ3Quaternion *orientation);

TQ3Status Q3Tracker_SetEventCoordinates (

TQ3TrackerObject trackerObject,

unsigned long timeStamp,

unsigned long buttons,

const TQ3Point3D *position,

const TQ3Quaternion *orientation);

TQ3Status Q3Tracker_GetButtons(TQ3TrackerObject trackerObject,

unsigned long *buttons);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

18-56 Summary of the QuickDraw 3D Pointing Device Manager

TQ3Status Q3Tracker_ChangeButtons (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

unsigned long buttons,

unsigned long buttonMask);

TQ3Status Q3Tracker_GetPosition (

TQ3TrackerObject trackerObject,

TQ3Point3D *position,

TQ3Vector3D *delta,

TQ3Boolean *changed,

unsigned long *serialNumber);

TQ3Status Q3Tracker_SetPosition (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

const TQ3Point3D *position);

TQ3Status Q3Tracker_MovePosition (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

const TQ3Vector3D *delta);

TQ3Status Q3Tracker_GetOrientation (

TQ3TrackerObject trackerObject,

TQ3Quaternion *orientation,

TQ3Quaternion *delta,

TQ3Boolean *changed,

unsigned long *serialNumber);

TQ3Status Q3Tracker_SetOrientation (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

const TQ3Quaternion *orientation);

TQ3Status Q3Tracker_MoveOrientation (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef,

const TQ3Quaternion *delta);

C H A P T E R 1 8

QuickDraw 3D Pointing Device Manager

Summary of the QuickDraw 3D Pointing Device Manager 18-57

Application-Defined Routines 18

typedef TQ3Status (*TQ3ChannelGetMethod) (

TQ3ControllerRef controllerRef,

unsigned long channel,

void *data,

unsigned long *dataSize);

typedef TQ3Status (*TQ3ChannelSetMethod) (

TQ3ControllerRef controllerRef,

unsigned long channel,

const void *data,

unsigned long dataSize);

typedef TQ3Status (*TQ3TrackerNotifyFunc) (

TQ3TrackerObject trackerObject,

TQ3ControllerRef controllerRef);

C H A P T E R 1 9

Contents

19-1

Contents

Figure 19-0
Listing 19-0
Table 19-0

19 Error Manager

About the Error Manager 19-3
Using the Error Manager 19-4
Error Manager Reference 19-5

Error Manager Routines 19-5
Registering Error, Warning, and Notice Callback Routines 19-5
Determining Whether an Error Is Fatal 19-7
Getting Errors, Warnings, and Notices Directly 19-7
Getting Operating System Errors 19-9

Application-Defined Routines 19-11
Summary of the Error Manager 19-14

C Summary 19-14
Data Types 19-14
Error Manager Routines 19-14
Application-Defined Routines 19-15

Errors 19-15

This document was created with FrameMaker 4.0.4

C H A P T E R 1 9

About the Error Manager

19-3

Error Manager 19

This chapter describes the Error Manager, the part of QuickDraw 3D that you
can use to handle any errors or other exceptional conditions that occur during
the execution of QuickDraw 3D routines.

About the Error Manager 19

QuickDraw 3D defines several levels of exceptional conditions that can occur
during the execution of QuickDraw 3D routines. An exceptional condition can
be an error, a warning, or a notice, depending on the severity of the exceptional
condition.

■

An

error

 is a nonrecoverable condition that causes the currently executing
QuickDraw 3D routine to fail. A

fatal error

 is an error whose effects persist
even after the call that caused it has ended. Once a fatal error has occurred,
all future calls to QuickDraw 3D routines are likely to fail. Whether future
calls actually do fail depends on whether those calls are suitably related to
the call that generated the fatal error. For example, even if a fatal error
occurs during rendering, you might still be able to perform file operations
(perhaps to save the data that couldn’t be rendered).

■

A

warning

 is a condition that, although less severe than an error, might
cause an error if your application continues execution without handling
the warning.

■

A

notice

 is a condition that is less severe than a warning and will likely not
cause problems. In general, notices indicate inefficiencies or other small
problems in using QuickDraw 3D.

QuickDraw 3D notifies your application of errors, warnings, and notices by
executing application-defined callback routines you have previously registered
with the Error Manager. Once a callback routine is registered, QuickDraw 3D
calls it whenever the appropriate condition occurs.

IMPORTANT

Notices are generated only by debugging versions
of the QuickDraw 3D shared library.

▲

You register a callback routine by passing its address to the

Q3Error_Register

,

Q3Warning_Register

, or

Q3Notice_Register

 function, depending on whether
the callback routine is to handle errors, warnings, or notices. If you do not

This document was created with FrameMaker 4.0.4

C H A P T E R 1 9

Error Manager

19-4

Using the Error Manager

register a callback routine for errors, the Error Manager calls an internal error
handler that attempts to handle the exception. The manner in which the
exception handler handles that error can vary, depending on the operating
system. For example, on the Macintosh Operating System, the internal
exception handler of the debugging version calls the

DebugStr

 function.

Using the Error Manager 19

For each level of exceptional condition (that is, for errors, warnings, and
notices), QuickDraw 3D keeps track of the first and the most recent exceptional
conditions that have occurred since the last time an exceptional condition of
that type was posted. For example, when the first error occurs, that error is
posted both as the first and as the most recent error. Any subsequent error is
posted as the most recent error to occur.

When you call a

_Get

 function to retrieve an error, warning, or notice, the
function returns, as its function result, the most recent error, warning, or notice.
For example, when you call

Q3Error_Get

, it returns, as its function result, the
most recent error.

Q3Error_Get

 also returns, through its

firstError

parameter, the oldest unreported error that occurred during a QuickDraw 3D
routine. You can set this parameter to

NULL

 if you do not care about the oldest
unreported error.

Note

The oldest unreported error, warning, or
notice is sometimes called

sticky

.

◆

Once you’ve called the

Q3Error_Get

 function to retrieve the most recent and
the oldest unreported QuickDraw 3D errors, the Error Manager automatically
clears those error codes the next time you call a QuickDraw 3D function that is
not part of the Error Manager.

If an error occurs in the operating system on which QuickDraw 3D is running,
the Error Manager posts an error indicating which the operating system
encountered the error. You can then call an appropriate function to retrieve
the system-specific error. For instance, if an error occurs while reading or
writing a file in the Macintosh Operating System, then the

Q3Error_Get

function returns the error

kQ3ErrorMacintoshError

. In that case, you can call
the

Q3MacintoshError_Get

 function to get the Macintosh-specific error code.

C H A P T E R 1 9

Error Manager

Error Manager Reference

19-5

Error Manager Reference 19

This section describes the routines provided by the Error Manager. It also
describes the callback routines you can define to handle QuickDraw 3D errors,
warnings, and notices.

Error Manager Routines 19

This section describes the Error Manager routines you can use to handle errors,
warnings, and notices.

Registering Error, Warning, and Notice Callback Routines 19

The Error Manager provides functions that you can use to register error,
warning, and notice callback routines.

Q3Error_Register 19

You can use the

Q3Error_Register

 function to register an application-defined
error-handling routine.

TQ3Status Q3Error_Register (

TQ3ErrorMethod errorPost,

long reference);

errorPost

A pointer to an application-defined error-handling routine.

reference

A long integer for your application’s own use.

DESCRIPTION

The

Q3Error_Register

 function registers with the Error Manager the
error-handling routine specified by the

errorPost

 parameter. See page 19-11
for information on defining an error-handling routine.

C H A P T E R 1 9

Error Manager

19-6

Error Manager Reference

Q3Warning_Register 19

You can use the

Q3Warning_Register

 function to register an
application-defined warning-handling routine.

TQ3Status Q3Warning_Register (

TQ3WarningMethod warningPost,

long reference);

warningPost

A pointer to an application-defined warning-handling routine.

reference

A long integer for your application’s own use.

DESCRIPTION

The

Q3Warning_Register

 function registers with the Error Manager the
warning-handling routine specified by the

warningPost

 parameter. See
page 19-12 for information on defining a warning-handling routine.

Q3Notice_Register 19

You can use the

Q3Notice_Register

 function to register an application-
defined notice-handling routine.

TQ3Status Q3Notice_Register (

TQ3NoticeMethod noticePost,

long reference);

noticePost

A pointer to an application-defined notice-handling routine.

reference

A long integer for your application’s own use.

DESCRIPTION

The

Q3Notice_Register

 function registers with the Error Manager the
notice-handling routine specified by the

noticePost

 parameter. See page 19-13
for information on defining a notice-handling routine.

C H A P T E R 1 9

Error Manager

Error Manager Reference

19-7

Determining Whether an Error Is Fatal 19

The Error Manager provides a routine that you can use to determine whether
an error is a fatal error.

Q3Error_IsFatalError 19

You can use the

Q3Error_IsFatalError

 function to determine whether an
error is fatal.

TQ3Boolean Q3Error_IsFatalError (TQ3Error error);

error

A code that indicates the type of error that has occurred.

DESCRIPTION

The

Q3Error_IsFatalError

 function returns, as its function result, a Boolean
value that indicates whether the error value specified by the

error

 parameter
is a fatal error (

kQ3True

) or is not a fatal error (

kQ3False

). You can call

Q3Error_IsFatalError

 from within an error-handling method or after
having called

Q3Error_Get

 to get an error directly. If

Q3Error_IsFatalError

returns

kQ3True

, you should not call any other QuickDraw 3D routines.
QuickDraw 3D executes a long jump when it encounters a fatal error; your
application should terminate.

Currently, QuickDraw 3D recognizes these errors as fatal:

kQ3ErrorInternalError

kQ3ErrorNoRecovery

Getting Errors, Warnings, and Notices Directly 19

The Error Manager provides routines that you can use to retrieve an error,
warning, or notice directly.

C H A P T E R 1 9

Error Manager

19-8

Error Manager Reference

IMPORTANT

You should use these routines only if you have
not already registered an error-, warning-, or
notice-handling callback routine.

▲

Q3Error_Get 19

You can use the

Q3Error_Get

 function to get the most recent and the oldest
unreported errors from a QuickDraw 3D routine.

TQ3Error Q3Error_Get (TQ3Error *firstError);

firstError

On exit, the first unreported error from a QuickDraw 3D
routine. Set this parameter to

NULL

 if you do not want the first
unreported error to be returned to you.

DESCRIPTION

The

Q3Error_Get

 function returns, as its function result, the code of the
most recent error that occurred after one or more previous calls to any
QuickDraw 3D routines.

Q3Error_Get

 causes QuickDraw 3D to clear that error
code when you next call any QuickDraw 3D routine other than

Q3Error_Get

itself.

Q3Error_Get

 also returns, in the

firstError parameter, the oldest
unreported error that occurred during a QuickDraw 3D routine.

Q3Warning_Get 19

You can use the Q3Warning_Get function to get the most recent and the oldest
unreported warnings from a QuickDraw 3D routine.

TQ3Warning Q3Warning_Get (TQ3Warning *firstWarning);

firstWarning

On exit, the first unreported warning from a QuickDraw 3D
routine. Set this parameter to NULL if you do not want the first
unreported warning to be returned to you.

C H A P T E R 1 9

Error Manager

Error Manager Reference 19-9

DESCRIPTION

The Q3Warning_Get function returns, as its function result, the code of the
most recent warning that occurred after one or more previous calls to any
QuickDraw 3D routines. Q3Warning_Get causes QuickDraw 3D to clear
that warning code when you next call any QuickDraw 3D routine other
than Q3Warning_Get itself. Q3Warning_Get also returns, in the
firstWarning parameter, the last unreported warning that occurred
during a QuickDraw 3D routine.

Q3Notice_Get 19

You can use the Q3Notice_Get function to get the most recent and the oldest
unreported notice from a QuickDraw 3D routine.

TQ3Notice Q3Notice_Get (TQ3Notice *firstNotice);

firstNotice On exit, the first unreported notice from a QuickDraw 3D
routine. Set this parameter to NULL if you do not want the first
unreported notice to be returned to you.

DESCRIPTION

The Q3Notice_Get function returns, as its function result, the code of the
most recent notice that occurred after one or more previous calls to any
QuickDraw 3D routines. Q3Notice_Get causes QuickDraw 3D to clear
that notice code when you next call any QuickDraw 3D routine other
than Q3Notice_Get itself. Q3Notice_Get also returns, in the firstNotice
parameter, the last unreported notice that occurred during a QuickDraw 3D
routine.

Notices are returned only by the debugging version of the QuickDraw 3D
shared library.

Getting Operating System Errors 19

The Error Manager provides routines that you can use to retrieve errors that
are specific to a particular operating system. In general, these errors are posted
by the underlying operating system in response to errors encountered when
accessing a file, a resource, or a window system.

C H A P T E R 1 9

Error Manager

19-10 Error Manager Reference

You should call Q3MacintoshError_Get when Q3Error_Get returns
kQ3ErrorMacintoshError, and you should call Q3UnixError_Get when
Q3Error_Get returns kQ3ErrorUnixError.

Q3MacintoshError_Get 19

You can use the Q3MacintoshError_Get function to get the most recent and
the oldest unreported error generated by the Macintosh Operating System.

OSErr Q3MacintoshError_Get (OSErr *firstMacErr);

firstMacErr On exit, the first unreported error from a Macintosh system
software routine.

DESCRIPTION

The Q3MacintoshError_Get function returns, as its function result, the
most recent error generated by the Macintosh system software.
Q3MacintoshError_Get also returns, in the firstMacErr parameter, the first
unreported error that occurred during a Macintosh system software routine.

Q3UnixError_Get 19

You can use the Q3UnixError_Get function to get the most recent and the
oldest unreported error generated by the UNIX operating system.

int Q3UnixError_Get (int *firstUnixError);

firstUnixError

On exit, the first unreported error from a UNIX routine.

C H A P T E R 1 9

Error Manager

Error Manager Reference 19-11

DESCRIPTION

The Q3UnixError_Get function returns, as its function result, the most recent
error generated by the UNIX kernel. Q3UnixError_Get also returns, in the
firstUnixError parameter, the oldest unreported error that occurred during a
UNIX operating system routine.

Application-Defined Routines 19

This section describes the callback routines you can define if you want your
application to be automatically informed whenever an error, warning, or notice
occurs during the execution of QuickDraw 3D routines.

TQ3ErrorMethod 19

You can define an error-handling function to handle errors that occur during
the execution of QuickDraw 3D routines.

typedef void (*TQ3ErrorMethod) (

TQ3Error firstError,

TQ3Error lastError,

long reference);

firstError A code that indicates the first error that occurred since the last
time your error-handling function was called.

lastError A code that indicates the most recent error that occurred.

reference A long integer for your application’s own use.

DESCRIPTION

Your TQ3ErrorMethod function is called whenever a QuickDraw 3D routine
generates an error (fatal or otherwise) during its execution that QuickDraw 3D
cannot handle internally. Your error-handling function should handle the error
conditions indicated by the firstError and lastError parameters. If
necessary, you can long jump out of your error method.

C H A P T E R 1 9

Error Manager

19-12 Error Manager Reference

Your function must not call any QuickDraw 3D routines other than
Q3Error_IsFatalError (which you can call to determine if the error was
fatal). The reference parameter contains the long integer that you passed
to Q3Error_Register when you registered your error handler. You can,
for example, use that long integer to point to any data required by your
error handler.

TQ3WarningMethod 19

You can define a function to handle warnings that occur during the execution
of QuickDraw 3D routines.

typedef void (*TQ3WarningMethod) (

TQ3Warning firstWarning,

TQ3Warning lastWarning,

long reference);

firstWarning

A code that indicates the first warning that occurred since the
last time your warning-handling function was called.

lastWarning A code that indicates the most recent warning that occurred.

reference A long integer for your application’s own use.

DESCRIPTION

Your TQ3WarningMethod function is called whenever a QuickDraw 3D routine
generates a warning during its execution that QuickDraw 3D cannot handle
internally. Your warning-handling function should handle the warning
conditions indicated by the firstWarning and lastWarning parameters. Your
function must not call any QuickDraw 3D routines. The reference parameter
contains the long integer that you passed to Q3Warning_Register when you
registered your warning handler. You can, for example, use that long integer to
point to any data required by your warning handler.

C H A P T E R 1 9

Error Manager

Error Manager Reference 19-13

TQ3NoticeMethod 19

You can define a function to handle notices that occur during the execution of
QuickDraw 3D routines.

typedef void (*TQ3NoticeMethod) (

TQ3Notice firstNotice,

TQ3Notice lastNotice,

long reference);

firstNotice A code that indicates the first notice that occurred since the last
time your notice-handling function was called.

lastNotice A code that indicates the most recent notice that occurred.

reference A long integer for your application’s own use.

DESCRIPTION

Your TQ3NoticeMethod function is called whenever a QuickDraw 3D routine
generates a notice during its execution that QuickDraw 3D cannot handle
internally. Your notice-handling function should handle the notice conditions
indicated by the firstNotice and lastNotice parameters. Your function
must not call any QuickDraw 3D routines. The reference parameter contains
the long integer that you passed to Q3Notice_Register when you registered
your notice handler. You can, for example, use that long integer to point to any
data required by your notice handler.

C H A P T E R 1 9

Error Manager

19-14 Summary of the Error Manager

Summary of the Error Manager 19

C Summary 19

Data Types 19

typedef long TQ3Error;

typedef long TQ3Warning;

typedef long TQ3Notice;

Error Manager Routines 19

Registering Error, Warning, and Notice Callback Routines

TQ3Status Q3Error_Register (TQ3ErrorMethod errorPost, long reference);

TQ3Status Q3Warning_Register (TQ3WarningMethod warningPost, long reference);

TQ3Status Q3Notice_Register (TQ3NoticeMethod noticePost, long reference);

Determining Whether an Error is Fatal

TQ3Boolean Q3Error_IsFatalError (

TQ3Error error);

Getting Errors, Warnings, and Notices Directly

TQ3Error Q3Error_Get (TQ3Error *firstError);

TQ3Warning Q3Warning_Get (TQ3Warning *firstWarning);

TQ3Notice Q3Notice_Get (TQ3Notice *firstNotice);

C H A P T E R 1 9

Error Manager

Summary of the Error Manager 19-15

Getting Operating System Errors

OSErr Q3MacintoshError_Get (OSErr *firstMacErr);

int Q3UnixError_Get (int *firstUnixError);

Application-Defined Routines 19

typedef void (*TQ3ErrorMethod)(TQ3Error firstError,

TQ3Error lastError,

long reference);

typedef void (*TQ3WarningMethod) (

TQ3Warning firstWarning,

TQ3Warning lastWarning,

long reference);

typedef void (*TQ3NoticeMethod) (

TQ3Notice firstNotice,

TQ3Notice lastNotice,

long reference);

Errors 19

kQ3ErrorUnixError A UNIX operating system error
kQ3ErrorMacintoshError A Macintosh Operating System error

C H A P T E R 2 0

Contents

20-1

Contents

Figure 20-0
Listing 20-0
Table 20-0

20 QuickDraw 3D Mathematical
Utilities

About QuickDraw 3D Mathematical Utilities 20-3
QuickDraw 3D Mathematical Utilities Reference 20-4

Data Structures 20-4
Bounding Boxes 20-4
Bounding Spheres 20-5

QuickDraw 3D Mathematical Utilities 20-6
Setting Points and Vectors 20-6
Converting Dimensions of Points and Vectors 20-12
Subtracting Points 20-15
Calculating Distances Between Points 20-17
Determining Point Relative Ratios 20-23
Adding and Subtracting Points and Vectors 20-26
Scaling Vectors 20-30
Determining the Lengths of Vectors 20-32
Normalizing Vectors 20-33
Adding and Subtracting Vectors 20-34
Determining Vector Cross Products 20-37
Determining Vector Dot Products 20-39
Transforming Points and Vectors 20-41
Negating Vectors 20-48
Converting Points from Cartesian to Polar or Spherical Form 20-49
Determining Point Affine Combinations 20-51
Managing Matrices 20-55
Setting Up Transformation Matrices 20-62
Utility Functions 20-71
Managing Quaternions 20-71

This document was created with FrameMaker 4.0.4

C H A P T E R 2 0

20-2

Contents

Managing Bounding Boxes 20-84
Managing Bounding Spheres 20-89

Summary of QuickDraw 3D Mathematical Utilities 20-95
C Summary 20-95

Constants 20-95
Data Types 20-96
QuickDraw 3D Mathematical Utilities 20-96

C H A P T E R 2 0

About QuickDraw 3D Mathematical Utilities

20-3

QuickDraw 3D Mathematical Utilities 20

This chapter describes a large number of mathematical utility functions
provided by QuickDraw 3D that you can use to perform mathematical
operations on points, vectors, matrices, and quaternions. It also describes
the trigonometric and other standard mathematical routines that
QuickDraw 3D provides.

To use this chapter, you should already be familiar with the basic definitions of
points, vectors, matrices, and quaternions that are in the chapter “Geometric
Objects.”

About QuickDraw 3D Mathematical Utilities 20

QuickDraw 3D provides a large number of utility functions for operating on
basic mathematical objects such as points, vectors, matrices, and quaternions.
You can use these utilities to

■

set the components of points and vectors

■

convert dimensions of points and vectors

■

subtract points from points

■

calculate distances between points

■

determine point-relative ratios

■

add and subtract points and vectors

■

scale vectors

■

determine the lengths of vectors

■

normalize vectors

■

add and subtract vectors

■

determine vector cross products and dot products

■

transform points and vectors

■

negate vectors

■

convert points from Cartesian form to polar or spherical form

■

determine affine combinations of points

This document was created with FrameMaker 4.0.4

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-4

QuickDraw 3D Mathematical Utilities Reference

■

manipulate matrices

■

set up transformation matrices

■

calculate trigonometric ratios

■

manipulate quaternions

Many of these functions might be implemented as C language macros. As a
result, you should avoid such operations as applying the auto-increment
operator (++) to function parameters.

QuickDraw 3D also supplies functions that you can use to manage bounding
boxes and spheres for any kind of QuickDraw 3D object.

QuickDraw 3D Mathematical Utilities Reference 20

This section describes the QuickDraw 3D utility routines that you can use to
perform mathematical operations on points, vectors, matrices, and quaternions.
It also describes the data structures and routines that you can use to manage
bounding volumes.

Data Structures 20

This section describes the data structures you can use to define bounding
volumes. QuickDraw 3D provides two kinds of bounding volumes:

■

bounding boxes

■

bounding spheres

Bounding Boxes 20

A bounding box is a rectangular box, aligned with the coordinate axes,
that completely encloses an object. A bounding box is defined by the

TQ3BoundingBox

 data type.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference

20-5

typedef struct TQ3BoundingBox {

TQ3Point3D min;

TQ3Point3D max;

TQ3Boolean isEmpty;

} TQ3BoundingBox;

Field descriptions

min

The lower-left corner of the bounding box.

max

The upper-right corner of the bounding box.

isEmpty

A Boolean value that specifies whether the bounding
box is empty (

kQ3True

) or not (

kQ3False

). If this field
contains the value

kQ3True

, the other field of this structure
are invalid.

Bounding Spheres 20

A bounding sphere is a sphere that completely encloses an object. A bounding
sphere is defined by the

TQ3BoundingSphere

 data type.

typedef struct TQ3BoundingSphere {

TQ3Point3D origin;

float radius;

TQ3Boolean isEmpty;

} TQ3BoundingSphere;

Field descriptions

origin

The origin of the bounding sphere.

radius

The radius of the bounding sphere; all points making up
the bounding sphere are this far away from the origin of
the sphere.

isEmpty

A Boolean value that specifies whether the bounding
sphere is empty (

kQ3True

) or not (

kQ3False

). If this field
contains the value

kQ3True

, the other field of this structure
are invalid.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-6

QuickDraw 3D Mathematical Utilities Reference

QuickDraw 3D Mathematical Utilities 20

This section describes QuickDraw 3D’s utility functions for operating on basic
mathematical objects such as points, vectors, matrices, and quaternions. It also
describes routines you can use to manage bounding volumes.

Setting Points and Vectors 20

QuickDraw 3D supplies routines that you can use to set the components of a
point or vector. You must already have allocated space for the point or vector
before attempting to modify its contents.

Q3Point2D_Set 20

You can use the

Q3Point2D_Set

 function to set the coordinates of a
two-dimensional point.

TQ3Point2D *Q3Point2D_Set (

TQ3Point2D *point2D,

float x,

float y);

point2D

A two-dimensional point.

x

The

x

 coordinate of the point.

y

The

y

 coordinate of the point.

DESCRIPTION

The

Q3Point2D_Set

 function returns, as its function result and in the

point2D

parameter, the two-dimensional point specified by the

x

 and

y

 parameters.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference

20-7

Q3Param2D_Set 20

You can use the

Q3Param2D_Set

 function to set the components of a two-
dimensional parametric point.

TQ3Param2D *Q3Param2D_Set (

TQ3Param2D *param2D,

float u,

float v);

param2D

A parametric point.

u

The

u

 component of the parametric point.

v

The

v

 component of the parametric point.

DESCRIPTION

The

Q3Param2D_Set

 function returns, as its function result and in the

param2D

 parameter, the two-dimensional parametric point specified by
the

u

 and

v

 parameters.

Q3Point3D_Set 20

You can use the

Q3Point3D_Set

 function to set the coordinates of a three-
dimensional point.

TQ3Point3D *Q3Point3D_Set (

TQ3Point3D *point3D,

float x,

float y,

float z);

point3D

A three-dimensional point.

x

The

x

 coordinate of the point.

y

The

y

 coordinate of the point.

z

The

z

 coordinate of the point.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-8

QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The

Q3Point3D_Set

 function returns, as its function result and in the

point3D

parameter, the three-dimensional point specified by the

x

,

y

, and z parameters.

Q3RationalPoint3D_Set 20

You can use the Q3RationalPoint3D_Set function to set the coordinates of a
three-dimensional rational point.

TQ3RationalPoint3D *Q3RationalPoint3D_Set (

TQ3RationalPoint3D *point3D,

float x,

float y,

float w);

point3D A three-dimensional point.

x The x coordinate of the point.

y The y coordinate of the point.

w The w coordinate of the point.

DESCRIPTION

The Q3RationalPoint3D_Set function returns, as its function result and in the
point3D parameter, the three-dimensional rational point specified by the x, y,
and w parameters.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-9

Q3RationalPoint4D_Set 20

You can use the Q3RationalPoint4D_Set function to set the coordinates of a
four-dimensional rational point.

TQ3RationalPoint4D *Q3RationalPoint4D_Set (

TQ3RationalPoint4D *point4D,

float x,

float y,

float z,

float w);

point4D A four-dimensional point.

x The x coordinate of the point.

y The y coordinate of the point.

z The z coordinate of the point.

w The w coordinate of the point.

DESCRIPTION

The Q3RationalPoint4D_Set function returns, as its function result and in the
point4D parameter, the four-dimensional rational point specified by the x, y, z,
and w parameters.

Q3PolarPoint_Set 20

You can use the Q3PolarPoint_Set function to set the components of a
polar point.

TQ3PolarPoint *Q3PolarPoint_Set (

TQ3PolarPoint *polarPoint,

float r,

float theta);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-10 QuickDraw 3D Mathematical Utilities Reference

polarPoint A polar point.

r The r component of the polar point.

theta The θ component of the polar point.

DESCRIPTION

The Q3PolarPoint_Set function returns, as its function result and in the
polarPoint parameter, the polar point specified by the r and theta
parameters.

Q3SphericalPoint_Set 20

You can use the Q3SphericalPoint_Set function to set the components of a
spherical point.

TQ3SphericalPoint *Q3SphericalPoint_Set (

TQ3SphericalPoint *sphericalPoint,

float rho,

float theta,

float phi);

sphericalPoint

A spherical point.

rho The ρ component of the spherical point.

theta The θ component of the spherical point.

phi The φ component of the spherical point.

DESCRIPTION

The Q3SphericalPoint_Set function returns, as its function result and in the
sphericalPoint parameter, the spherical point specified by the rho, theta,
and phi parameters.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-11

Q3Vector2D_Set 20

You can use the Q3Vector2D_Set function to set the scalar components of a
two-dimensional vector.

TQ3Vector2D *Q3Vector2D_Set (

TQ3Vector2D *vector2D,

float x,

float y);

vector2D A two-dimensional vector.

x The x scalar component of the vector.

y The y scalar component of the vector.

DESCRIPTION

The Q3Vector2D_Set function returns, as its function result and in the
vector2D parameter, the two-dimensional vector whose scalar components
are specified by the x and y parameters.

Q3Vector3D_Set 20

You can use the Q3Vector3D_Set function to set the scalar components of a
three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Set (

TQ3Vector3D *vector3D,

float x,

float y,

float z);

vector3D A three-dimensional vector.

x The x scalar component of the vector.

y The y scalar component of the vector.

z The z scalar component of the vector.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-12 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Vector3D_Set function returns, as its function result and in the
vector3D parameter, the three-dimensional vector whose scalar components
are specified by the x, y, and z parameters.

Converting Dimensions of Points and Vectors 20

QuickDraw 3D provides routines that you can use to convert a point or vector
of a given dimension to another dimension. When the given dimension is less
than the result dimension, the last component is set to 1.0. When the given
dimension is greater than the result dimension, each component in the result
structure is set to its corresponding component in the given structure divided
by the last component.

IMPORTANT

You must already have allocated space for the result
structure before attempting to convert the dimension
of a point or vector. ▲

Q3Point2D_To3D 20

You can use the Q3Point2D_To3D function to convert a two-dimensional point
to a three-dimensional point.

TQ3Point3D *Q3Point2D_To3D (

const TQ3Point2D *point2D,

TQ3Point3D *result);

point2D A two-dimensional point.

result On exit, a three-dimensional point.

DESCRIPTION

The Q3Point2D_To3D function returns, as its function result and in the result
parameter, the three-dimensional point that corresponds to the
two-dimensional point point2D.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-13

Q3Point3D_To4D 20

You can use the Q3Point3D_To4D function to convert a three-dimensional point
to a four-dimensional point.

TQ3RationalPoint4D *Q3Point3D_To4D (

const TQ3Point3D *point3D,

TQ3RationalPoint4D *result);

point3D A three-dimensional point.

result On exit, a rational four-dimensional point.

DESCRIPTION

The Q3Point3D_To4D function returns, as its function result and in the result
parameter, the rational four-dimensional point that corresponds to the
three-dimensional point point3D.

Q3RationalPoint3D_To2D 20

You can use the Q3RationalPoint3D_To2D function to convert a
three-dimensional rational point to a two-dimensional point.

TQ3Point2D *Q3RationalPoint3D_To2D (

const TQ3RationalPoint3D *point3D,

TQ3Point2D *result);

point3D A rational three-dimensional point.

result On exit, a two-dimensional point.

DESCRIPTION

The Q3RationalPoint3D_To2D function returns, as its function result and in
the result parameter, the two-dimensional point that corresponds to the
rational three-dimensional point point3D.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-14 QuickDraw 3D Mathematical Utilities Reference

Q3RationalPoint4D_To3D 20

You can use the Q3RationalPoint4D_To3D function to convert a four-
dimensional rational point to a three-dimensional point.

TQ3Point3D *Q3RationalPoint4D_To3D (

const TQ3RationalPoint4D *point4D,

TQ3Point3D *result);

point4D A rational four-dimensional point.

result On exit, a three-dimensional point.

DESCRIPTION

The Q3RationalPoint4D_To3D function returns, as its function result and in
the result parameter, the three-dimensional point that corresponds to the
rational four-dimensional point point4D.

Q3Vector2D_To3D 20

You can use the Q3Vector2D_To3D function to convert a two-dimensional
vector to a three-dimensional vector.

TQ3Vector3D *Q3Vector2D_To3D (

const TQ3Vector2D *vector2D,

TQ3Vector3D *result);

vector2D A two-dimensional vector.

result On exit, a three-dimensional vector.

DESCRIPTION

The Q3Vector2D_To3D function returns, as its function result and in the result
parameter, the three-dimensional vector that corresponds to the
two-dimensional vector vector2D.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-15

Q3Vector3D_To2D 20

You can use the Q3Vector3D_To2D function to convert a three-dimensional
vector to a two-dimensional vector.

TQ3Vector2D *Q3Vector3D_To2D (

const TQ3Vector3D *vector3D,

TQ3Vector2D *result);

vector3D A three-dimensional vector.

result On exit, a two-dimensional vector.

DESCRIPTION

The Q3Vector3D_To2D function returns, as its function result and in the
result parameter, the two-dimensional vector that corresponds to
the three-dimensional vector vector3D.

Subtracting Points 20

QuickDraw 3D provides routines that you can use to subtract a point of a given
dimension from another of the same dimension. All of these routines return a
vector that is the difference of the two points.

Q3Point2D_Subtract 20

You can use the Q3Point2D_Subtract function to subtract one two-dimensional
point from another.

TQ3Vector2D *Q3Point2D_Subtract (

const TQ3Point2D *p1,

const TQ3Point2D *p2,

TQ3Vector2D *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-16 QuickDraw 3D Mathematical Utilities Reference

p1 A two-dimensional point.

p2 A two-dimensional point.

result On exit, a two-dimensional vector that is the result of
subtracting the point p2 from p1.

DESCRIPTION

The Q3Point2D_Subtract function returns, as its function result and in the
result parameter, the two-dimensional vector that is the result of subtracting
the point p2 from p1.

Q3Param2D_Subtract 20

You can use the Q3Param2D_Subtract function to subtract one two-dimensional
parametric point from another.

TQ3Vector2D *Q3Param2D_Subtract (

const TQ3Param2D *p1,

const TQ3Param2D *p2,

TQ3Vector2D *result);

p1 A two-dimensional parametric point.

p2 A two-dimensional parametric point.

result On exit, a two-dimensional vector that is the result of
subtracting the parametric point p2 from p1.

DESCRIPTION

The Q3Param2D_Subtract function returns, as its function result and in the
result parameter, the two-dimensional vector that is the result of subtracting
the parametric point p2 from p1.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-17

Q3Point3D_Subtract 20

You can use the Q3Point3D_Subtract function to subtract one three-
dimensional point from another.

TQ3Vector3D *Q3Point3D_Subtract (

const TQ3Point3D *p1,

const TQ3Point3D *p2,

TQ3Vector3D *result);

p1 A three-dimensional point.

p2 A three-dimensional point.

result On exit, a three-dimensional vector that is the result of
subtracting the point p2 from p1.

DESCRIPTION

The Q3Point3D_Subtract function returns, as its function result and in the
result parameter, the three-dimensional vector that is the result of subtracting
the point p2 from p1.

Calculating Distances Between Points 20

QuickDraw 3D provides routines that you can use to determine the distance
between two points. QuickDraw 3D also provides routines that you can use
to determine the square of the distance between two points. These distance-
squared routines are much faster than the simple distance routines and are
therefore recommended for situations in which only relative distances are
important to you.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-18 QuickDraw 3D Mathematical Utilities Reference

Q3Point2D_Distance 20

You can use the Q3Point2D_Distance function to determine the distance
between two two-dimensional points.

float Q3Point2D_Distance (

const TQ3Point2D *p1,

const TQ3Point2D *p2);

p1 A two-dimensional point.

p2 A two-dimensional point.

DESCRIPTION

The Q3Point2D_Distance function returns, as its function result, the absolute
value of the distance between points p1 and p2.

Q3Param2D_Distance 20

You can use the Q3Param2D_Distance function to determine the distance
between two two-dimensional parametric points.

float Q3Param2D_Distance (

const TQ3Param2D *p1,

const TQ3Param2D *p2);

p1 A two-dimensional parametric point.

p2 A two-dimensional parametric point.

DESCRIPTION

The Q3Param2D_Distance function returns, as its function result, the absolute
value of the distance between parametric points p1 and p2.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-19

Q3Point3D_Distance 20

You can use the Q3Point3D_Distance function to determine the distance
between two three-dimensional points.

float Q3Point3D_Distance (

const TQ3Point3D *p1,

const TQ3Point3D *p2);

p1 A three-dimensional point.

p2 A three-dimensional point.

DESCRIPTION

The Q3Point3D_Distance function returns, as its function result, the absolute
value of the distance between points p1 and p2.

Q3RationalPoint3D_Distance 20

You can use the Q3RationalPoint3D_Distance function to determine the
distance between two three-dimensional rational points.

float Q3RationalPoint3D_Distance (

const TQ3RationalPoint3D *p1,

const TQ3RationalPoint3D *p2);

p1 A rational three-dimensional point.

p2 A rational three-dimensional point.

DESCRIPTION

The Q3RationalPoint3D_Distance function returns, as its function result, the
absolute value of the distance between points p1 and p2. The distance returned
is a two-dimensional distance.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-20 QuickDraw 3D Mathematical Utilities Reference

Q3RationalPoint4D_Distance 20

You can use the Q3RationalPoint4D_Distance function to determine the
distance between two four-dimensional rational points.

float Q3RationalPoint4D_Distance (

const TQ3RationalPoint4D *p1,

const TQ3RationalPoint4D *p2);

p1 A rational four-dimensional point.

p2 A rational four-dimensional point.

DESCRIPTION

The Q3RationalPoint4D_Distance function returns, as its function result, the
absolute value of the distance between points p1 and p2. The distance returned
is a three-dimensional distance.

Q3Point2D_DistanceSquared 20

You can use the Q3Point2D_DistanceSquared function to determine the
square of the distance between two two-dimensional points.

float Q3Point2D_DistanceSquared (

const TQ3Point2D *p1,

const TQ3Point2D *p2);

p1 A two-dimensional point.

p2 A two-dimensional point.

DESCRIPTION

The Q3Point2D_DistanceSquared function returns, as its function result, the
square of the distance between points p1 and p2.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-21

Q3Param2D_DistanceSquared 20

You can use the Q3Param2D_DistanceSquared function to determine the
square of the distance between two two-dimensional parametric points.

float Q3Param2D_DistanceSquared (

const TQ3Param2D *p1,

const TQ3Param2D *p2);

p1 A two-dimensional parametric point.

p2 A two-dimensional parametric point.

DESCRIPTION

The Q3Param2D_DistanceSquared function returns, as its function result, the
square of the distance between parametric points p1 and p2.

Q3Point3D_DistanceSquared 20

You can use the Q3Point3D_DistanceSquared function to determine the
square of the distance between two three-dimensional points.

float Q3Point3D_DistanceSquared (

const TQ3Point3D *p1,

const TQ3Point3D *p2);

p1 A three-dimensional point.

p2 A three-dimensional point.

DESCRIPTION

The Q3Point3D_DistanceSquared function returns, as its function result, the
square of the distance between points p1 and p2.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-22 QuickDraw 3D Mathematical Utilities Reference

Q3RationalPoint3D_DistanceSquared 20

You can use the Q3RationalPoint3D_DistanceSquared function to determine
the square of the distance between two rational three-dimensional points.

float Q3RationalPoint3D_DistanceSquared (

const TQ3RationalPoint3D *p1,

const TQ3RationalPoint3D *p2);

p1 A rational three-dimensional point.

p2 A rational three-dimensional point.

DESCRIPTION

The Q3RationalPoint3D_DistanceSquared function returns, as its function
result, the square of the distance between points p1 and p2. The distance
returned is a two-dimensional distance.

Q3RationalPoint4D_DistanceSquared 20

You can use the Q3RationalPoint4D_DistanceSquared function to determine
the square of the distance between two rational four-dimensional points.

float Q3RationalPoint4D_DistanceSquared (

const TQ3RationalPoint4D *p1,

const TQ3RationalPoint4D *p2);

p1 A rational four-dimensional point.

p2 A rational four-dimensional point.

DESCRIPTION

The Q3RationalPoint4D_DistanceSquared function returns, as its function
result, the square of the distance between points p1 and p2. The distance
returned is a three-dimensional distance.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-23

Determining Point Relative Ratios 20

QuickDraw 3D provides routines that you can use to determine point-relative
ratios between two points. These routines return a point on the line segment
defined by those two points that is at a desired distance from the first point.

Q3Point2D_RRatio 20

You can use the Q3Point2D_RRatio function to find a point lying between two
given two-dimensional points that is at a desired distance ratio from one of
those points.

TQ3Point2D *Q3Point2D_RRatio (

const TQ3Point2D *p1,

const TQ3Point2D *p2,

float r1,

float r2,

TQ3Point2D *result);

p1 A two-dimensional point.

p2 A two-dimensional point.

r1 A floating-point number.

r2 A floating-point number.

result On exit, the two-dimensional point that is at a desired distance
ratio from p1 along the line segment between p1 and p2.

DESCRIPTION

The Q3Point2D_RRatio function returns, as its function result and in the
result parameter, the two-dimensional point that lies on the line segment
between the points p1 and p2 and that is at a distance from the first point
determined by the ratio r1/(r1 + r2).

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-24 QuickDraw 3D Mathematical Utilities Reference

Q3Param2D_RRatio 20

You can use the Q3Param2D_RRatio function to find a point lying between two
given two-dimensional parametric points that is at a desired distance ratio
from one of those points.

TQ3Param2D *Q3Param2D_RRatio (

const TQ3Param2D *p1,

const TQ3Param2D *p2,

float r1,

float r2,

TQ3Param2D *result);

p1 A two-dimensional parametric point.

p2 A two-dimensional parametric point.

r1 A floating-point number.

r2 A floating-point number.

result On exit, the two-dimensional parametric point that is at a
desired distance ratio from p1 along the line segment between
p1 and p2.

DESCRIPTION

The Q3Param2D_RRatio function returns, as its function result and in the
result parameter, the two-dimensional parametric point that lies on the line
segment between the points p1 and p2 and that is at a distance from the first
parametric point determined by the ratio r1/(r1 + r2).

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-25

Q3Point3D_RRatio 20

You can use the Q3Point3D_RRatio function to find a point lying between two
given three-dimensional points that is at a desired distance ratio from one of
those points.

TQ3Point3D *Q3Point3D_RRatio (

const TQ3Point3D *p1,

const TQ3Point3D *p2,

float r1,

float r2,

TQ3Point3D *result);

p1 A three-dimensional point.

p2 A three-dimensional point.

r1 A floating-point number.

r2 A floating-point number.

result On exit, the three-dimensional point that is at a desired distance
ratio from p1 along the line segment between p1 and p2.

DESCRIPTION

The Q3Point3D_RRatio function returns, as its function result and in the
result parameter, the three-dimensional point that lies on the line segment
between the points p1 and p2 and that is at a distance from the first point
determined by the ratio r1/(r1 + r2).

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-26 QuickDraw 3D Mathematical Utilities Reference

Q3RationalPoint4D_RRatio 20

You can use the Q3RationalPoint4D_RRatio function to find a point lying
between two given four-dimensional points that is at a desired distance ratio
from one of those points.

TQ3RationalPoint4D *Q3RationalPoint4D_RRatio (

const TQ3RationalPoint4D *p1,

const TQ3RationalPoint4D *p2,

float r1,

float r2,

TQ3RationalPoint4D *result);

p1 A rational four-dimensional point.

p2 A rational four-dimensional point.

r1 A floating-point number.

r2 A floating-point number.

result On exit, the four-dimensional point that is at a desired distance
ratio from p1 along the line segment between p1 and p2.

DESCRIPTION

The Q3RationalPoint4D_RRatio function returns, as its function result and in
the result parameter, the four-dimensional point that lies on the line segment
lying between the points p1 and p2 and that is at a distance from the first point
determined by the ratio r1/(r1 + r2).

Adding and Subtracting Points and Vectors 20

QuickDraw 3D provides routines that you can use to add a vector to a point or
subtract a vector from a point. For increased floating-point precision, it is better
to use the vector-point subtraction routines than to reverse a vector and then
add it to a point.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-27

Q3Point2D_Vector2D_Add 20

You can use the Q3Point2D_Vector2D_Add function to add a two-dimensional
vector to a two-dimensional point.

TQ3Point2D *Q3Point2D_Vector2D_Add (

const TQ3Point2D *point2D,

const TQ3Vector2D *vector2D,

TQ3Point2D *result);

point2D A two-dimensional point.

vector2D A two-dimensional vector.

result On exit, a two-dimensional point that is the result of adding
vector2D to point2D.

DESCRIPTION

The Q3Point2D_Vector2D_Add function returns, as its function result and in
the result parameter, the two-dimensional point that is the result of adding
the vector vector2D to the point point2D.

Q3Param2D_Vector2D_Add 20

You can use the Q3Param2D_Vector2D_Add function to add a two-dimensional
vector to a two-dimensional parametric point.

TQ3Param2D *Q3Param2D_Vector2D_Add (

const TQ3Param2D *param2D,

const TQ3Vector2D *vector2D,

TQ3Param2D *result);

param2D A two-dimensional parametric point.

vector2D A two-dimensional vector.

result On exit, a two-dimensional point that is the result of adding
vector2D to param2D.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-28 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Param2D_Vector2D_Add function returns, as its function result and in
the result parameter, the two-dimensional parametric point that is the result
of adding the vector vector2D to the parametric point param2D.

Q3Point3D_Vector3D_Add 20

You can use the Q3Point3D_Vector3D_Add function to add a three-dimensional
vector to a three-dimensional point.

TQ3Point3D *Q3Point3D_Vector3D_Add (

const TQ3Point3D *point3D,

const TQ3Vector3D *vector3D,

TQ3Point3D *result);

point3D A three-dimensional point.

vector3D A three-dimensional vector.

result On exit, a three-dimensional point that is the result of adding
vector3D to point3D.

DESCRIPTION

The Q3Point3D_Vector3D_Add function returns, as its function result and in
the result parameter, the three-dimensional point that is the result of adding
the vector vector3D to the point point3D.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-29

Q3Point2D_Vector2D_Subtract 20

You can use the Q3Point2D_Vector2D_Subtract function to subtract a two-
dimensional vector from a two-dimensional point.

TQ3Point2D *Q3Point2D_Vector2D_Subtract (

const TQ3Point2D *point2D,

const TQ3Vector2D *vector2D,

TQ3Point2D *result);

point2D A two-dimensional point.

vector2D A two-dimensional vector.

result On exit, a two-dimensional point that is the result of subtracting
vector2D from point2D.

DESCRIPTION

The Q3Point2D_Vector2D_Subtract function returns, as its function result
and in the result parameter, the two-dimensional point that is the result of
subtracting the vector vector2D from the point point2D.

Q3Param2D_Vector2D_Subtract 20

You can use the Q3Param2D_Vector2D_Subtract function to subtract a two-
dimensional vector from a two-dimensional parametric point.

TQ3Param2D *Q3Param2D_Vector2D_Subtract (

const TQ3Param2D *param2D,

const TQ3Vector2D *vector2D,

TQ3Param2D *result);

param2D A two-dimensional parametric point.

vector2D A two-dimensional vector.

result On exit, a two-dimensional parametric point that is the result of
subtracting vector2D from param2D.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-30 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Param2D_Vector2D_Subtract function returns, as its function result
and in the result parameter, the two-dimensional parametric point that is the
result of subtracting the vector vector2D from the point param2D.

Q3Point3D_Vector3D_Subtract 20

You can use the Q3Point3D_Vector3D_Subtract function to subtract a three-
dimensional vector from a three-dimensional point.

TQ3Point3D *Q3Point3D_Vector3D_Subtract (

const TQ3Point3D *point3D,

const TQ3Vector3D *vector3D,

TQ3Point3D *result);

point3D A three-dimensional point.

vector3D A three-dimensional vector.

result On exit, a three-dimensional point that is the result of
subtracting vector3D from point3D.

DESCRIPTION

The Q3Point3D_Vector3D_Subtract function returns, as its function result
and in the result parameter, the three-dimensional point that is the result of
subtracting the vector vector3D from the point point3D.

Scaling Vectors 20

QuickDraw 3D provides routines that you can use to multiply a vector by a
floating-point scalar value.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-31

Q3Vector2D_Scale 20

You can use the Q3Vector2D_Scale function to scale a two-dimensional vector.

TQ3Vector2D *Q3Vector2D_Scale (

const TQ3Vector2D *vector2D,

float scalar,

TQ3Vector2D *result);

vector2D A two-dimensional vector.

scalar A floating-point number.

result On exit, a two-dimensional vector that is the result of
multiplying each of the components of vector2D by the value
of the scalar parameter.

DESCRIPTION

The Q3Vector2D_Scale function returns, as its function result and in the
result parameter, the two-dimensional vector that is the result of multiplying
each of the components of the vector vector2D by the value of the scalar
parameter. Note that on entry the result parameter can be the same as the
vector2D parameter.

Q3Vector3D_Scale 20

You can use the Q3Vector3D_Scale function to scale a three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Scale (

const TQ3Vector3D *vector3D,

float scalar,

TQ3Vector3D *result);

vector3D A three-dimensional vector.

scalar A floating-point number.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-32 QuickDraw 3D Mathematical Utilities Reference

result On exit, a three-dimensional vector that is the result of
multiplying each of its components by the value of the
scalar parameter.

DESCRIPTION

The Q3Vector3D_Scale function returns, as its function result and in the
result parameter, the three-dimensional vector that is the result of multiplying
each of the components of the vector vector3D by the value of the scalar
parameter. Note that on entry the result parameter can be the same as the
vector3D parameter.

Determining the Lengths of Vectors 20

QuickDraw 3D provides routines that you can use to determine the length
of a vector.

Q3Vector2D_Length 20

You can use the Q3Vector2D_Length function to determine the length of a two-
dimensional vector.

float Q3Vector2D_Length (const TQ3Vector2D *vector2D);

vector2D A two-dimensional vector.

DESCRIPTION

The Q3Vector2D_Length function returns, as its function result, the length of
the vector vector2D.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-33

Q3Vector3D_Length 20

You can use the Q3Vector3D_Length function to determine the length of a
three-dimensional vector.

float Q3Vector3D_Length (const TQ3Vector3D *vector3D);

vector3D A three-dimensional vector.

DESCRIPTION

The Q3Vector3D_Length function returns, as its function result, the length of
the vector vector3D.

Normalizing Vectors 20

QuickDraw 3D provides routines that you can use to normalize a vector. The
normalized form of a vector is the vector having the same direction as the
given vector but a length equal to 1.0.

Q3Vector2D_Normalize 20

You can use the Q3Vector2D_Normalize function to normalize a two-
dimensional vector.

TQ3Vector2D *Q3Vector2D_Normalize (

const TQ3Vector2D *vector2D,

TQ3Vector2D *result);

vector2D A two-dimensional vector.

result On exit, the normalized form of the specified vector.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-34 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Vector2D_Normalize function returns, as its function result and in the
result parameter, the normalized form of the vector vector2D. Note that on
entry the result parameter can be the same as the vector2D parameter.

Q3Vector3D_Normalize 20

You can use the Q3Vector3D_Normalize function to normalize a three-
dimensional vector.

TQ3Vector3D *Q3Vector3D_Normalize (

const TQ3Vector3D *vector3D,

TQ3Vector3D *result);

vector3D A three-dimensional vector.

result On exit, the normalized form of the specified vector.

DESCRIPTION

The Q3Vector3D_Normalize function returns, as its function result and in the
result parameter, the normalized form of the vector vector3D. Note that on
entry the result parameter can be the same as the vector3D parameter.

Adding and Subtracting Vectors 20

QuickDraw 3D provides routines that you can use to add a vector to a vector or
to subtract a vector from a vector.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-35

Q3Vector2D_Add 20

You can use the Q3Vector2D_Add function to add two two-dimensional vectors.

TQ3Vector2D *Q3Vector2D_Add (

const TQ3Vector2D *v1,

const TQ3Vector2D *v2,

TQ3Vector2D *result);

v1 A two-dimensional vector.

v2 A two-dimensional vector.

result On exit, the sum of v1 and v2.

DESCRIPTION

The Q3Vector2D_Add function returns, as its function result and in the result
parameter, the two-dimensional vector that is the sum of the two vectors v1
and v2. Note that on entry the result parameter can be the same as either v1
or v2 (or both).

Q3Vector3D_Add 20

You can use the Q3Vector3D_Add function to add two three-dimensional vectors.

TQ3Vector3D *Q3Vector3D_Add (

const TQ3Vector3D *v1,

const TQ3Vector3D *v2,

TQ3Vector3D *result);

v1 A three-dimensional vector.

v2 A three-dimensional vector.

result On exit, the sum of v1 and v2.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-36 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Vector3D_Add function returns, as its function result and in the result
parameter, the three-dimensional vector that is the sum of the two vectors v1
and v2. Note that on entry the result parameter can be the same as either
v1 or v2 (or both).

Q3Vector2D_Subtract 20

You can use the Q3Vector2D_Subtract function to subtract a two-dimensional
vector from a two-dimensional vector.

TQ3Vector2D *Q3Vector2D_Subtract (

const TQ3Vector2D *v1,

const TQ3Vector2D *v2,

TQ3Vector2D *result);

v1 A two-dimensional vector.

v2 A two-dimensional vector.

result On exit, the result of subtracting v2 from v1.

DESCRIPTION

The Q3Vector2D_Subtract function returns, as its function result and in the
result parameter, the two-dimensional vector that is the result of subtracting
vector v2 from vector v1. Note that on entry the result parameter can be the
same as either v1 or v2 (or both).

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-37

Q3Vector3D_Subtract 20

You can use the Q3Vector3D_Subtract function to subtract a three-dimensional
vector from a three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Subtract (

const TQ3Vector3D *v1,

const TQ3Vector3D *v2,

TQ3Vector3D *result);

v1 A three-dimensional vector.

v2 A three-dimensional vector.

result On exit, the result of subtracting v2 from v1.

DESCRIPTION

The Q3Vector3D_Subtract function returns, as its function result and in the
result parameter, the three-dimensional vector that is the result of subtracting
vector v2 from vector v1. Note that on entry the result parameter can be the
same as either v1 or v2 (or both).

Determining Vector Cross Products 20

QuickDraw 3D provides routines that you can use to calculate cross products
of vectors.

Q3Vector2D_Cross 20

You can use the Q3Vector2D_Cross function to determine the cross product of
two two-dimensional vectors.

float Q3Vector2D_Cross (

const TQ3Vector2D *v1,

const TQ3Vector2D *v2);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-38 QuickDraw 3D Mathematical Utilities Reference

v1 A two-dimensional vector.

v2 A two-dimensional vector.

DESCRIPTION

The Q3Vector2D_Cross function returns, as its function result, the cross
product of the vectors v1 and v2.

Q3Vector3D_Cross 20

You can use the Q3Vector3D_Cross function to determine the cross product of
two three-dimensional vectors.

TQ3Vector3D *Q3Vector3D_Cross (

const TQ3Vector3D *v1,

const TQ3Vector3D *v2,

TQ3Vector3D *result);

v1 A three-dimensional vector.

v2 A three-dimensional vector.

result On exit, the cross product of v1 and v2.

DESCRIPTION

The Q3Vector3D_Cross function returns, as its function result and in the
result parameter, the cross product of the vectors v1 and v2.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-39

Q3Point3D_CrossProductTri 20

You can use the Q3Point3D_CrossProductTri function to determine the cross
product of the two vectors defined by three three-dimensional points.

TQ3Vector3D *Q3Point3D_CrossProductTri (

const TQ3Point3D *point1,

const TQ3Point3D *point2,

const TQ3Point3D *point3,

TQ3Vector3D *crossVector);

point1 A three-dimensional point.

point2 A three-dimensional point.

point3 A three-dimensional point.

crossVector On exit, the cross product of the two vectors determined by
subtracting point2 from point1 and point3 from point1.

DESCRIPTION

The Q3Point3D_CrossProductTri function returns, as its function result and
in the crossVector parameter, the cross product of the two vectors determined
by subtracting point2 from point1 and point3 from point2.

Determining Vector Dot Products 20

QuickDraw 3D provides routines that you can use to calculate dot (or scalar, or
inner) products of vectors.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-40 QuickDraw 3D Mathematical Utilities Reference

Q3Vector2D_Dot 20

You can use the Q3Vector2D_Dot function to determine the dot product of two
two-dimensional vectors.

float Q3Vector2D_Dot (

const TQ3Vector2D *v1,

const TQ3Vector2D *v2);

v1 A two-dimensional vector.

v2 A two-dimensional vector.

DESCRIPTION

The Q3Vector2D_Dot function returns, as its function result, a floating-point
value that is the dot product of the two vectors v1 and v2.

Q3Vector3D_Dot 20

You can use the Q3Vector3D_Dot function to determine the dot product of two
three-dimensional vectors.

float Q3Vector3D_Dot (

const TQ3Vector3D *v1,

const TQ3Vector3D *v2);

v1 A three-dimensional vector.

v2 A three-dimensional vector.

DESCRIPTION

The Q3Vector3D_Dot function returns, as its function result, a floating-point
value that is the dot product of the two vectors v1 and v2.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-41

Transforming Points and Vectors 20

QuickDraw 3D provides routines that you can use to multiply a point or
vector by a matrix, thereby applying a transform to that point or vector.
QuickDraw 3D also provides routines that you can use to apply a transform
to each point in an array of points.

Q3Vector2D_Transform 20

You can use the Q3Vector2D_Transform function to apply a transform to a
two-dimensional vector.

TQ3Vector2D *Q3Vector2D_Transform (

const TQ3Vector2D *vector2D,

const TQ3Matrix3x3 *matrix3x3,

TQ3Vector2D *result);

vector2D A two-dimensional vector.

matrix3x3 A 3-by-3 matrix.

result On exit, the vector that is the result of multiplying vector2D
by matrix3x3.

DESCRIPTION

The Q3Vector2D_Transform function returns, as its function result and in the
result parameter, the vector that is the result of multiplying the vector
vector2D by the matrix transform matrix3x3. Note that on entry the result
parameter can be the same as the vector2D parameter.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-42 QuickDraw 3D Mathematical Utilities Reference

Q3Vector3D_Transform 20

You can use the Q3Vector3D_Transform function to apply a transform to a
three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Transform (

const TQ3Vector3D *vector3D,

const TQ3Matrix4x4 *matrix4x4,

TQ3Vector3D *result);

vector3D A three-dimensional vector.

matrix4x4 A 4-by-4 matrix.

result On exit, the vector that is the result of multiplying vector3D
by matrix4x4.

DESCRIPTION

The Q3Vector3D_Transform function returns, as its function result and in the
result parameter, the vector that is the result of multiplying the vector
vector3D by the matrix transform matrix4x4. Note that on entry the result
parameter can be the same as the vector3D parameter.

Q3Point2D_Transform 20

You can use the Q3Point2D_Transform function to apply a transform to a two-
dimensional point.

TQ3Point2D *Q3Point2D_Transform (

const TQ3Point2D *point2D,

const TQ3Matrix3x3 *matrix3x3,

TQ3Point2D *result);

point2D A two-dimensional point.

matrix3x3 A 3-by-3 matrix.

result On exit, the point that is the result of multiplying point2D
by matrix3x3.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-43

DESCRIPTION

The Q3Point2D_Transform function returns, as its function result and in the
result parameter, the point that is the result of multiplying the point point2D
by the matrix transform matrix3x3. Note that on entry the result parameter
can be the same as the point2D parameter.

Q3Param2D_Transform 20

You can use the Q3Param2D_Transform function to apply a transform to a two-
dimensional parametric point.

TQ3Param2D *Q3Param2D_Transform (

const TQ3Param2D *param2D,

const TQ3Matrix3x3 *matrix3x3,

TQ3Param2D *result);

param2D A two-dimensional parametric point.

matrix3x3 A 3-by-3 matrix.

result On exit, the point that is the result of multiplying param2D
by matrix3x3.

DESCRIPTION

The Q3Param2D_Transform function returns, as its function result and in the
result parameter, the parametric point that is the result of multiplying the
parametric point param2D by the matrix transform matrix3x3. Note that on
entry the result parameter can be the same as the param2D parameter.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-44 QuickDraw 3D Mathematical Utilities Reference

Q3Point3D_Transform 20

You can use the Q3Point3D_Transform function to apply a transform to a
three-dimensional point.

TQ3Point3D *Q3Point3D_Transform (

const TQ3Point3D *point3D,

const TQ3Matrix4x4 *matrix4x4,

TQ3Point3D *result);

point3D A three-dimensional point.

matrix4x4 A 4-by-4 matrix.

result On exit, the point that is the result of multiplying point3D
by matrix4x4.

DESCRIPTION

The Q3Point3D_Transform function returns, as its function result and in the
result parameter, the point that is the result of multiplying the point point3D
by the matrix transform matrix4x4. Note that on entry the result parameter
can be the same as the point3D parameter.

Q3RationalPoint4D_Transform 20

You can use the Q3RationalPoint4D_Transform function to apply a transform
to a four-dimensional rational point.

TQ3RationalPoint4D *Q3RationalPoint4D_Transform (

const TQ3RationalPoint4D *point4D,

const TQ3Matrix4x4 *matrix4x4,

TQ3RationalPoint4D *result);

point4D A four-dimensional point.

matrix4x4 A 4-by-4 matrix.

result On exit, the point that is the result of multiplying point4D
by matrix4x4.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-45

DESCRIPTION

The Q3RationalPoint4D_Transform function returns, as its function result
and in the result parameter, the point that is the result of multiplying the
rational point point4D by the matrix transform matrix4x4. Note that on entry
the result parameter can be the same as the point4D parameter.

Q3Point3D_To3DTransformArray 20

You can use the Q3Point3D_To3DTransformArray function to apply a
transform to each point in an array of three-dimensional points.

TQ3Status Q3Point3D_To3DTransformArray (

const TQ3Point3D *inVertex,

const TQ3Matrix4x4 *matrix,

TQ3Point3D *outVertex,

long numVertices,

unsigned long inStructSize,

unsigned long outStructSize);

inVertex A pointer to an array of three-dimensional points. This is the
source array.

matrix A 4-by-4 matrix.

outVertex A pointer to an array of three-dimensional points. This is the
destination array.

numVertices The number of vertices.

inStructSize The size of an element in the source array. Effectively, this is the
distance, in bytes, between successive points in the source array.

outStructSize

The size of an element in the destination array. Effectively, this
is the distance, in bytes, between successive points in the
destination array.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-46 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Point3D_To3DTransformArray function returns, in the outVertex
parameter, an array of three-dimensional points, each of which is the result
of multiplying a point in the inVertex array by the matrix transform matrix.
The outVertex array contains the same number of points (that is, vertices)
as the inVertex array, as specified by the numVertices parameter. The
inStructSize and outStructSize parameters specify the sizes of an element
in the inVertex and outVertex arrays, respectively.

Q3Point3D_To4DTransformArray 20

You can use the Q3Point3D_To4DTransformArray function to apply a
transform to each point in an array of three-dimensional points, while
changing the dimension of each point from three to four dimensions.

TQ3Status Q3Point3D_To4DTransformArray (

const TQ3Point3D *inVertex,

const TQ3Matrix4x4 *matrix,

TQ3RationalPoint4D *outVertex,

long numVertices,

unsigned long inStructSize,

unsigned long outStructSize);

inVertex A pointer to an array of three-dimensional points. This is the
source array.

matrix A 4-by-4 matrix.

outVertex A pointer to an array of four-dimensional points. This is the
destination array.

numVertices The number of vertices.

inStructSize

The size of an element in the source array. Effectively, this is the
distance, in bytes, between successive points in the source array.

outStructSize

The size of an element in the destination array. Effectively, this
is the distance, in bytes, between successive points in the
destination array.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-47

DESCRIPTION

The Q3Point3D_To4DTransformArray function returns, in the outVertex
parameter, an array of four-dimensional points, each of which is the result
of changing the dimensionality of a point in the inVertex array from three
to four and multiplying by the matrix transform matrix. The outVertex
array contains the same number of points (that is, vertices) as the inVertex
array, as specified by the numVertices parameter. The inStructSize and
outStructSize parameters specify the sizes of an element in the inVertex
and outVertex arrays, respectively.

Q3RationalPoint4D_To4DTransformArray 20

You can use the Q3RationalPoint4D_To4DTransformArray function to apply
a transform to each point in an array of four-dimensional points.

TQ3Status Q3RationalPoint4D_To4DTransformArray (

const TQ3RationalPoint4D *inVertex,

const TQ3Matrix4x4 *matrix,

TQ3RationalPoint4D *outVertex,

long numVertices,

unsigned long inStructSize,

unsigned long outStructSize);

inVertex A pointer to an array of four-dimensional points. This is the
source array.

matrix A 4-by-4 matrix.

outVertex A pointer to an array of four-dimensional points. This is the
destination array.

numVertices The number of vertices.

inStructSize

The size of an element in the source array. Effectively, this is the
distance, in bytes, between successive points in the source array.

outStructSize

The size of an element in the destination array. Effectively, this
is the distance, in bytes, between successive points in the
destination array.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-48 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3RationalPoint4D_To4DTransformArray function returns, in the
outVertex parameter, an array of four-dimensional points, each of which is
the result of multiplying a point in the inVertex array by the matrix transform
matrix. The outVertex array contains the same number of points (that is,
vertices) as the inVertex array, as specified by the numVertices parameter.
The inStructSize and outStructSize parameters specify the sizes of an
element in the inVertex and outVertex arrays, respectively.

Negating Vectors 20

QuickDraw 3D provides routines that you can use to negate (or reverse)
vectors. The result of negating a vector is a vector having the same magnitude
but the opposite direction as the original vector.

Q3Vector2D_Negate 20

You can use the Q3Vector2D_Negate function to negate a two-dimensional
vector.

TQ3Vector2D *Q3Vector2D_Negate (

const TQ3Vector2D *vector2D,

TQ3Vector2D *result);

vector2D A two-dimensional vector.

result On exit, the negation of the specified vector.

DESCRIPTION

The Q3Vector2D_Negate function returns, as its function result and in the
result parameter, the vector that is the negation of the vector vector2D.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-49

Q3Vector3D_Negate 20

You can use the Q3Vector3D_Negate function to negate a three-dimensional
vector.

TQ3Vector3D *Q3Vector3D_Negate (

const TQ3Vector3D *vector3D,

TQ3Vector3D *result);

vector3D A three-dimensional vector.

result On exit, the negation of the specified vector.

DESCRIPTION

The Q3Vector3D_Negate function returns, as its function result and in the
result parameter, the vector that is the negation of the vector vector3D.

Converting Points from Cartesian to Polar or Spherical Form 20

QuickDraw 3D provides routines that you can use to convert two-dimensional
points from Cartesian form (x, y) to polar form (r, θ), and vice versa.
QuickDraw 3D also provides routines that you can use to convert three-
dimensional points from Cartesian form (x, y, z) to spherical form (ρ, θ, φ), and
vice versa.

Q3Point2D_ToPolar 20

You can use the Q3Point2D_ToPolar function to convert a two-dimensional
point from Cartesian form to polar form.

TQ3PolarPoint *Q3Point2D_ToPolar (

const TQ3Point2D *point2D,

TQ3PolarPoint *result);

point2D A two-dimensional point.

result On exit, a polar point.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-50 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Point2D_ToPolar function returns, as its function result and in the
result parameter, a polar point that is the same point as the two-dimensional
point specified by the point2D parameter.

Q3PolarPoint_ToPoint2D 20

You can use the Q3PolarPoint_ToPoint2D function to convert a polar point to
Cartesian form.

TQ3Point2D *Q3PolarPoint_ToPoint2D (

const TQ3PolarPoint *polarPoint,

TQ3Point2D *result);

polarPoint A polar point.

result On exit, a two-dimensional point.

DESCRIPTION

The Q3PolarPoint_ToPoint2D function returns, as its function result and in
the result parameter, the two-dimensional point that is the same point as the
polar point specified by the polarPoint parameter.

Q3Point3D_ToSpherical 20

You can use the Q3Point3D_ToSpherical function to convert a three-
dimensional point from Cartesian form to spherical form.

TQ3SphericalPoint *Q3Point3D_ToSpherical (

const TQ3Point3D *point3D,

TQ3SphericalPoint *result);

point3D A three-dimensional point.

result On exit, a spherical point.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-51

DESCRIPTION

The Q3Point3D_ToSpherical function returns, as its function result and in
the result parameter, a spherical point that is the same point as the three-
dimensional point specified by the point3D parameter.

Q3SphericalPoint_ToPoint3D 20

You can use the Q3SphericalPoint_ToPoint3D function to convert a spherical
point to Cartesian form.

TQ3Point3D *Q3SphericalPoint_ToPoint3D (

const TQ3SphericalPoint *sphericalPoint,

TQ3Point3D *result);

sphericalPoint

A spherical point.

result On exit, a three-dimensional point.

DESCRIPTION

The Q3SphericalPoint_ToPoint3D function returns, as its function result and
in the result parameter, the three-dimensional point that is the same point as
the spherical point specified by the sphericalPoint parameter.

Determining Point Affine Combinations 20

QuickDraw 3D provides routines that you can use to determine a point that is
the affine combination of some given points.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-52 QuickDraw 3D Mathematical Utilities Reference

Q3Point2D_AffineComb 20

You can use the Q3Point2D_AffineComb function to determine the
two-dimensional point that is the affine combination of an array of points.

TQ3Point2D *Q3Point2D_AffineComb (

const TQ3Point2D *points2D,

const float *weights,

unsigned long nPoints,

TQ3Point2D *result);

points2D A pointer to an array of two-dimensional points.

weights A pointer to an array of weights. The sum of the weights must
be 1.0.

nPoints The number of points in the points2D array.

result On exit, the point that is the affine combination of the points in
points2D having the weights in the weights array.

DESCRIPTION

The Q3Point2D_AffineComb function returns, as its function result and in the
result parameter, the point that is the affine combination of the points in the
array points2D having the weights in the array weights.

Q3Param2D_AffineComb 20

You can use the Q3Param2D_AffineComb function to determine the two-
dimensional parametric point that is the affine combination of an array of
parametric points.

TQ3Param2D *Q3Param2D_AffineComb (

const TQ3Param2D *params2D,

const float *weights,

unsigned long nPoints,

TQ3Param2D *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-53

params2D A pointer to an array of two-dimensional parametric points.

weights A pointer to an array of weights. The sum of the weights must
be 1.0.

nPoints The number of points in the params2D array.

result On exit, the parametric point that is the affine combination of
the parametric points in params2D having the weights in the
weights array.

DESCRIPTION

The Q3Param2D_AffineComb function returns, as its function result and in
the result parameter, the parametric point that is the affine combination
of the parametric points in the array params2D having the weights in the
array weights.

Q3Point3D_AffineComb 20

You can use the Q3Point3D_AffineComb function to determine the three-
dimensional point that is the affine combination of an array of points.

TQ3Point3D *Q3Point3D_AffineComb (

const TQ3Point3D *points3D,

const float *weights,

unsigned long nPoints,

TQ3Point3D *result);

points3D A pointer to an array of three-dimensional points.

weights A pointer to an array of weights. The sum of the weights must
be 1.0.

nPoints The number of points in the points3D array.

result On exit, the point that is the affine combination of the points in
points3D having the weights in the weights array.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-54 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Point3D_AffineComb function returns, as its function result and in the
result parameter, the point that is the affine combination of the points in the
array points3D having the weights in the array weights.

Q3RationalPoint3D_AffineComb 20

You can use the Q3RationalPoint3D_AffineComb function to determine the
rational three-dimensional point that is the affine combination of an array
of points.

TQ3RationalPoint3D *Q3RationalPoint3D_AffineComb (

const TQ3RationalPoint3D *points3D,

const float *weights,

unsigned long nPoints,

TQ3RationalPoint3D *result);

points3D A pointer to an array of rational three-dimensional points.

weights A pointer to an array of weights. The sum of the weights must
be 1.0.

nPoints The number of points in the points3D array.

result On exit, the point that is the affine combination of the points in
points3D having the weights in the weights array.

DESCRIPTION

The Q3RationalPoint3D_AffineComb function returns, as its function result
and in the result parameter, the rational point that is the affine combination of
the points in the array points3D having the weights in the array weights.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-55

Q3RationalPoint4D_AffineComb 20

You can use the Q3RationalPoint4D_AffineComb function to determine the
rational four-dimensional point that is the affine combination of an array
of points.

TQ3RationalPoint4D *Q3RationalPoint4D_AffineComb (

const TQ3RationalPoint4D *points4D,

const float *weights,

unsigned long nPoints,

TQ3RationalPoint4D *result);

points4D A pointer to an array of rational four-dimensional points.

weights A pointer to an array of weights. The weights must sum to 1.0.

nPoints The number of points in the points4D array.

result On exit, the point that is the affine combination of the points in
points4D which have the weights in the weights array.

DESCRIPTION

The Q3RationalPoint4D_AffineComb function returns, as its function result
and in the result parameter, the rational point that is the affine combination of
the points in the array points4D which have the weights in the array weights.

Managing Matrices 20

QuickDraw 3D provides routines that you can use to perform standard
operations on 3-by-3 and 4-by-4 matrices. Each routine performs some
operation on one or more source matrices and returns a pointer to the
destination matrix in the result parameter. Any of the source or destination
matrices may be the same matrix. The source matrices are unchanged, unless
one of them is also specified as the destination matrix.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-56 QuickDraw 3D Mathematical Utilities Reference

Q3Matrix3x3_Copy 20

You can use the Q3Matrix3x3_Copy function to get a copy of a 3-by-3 matrix.

TQ3Matrix3x3 *Q3Matrix3x3_Copy (

const TQ3Matrix3x3 *matrix3x3,

TQ3Matrix3x3 *result);

matrix3x3 A 3-by-3 matrix.

result On exit, a copy of matrix3x3.

DESCRIPTION

The Q3Matrix3x3_Copy function returns, as its function result and in the
result parameter, a copy of the matrix matrix3x3.

Q3Matrix4x4_Copy 20

You can use the Q3Matrix4x4_Copy function to get a copy of a 4-by-4 matrix.

TQ3Matrix4x4 *Q3Matrix4x4_Copy (

const TQ3Matrix4x4 *matrix4x4,

TQ3Matrix4x4 *result);

matrix4x4 A 4-by-4 matrix.

result On exit, a copy of matrix4x4.

DESCRIPTION

The Q3Matrix4x4_Copy function returns, as its function result and in the
result parameter, a copy of the matrix matrix4x4.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-57

Q3Matrix3x3_SetIdentity 20

You can use the Q3Matrix3x3_SetIdentity function to set a 3-by-3 matrix to
the identity matrix.

TQ3Matrix3x3 *Q3Matrix3x3_SetIdentity (TQ3Matrix3x3 *matrix3x3);

matrix3x3 On exit, the 3-by-3 identity matrix.

DESCRIPTION

The Q3Matrix3x3_SetIdentity function returns, as its function result and in
the matrix3x3 parameter, the 3-by-3 identity matrix.

Q3Matrix4x4_SetIdentity 20

You can use the Q3Matrix4x4_SetIdentity function to set a 4-by-4 matrix to
the identity matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetIdentity (TQ3Matrix4x4 *matrix4x4);

matrix4x4 On exit, the 4-by-4 identity matrix.

DESCRIPTION

The Q3Matrix4x4_SetIdentity function returns, as its function result and in
the matrix4x4 parameter, the 4-by-4 identity matrix.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-58 QuickDraw 3D Mathematical Utilities Reference

Q3Matrix3x3_Transpose 20

You can use the Q3Matrix3x3_Transpose function to transpose a 3-by-3 matrix.

TQ3Matrix3x3 *Q3Matrix3x3_Transpose (

const TQ3Matrix3x3 *matrix3x3,

TQ3Matrix3x3 *result);

matrix3x3 A 3-by-3 matrix.

result On exit, the transpose of matrix3x3.

DESCRIPTION

The Q3Matrix3x3_Transpose function returns, as its function result and in the
result parameter, the transpose of the matrix matrix3x3.

Q3Matrix4x4_Transpose 20

You can use the Q3Matrix4x4_Transpose function to transpose a 4-by-4 matrix.

TQ3Matrix4x4 *Q3Matrix4x4_Transpose (

const TQ3Matrix4x4 *matrix4x4,

TQ3Matrix4x4 *result);

matrix4x4 A 4-by-4 matrix.

result On exit, the transpose of matrix4x4.

DESCRIPTION

The Q3Matrix4x4_Transpose function returns, as its function result and in the
result parameter, the transpose of the matrix matrix4x4.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-59

Q3Matrix3x3_Invert 20

You can use the Q3Matrix3x3_Invert function to invert a 3-by-3 matrix.

TQ3Matrix3x3 *Q3Matrix3x3_Invert (

const TQ3Matrix3x3 *matrix3x3,

TQ3Matrix3x3 *result);

matrix3x3 A 3-by-3 matrix.

result On exit, the inverse of matrix3x3.

DESCRIPTION

The Q3Matrix3x3_Invert function returns, as its function result and in the
result parameter, the inverse of the matrix matrix3x3.

Q3Matrix4x4_Invert 20

You can use the Q3Matrix4x4_Invert function to invert a 4-by-4 matrix.

TQ3Matrix4x4 *Q3Matrix4x4_Invert (

const TQ3Matrix4x4 *matrix4x4,

TQ3Matrix4x4 *result);

matrix4x4 A 4-by-4 matrix.

result On exit, the inverse of matrix4x4.

DESCRIPTION

The Q3Matrix4x4_Invert function returns, as its function result and in the
result parameter, the inverse of the matrix matrix4x4.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-60 QuickDraw 3D Mathematical Utilities Reference

Q3Matrix3x3_Adjoint 20

You can use the Q3Matrix3x3_Adjoint function to adjoin a 3-by-3 matrix.

TQ3Matrix3x3 *Q3Matrix3x3_Adjoint (

const TQ3Matrix3x3 *matrix3x3,

TQ3Matrix3x3 *result);

matrix3x3 A 3-by-3 matrix.

result On exit, the adjoint of matrix3x3.

DESCRIPTION

The Q3Matrix3x3_Adjoint function returns, as its function result and in the
result parameter, the adjoint of the matrix matrix3x3.

Q3Matrix3x3_Multiply 20

You can use the Q3Matrix3x3_Multiply function to multiply two 3-by-3
matrices.

TQ3Matrix3x3 *Q3Matrix3x3_Multiply (

const TQ3Matrix3x3 *matrixA,

const TQ3Matrix3x3 *matrixB,

TQ3Matrix3x3 *result);

matrixA A 3-by-3 matrix.

matrixB A 3-by-3 matrix.

result On exit, the product of matrixA and matrixB.

DESCRIPTION

The Q3Matrix3x3_Multiply function returns, as its function result and
in the result parameter, the product of the two 3-by-3 matrices matrixA
and matrixB.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-61

Q3Matrix4x4_Multiply 20

You can use the Q3Matrix4x4_Multiply function to multiply two 4-by-4
matrices.

TQ3Matrix4x4 *Q3Matrix4x4_Multiply (

const TQ3Matrix4x4 *matrixA,

const TQ3Matrix4x4 *matrixB,

TQ3Matrix4x4 *result);

matrixA A 4-by-4 matrix.

matrixB A 4-by-4 matrix.

result On exit, the product of matrixA and matrixB.

DESCRIPTION

The Q3Matrix4x4_Multiply function returns, as its function result and
in the result parameter, the product of the two 4-by-4 matrices matrixA
and matrixB.

Q3Matrix3x3_Determinant 20

You can use the Q3Matrix3x3_Determinant function to get the determinant of
a 3-by-3 matrix.

float Q3Matrix3x3_Determinant (const TQ3Matrix3x3 *matrix3x3);

matrix3x3 A 3-by-3 matrix.

DESCRIPTION

The Q3Matrix3x3_Determinant function returns, as its function result, the
determinant of the matrix matrix3x3.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-62 QuickDraw 3D Mathematical Utilities Reference

Q3Matrix4x4_Determinant 20

You can use the Q3Matrix4x4_Determinant function to get the determinant of
a 4-by-4 matrix.

float Q3Matrix4x4_Determinant (const TQ3Matrix4x4 *matrix4x4);

matrix4x4 A 4-by-4 matrix.

DESCRIPTION

The Q3Matrix4x4_Determinant function returns, as its function result, the
determinant of the matrix matrix4x4.

Setting Up Transformation Matrices 20

QuickDraw 3D provides routines that you can use to configure matrices to be
used as geometric transformations. You must already have allocated the
memory for a matrix before calling one of these routines.

All functions operating on 3-by-3 matrices assume that the resulting transform
matrices are to be used to transform only homogeneous two-dimensional data
types (such as TQ3RationalPoint3D). Similarly, all functions operating on
4-by-4 matrices assume that the resulting transform matrices are to be used to
transform only homogeneous three-dimensional data types (such as
TQ3RationalPoint4D).

You specify an angle (for example, for Q3Matrix3x3_SetRotateAboutPoint)
by passing a value that is interpreted in radians. If you prefer to use degrees,
QuickDraw 3D provides C language macros that convert radians into degrees.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-63

Q3Matrix3x3_SetTranslate 20

You can use the Q3Matrix3x3_SetTranslate function to configure a 3-by-3
translation transformation matrix.

TQ3Matrix3x3 *Q3Matrix3x3_SetTranslate (

TQ3Matrix3x3 *matrix3x3,

float xTrans,

float yTrans);

matrix3x3 A 3-by-3 matrix.

xTrans The desired amount of translation along the x coordinate axis.

yTrans The desired amount of translation along the y coordinate axis.

DESCRIPTION

The Q3Matrix3x3_SetTranslate function returns, as its function result and in
the matrix3x3 parameter, a transformation matrix that translates an object by
the amount xTrans along the x coordinate axis and by the amount yTrans
along the y coordinate axis.

Q3Matrix3x3_SetScale 20

You can use the Q3Matrix3x3_SetScale function to configure a 3-by-3 scaling
transformation matrix.

TQ3Matrix3x3 *Q3Matrix3x3_SetScale (

TQ3Matrix3x3 *matrix3x3,

float xScale,

float yScale);

matrix3x3 A 3-by-3 matrix.

xScale The desired amount of scaling along the x coordinate axis.

yScale The desired amount of scaling along the y coordinate axis.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-64 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Matrix3x3_SetScale function returns, as its function result and in the
matrix3x3 parameter, a scaling matrix that scales an object by the amount
xScale along the x coordinate axis and by the amount yScale along the y
coordinate axis.

Q3Matrix3x3_SetRotateAboutPoint 20

You can use the Q3Matrix3x3_SetRotateAboutPoint function to configure a
3-by-3 rotation transformation matrix.

TQ3Matrix3x3 *Q3Matrix3x3_SetRotateAboutPoint (

TQ3Matrix3x3 *matrix3x3,

const TQ3Point2D *origin,

float angle);

matrix3x3 A 3-by-3 matrix.

origin The desired origin of rotation.

angle The desired angle of rotation, in radians.

DESCRIPTION

The Q3Matrix3x3_SetRotateAboutPoint function returns, as its function
result and in the matrix3x3 parameter, a rotation matrix that rotates an object
by the angle angle around the point origin.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-65

Q3Matrix4x4_SetTranslate 20

You can use the Q3Matrix4x4_SetTranslate function to configure a 4-by-4
translation transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetTranslate (

TQ3Matrix4x4 *matrix4x4,

float xTrans,

float yTrans,

float zTrans);

matrix4x4 A 4-by-4 matrix.

xTrans The desired amount of translation along the x coordinate axis.

yTrans The desired amount of translation along the y coordinate axis.

zTrans The desired amount of translation along the z coordinate axis.

DESCRIPTION

The Q3Matrix4x4_SetTranslate function returns, as its function result and in
the matrix4x4 parameter, a transformation matrix that translates an object by
the amount xTrans along the x coordinate axis, by the amount yTrans along
the y coordinate axis, and by the amount zTrans along the z coordinate axis.

Q3Matrix4x4_SetScale 20

You can use the Q3Matrix4x4_SetScale function to configure a 4-by-4 scaling
transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetScale (

TQ3Matrix4x4 *matrix4x4,

float xScale,

float yScale,

float zScale);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-66 QuickDraw 3D Mathematical Utilities Reference

matrix4x4 A 4-by-4 matrix.

xScale The desired amount of scaling along the x coordinate axis.

yScale The desired amount of scaling along the y coordinate axis.

zScale The desired amount of scaling along the z coordinate axis.

DESCRIPTION

The Q3Matrix4x4_SetScale function returns, as its function result and in the
matrix4x4 parameter, a scaling matrix that scales an object by the amount
xScale along the x coordinate axis, by the amount yScale along the y
coordinate axis, and by the amount zScale along the z coordinate axis.

Q3Matrix4x4_SetRotateAboutPoint 20

You can use the Q3Matrix4x4_SetRotateAboutPoint function to configure a
4-by-4 rotation transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateAboutPoint (

TQ3Matrix4x4 *matrix4x4,

const TQ3Point3D *origin,

float xAngle,

float yAngle,

float zAngle);

matrix4x4 A 4-by-4 matrix.

origin The desired origin of rotation.

xAngle The desired angle of rotation around the x component of
origin, in radians.

yAngle The desired angle of rotation around the y component of
origin, in radians.

zAngle The desired angle of rotation around the z component of
origin, in radians.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-67

DESCRIPTION

The Q3Matrix4x4_SetRotateAboutPoint function returns, as its function
result and in the matrix4x4 parameter, a rotation matrix that rotates an object
by the specified angle around the point origin.

Q3Matrix4x4_SetRotateAboutAxis 20

You can use the Q3Matrix4x4_SetRotateAboutAxis function to configure a
4-by-4 rotate-about-axis transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateAboutAxis (

TQ3Matrix4x4 *matrix4x4,

const TQ3Point3D *origin,

const TQ3Vector3D *orientation,

float angle);

matrix4x4 A 4-by-4 matrix.

origin The desired origin of rotation.

orientation The desired orientation of the axis of rotation.

angle The desired angle of rotation, in radians.

DESCRIPTION

The Q3Matrix4x4_SetRotateAboutAxis function returns, as its function result
and in the matrix4x4 parameter, an rotate-about-axis matrix that rotates an
object by the angle angle around the axis determined by the point origin and
the orientation orientation.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-68 QuickDraw 3D Mathematical Utilities Reference

Q3Matrix4x4_SetRotate_X 20

You can use the Q3Matrix4x4_SetRotate_X function to configure a 4-by-4
transformation matrix that rotates objects around the x axis.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_X (

TQ3Matrix4x4 *matrix4x4,

float angle);

matrix4x4 A 4-by-4 matrix.

angle The desired angle of rotation around the x coordinate axis,
in radians.

DESCRIPTION

The Q3Matrix4x4_SetRotate_X function returns, as its function result and in
the matrix4x4 parameter, a rotational matrix that rotates an object by the angle
angle around the x axis.

Q3Matrix4x4_SetRotate_Y 20

You can use the Q3Matrix4x4_SetRotate_Y function to configure a 4-by-4
transformation matrix that rotates objects around the y axis.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_Y (

TQ3Matrix4x4 *matrix4x4,

float angle);

matrix4x4 A 4-by-4 matrix.

angle The desired angle of rotation around the y coordinate axis,
in radians.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-69

DESCRIPTION

The Q3Matrix4x4_SetRotate_Y function returns, as its function result and in
the matrix4x4 parameter, a rotational matrix that rotates an object by the angle
angle around the y axis.

Q3Matrix4x4_SetRotate_Z 20

You can use the Q3Matrix4x4_SetRotate_Z function to configure a 4-by-4
transformation matrix that rotates objects around the z axis.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_Z (

TQ3Matrix4x4 *matrix4x4,

float angle);

matrix4x4 A 4-by-4 matrix.

angle The desired angle of rotation around the z coordinate axis,
in radians.

DESCRIPTION

The Q3Matrix4x4_SetRotate_Z function returns, as its function result and in
the matrix4x4 parameter, a rotational matrix that rotates an object by the angle
angle around the z axis.

Q3Matrix4x4_SetRotate_XYZ 20

You can use the Q3Matrix4x4_SetRotate_XYZ function to configure a 4-by-4
transformation matrix that rotates objects around all three coordinate axes.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_XYZ (

TQ3Matrix4x4 *matrix4x4,

float xAngle,

float yAngle,

float zAngle);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-70 QuickDraw 3D Mathematical Utilities Reference

matrix4x4 A 4-by-4 matrix.

xAngle The desired angle of rotation around the x axis, in radians.

yAngle The desired angle of rotation around the y axis, in radians.

zAngle The desired angle of rotation around the z axis, in radians.

DESCRIPTION

The Q3Matrix4x4_SetRotate_XYZ function returns, as its function result and
in the matrix4x4 parameter, a rotational matrix that rotates an object by the
specified angles around the x, y, and z axes.

Q3Matrix4x4_SetRotateVectorToVector 20

You can use the Q3Matrix4x4_SetRotateVectorToVector function to
configure a 4-by-4 transformation matrix that rotates objects around the origin
in such a way that a transformed vector matches a given vector.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateVectorToVector (

TQ3Matrix4x4 *matrix4x4,

const TQ3Vector3D *v1,

const TQ3Vector3D *v2);

matrix4x4 A 4-by-4 matrix.

v1 A three-dimensional vector.

v2 A three-dimensional vector.

DESCRIPTION

The Q3Matrix4x4_SetRotateVectorToVector function returns, as its function
result and in the matrix4x4 parameter, a rotational matrix that rotates objects
around the origin in such a way that the transformed vector v1 matches the
vector v2. Both v1 and v2 should be normalized.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-71

Q3Matrix4x4_SetQuaternion 20

You can use the Q3Matrix4x4_SetQuaternion function to configure a 4-by-4
quaternion transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetQuaternion (

TQ3Matrix4x4 *matrix,

const TQ3Quaternion *quaternion);

matrix A 4-by-4 matrix.

quaternion A quaternion.

DESCRIPTION

The Q3Matrix4x4_SetQuaternion function returns, as its function result and
in the matrix parameter, a 4-by-4 matrix that represents the quaternion
specified by the quaternion parameter.

Utility Functions 20

QuickDraw 3D provides several mathematical utility functions. You can use
the following two macros to convert degrees to radians, and vice versa.

#define Q3Math_DegreesToRadians(x) ((x) * kQ3Pi / 180.0)

#define Q3Math_RadiansToDegrees(x) ((x) * 180.0 / kQ3Pi)

You can use the following two macros to get the minimum and maximum of
two values.

#define Q3Math_Min(x,y) ((x) <= (y) ? (x) : (y))

#define Q3Math_Max(x,y) ((x) >= (y) ? (x) : (y))

Managing Quaternions 20

QuickDraw 3D provides routines that you can use to operate on quaternions.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-72 QuickDraw 3D Mathematical Utilities Reference

Q3Quaternion_Set 20

You can use the Q3Quaternion_Set function to set the components of a
quaternion.

TQ3Quaternion *Q3Quaternion_Set (

TQ3Quaternion *quaternion,

float w,

float x,

float y,

float z);

quaternion A quaternion.

w The desired w component of a quaternion.

x The desired x component of a quaternion.

y The desired y component of a quaternion.

z The desired z component of a quaternion.

DESCRIPTION

The Q3Quaternion_Set function returns, as its function result and in the
quaternion parameter, the quaternion whose components are specified by the
w, x, y, and z parameters.

Q3Quaternion_SetIdentity 20

You can use the Q3Quaternion_SetIdentity function to set a quaternion to
the identity quaternion.

TQ3Quaternion *Q3Quaternion_SetIdentity (

TQ3Quaternion *quaternion);

quaternion On exit, the identity quaternion.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-73

DESCRIPTION

The Q3Quaternion_SetIdentity function returns, as its function result and in
the quaternion parameter, the identity quaternion.

Q3Quaternion_Copy 20

You can use the Q3Quaternion_Copy function to get a copy of a quaternion.

TQ3Quaternion *Q3Quaternion_Copy (

const TQ3Quaternion *quaternion,

TQ3Quaternion *result);

quaternion A quaternion.

result On exit, a copy of quaternion.

DESCRIPTION

The Q3Quaternion_Copy function returns, as its function result and in the
result parameter, a copy of the quaternion quaternion.

Q3Quaternion_IsIdentity 20

You can use the Q3Quaternion_IsIdentity function to determine whether a
quaternion is the identity quaternion.

TQ3Boolean Q3Quaternion_IsIdentity (

const TQ3Quaternion *quaternion);

quaternion A quaternion.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-74 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Quaternion_IsIdentity function returns kQ3True if the quaternion
parameter is the identity quaternion; Q3Quaternion_IsIdentity returns
kQ3False otherwise.

Q3Quaternion_Invert 20

You can use the Q3Quaternion_Invert function to invert a quaternion.

TQ3Quaternion *Q3Quaternion_Invert (

const TQ3Quaternion *quaternion,

TQ3Quaternion *result);

quaternion A quaternion.

result On exit, the inverse of quaternion.

DESCRIPTION

The Q3Quaternion_Invert function returns, as its function result and in
the result parameter, the inverse of the quaternion specified by the
quaternion parameter.

Q3Quaternion_Normalize 20

You can use the Q3Quaternion_Normalize function to normalize a quaternion.

TQ3Quaternion *Q3Quaternion_Normalize (

const TQ3Quaternion *quaternion,

TQ3Quaternion *result);

quaternion A quaternion.

result On exit, the normalized form of quaternion.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-75

DESCRIPTION

The Q3Quaternion_Normalize function returns, as its function result and in
the result parameter, the normalized form of the quaternion quaternion.
Note that on entry the result parameter can be the same as the quaternion
parameter.

Q3Quaternion_Dot 20

You can use the Q3Quaternion_Dot function to determine the dot product of
two quaternions.

float Q3Quaternion_Dot (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2);

q1 A quaternion.

q2 A quaternion.

DESCRIPTION

The Q3Quaternion_Dot function returns, as its function result, a floating-point
value that is the dot product of the two quaternions q1 and q2.

Q3Quaternion_Multiply 20

You can use the Q3Quaternion_Multiply function to multiply two quaternions.

TQ3Quaternion *Q3Quaternion_Multiply (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2,

TQ3Quaternion *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-76 QuickDraw 3D Mathematical Utilities Reference

q1 A quaternion.

q2 A quaternion.

result On exit, the product of q1 and q2.

DESCRIPTION

The Q3Quaternion_Multiply function returns, as its function result and in the
result parameter, the product of the two quaternions q1 and q2.

If you want to rotate an object by the quaternion qFirst and then rotate the
resulting object by the quaternion qSecond, you can accomplish both rotations
at once by applying the quaternion qResult that is obtained as follows:

Q3Quaternion_Multiply(qSecond, qFirst, qResult);

Note the order of the quaternion multiplicands.

Q3Quaternion_SetRotateAboutAxis 20

You can use the Q3Quaternion_SetRotateAboutAxis function to configure a
rotate-about-axis quaternion.

TQ3Quaternion *Q3Quaternion_SetRotateAboutAxis (

TQ3Quaternion *quaternion,

const TQ3Vector3D *axis,

float angle);

quaternion A quaternion.

axis The desired axis of rotation.

angle The desired angle of rotation, in radians.

DESCRIPTION

The Q3Quaternion_SetRotateAboutAxis function returns, as its function
result and in the quaternion parameter, a rotate-about-axis quaternion that
rotates an object by the angle angle around the axis specified by the axis
parameter.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-77

Q3Quaternion_SetRotateX 20

You can use the Q3Quaternion_SetRotateX function to configure a quaternion
that rotates objects around the x axis.

TQ3Quaternion *Q3Quaternion_SetRotateX (

TQ3Quaternion *quaternion,

float angle);

quaternion A quaternion.

angle The desired angle of rotation around the x coordinate axis,
in radians.

DESCRIPTION

The Q3Quaternion_SetRotateX function returns, as its function result and in
the quaternion parameter, a quaternion that rotates an object by the angle
angle around the x axis.

Q3Quaternion_SetRotateY 20

You can use the Q3Quaternion_SetRotateY function to configure a quaternion
that rotates objects around the y axis.

TQ3Quaternion *Q3Quaternion_SetRotateY (

TQ3Quaternion *quaternion,

float angle);

quaternion A quaternion.

angle The desired angle of rotation around the y coordinate axis,
in radians.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-78 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Quaternion_SetRotateY function returns, as its function result and in
the quaternion parameter, a quaternion that rotates an object by the angle
angle around the y axis.

Q3Quaternion_SetRotateZ 20

You can use the Q3Quaternion_SetRotateZ function to configure a quaternion
that rotates objects around the z axis.

TQ3Quaternion *Q3Quaternion_SetRotateZ (

TQ3Quaternion *quaternion,

float angle);

quaternion A quaternion.

angle The desired angle of rotation around the z coordinate axis,
in radians.

DESCRIPTION

The Q3Quaternion_SetRotateZ function returns, as its function result and in
the quaternion parameter, a quaternion that rotates an object by the angle
angle around the z axis.

Q3Quaternion_SetRotateXYZ 20

You can use the Q3Quaternion_SetRotateXYZ function to configure a
quaternion having a specified rotation around the x, y, and z axes.

TQ3Quaternion *Q3Quaternion_SetRotateXYZ (

TQ3Quaternion *quaternion,

float xAngle,

float yAngle,

float zAngle);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-79

quaternion A quaternion.

xAngle The desired angle of rotation around the x axis, in radians.

yAngle The desired angle of rotation around the y axis, in radians.

zAngle The desired angle of rotation around the z axis, in radians.

DESCRIPTION

The Q3Quaternion_SetRotateXYZ function returns, as its function result and
in the quaternion parameter, a quaternion that rotates an object by the
specified angles around the x, y, and z axes.

Q3Quaternion_SetMatrix 20

You can use the Q3Quaternion_SetMatrix function to configure a quaternion
from a matrix.

TQ3Quaternion *Q3Quaternion_SetMatrix (

TQ3Quaternion *quaternion,

const TQ3Matrix4x4 *matrix);

quaternion A quaternion.

matrix A 4-by-by matrix.

DESCRIPTION

The Q3Quaternion_SetMatrix function returns, as its function result and in
the quaternion parameter, a quaternion that has the same transformational
properties as the matrix specified by the matrix parameter.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-80 QuickDraw 3D Mathematical Utilities Reference

Q3Quaternion_SetRotateVectorToVector 20

You can use the Q3Quaternion_SetRotateVectorToVector function to
configure a quaternion that rotates objects around the origin in such a way
that a transformed vector matches a given vector.

TQ3Quaternion *Q3Quaternion_SetRotateVectorToVector (

TQ3Quaternion *quaternion,

const TQ3Vector3D *v1,

const TQ3Vector3D *v2);

quaternion A quaternion.

v1 A three-dimensional vector.

v2 A three-dimensional vector.

DESCRIPTION

The Q3Quaternion_SetRotateVectorToVector function returns, as its
function result and in the quaternion parameter, a quaternion that rotates
objects around the origin in such a way that the transformed vector v1 matches
the vector v2. Both v1 and v2 should be normalized.

Q3Quaternion_MatchReflection 20

You can use the Q3Quaternion_MatchReflection function to match the
orientation of a quaternion.

TQ3Quaternion *Q3Quaternion_MatchReflection (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2,

TQ3Quaternion *result);

q1 A quaternion.

q2 A quaternion.

result On exit, a quaternion that is either q1 or the negative of q1, and
that matches the orientation of q2.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-81

DESCRIPTION

The Q3Quaternion_MatchReflection function returns, as its function result
and in the result parameter, a quaternion that is either identical to the
quaternion specified by the q1 parameter or is the negative of q1, depending on
whether q1 or its negative matches the orientation of the quaternion specified
by the q2 parameter.

Q3Quaternion_InterpolateFast 20

You can use the Q3Quaternion_InterpolateFast function to interpolate
quickly between two quaternions.

TQ3Quaternion *Q3Quaternion_InterpolateFast (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2,

float t,

TQ3Quaternion *result);

q1 A quaternion.

q2 A quaternion.

t An interpolation factor. This parameter should contain a value
between 0.0 and 1.0.

result On exit, a quaternion that is a fast interpolation between the
two specified quaternions.

DESCRIPTION

The Q3Quaternion_InterpolateFast function returns, as its function result
and in the result parameter, a quaternion that interpolates between the
two quaternions specified by the q1 and q2 parameters, according to
the factor specified by the t parameter. If the value of t is 0.0,
Q3Quaternion_InterpolateFast returns a quaternion identical to q1. If
the value of t is 1.0, Q3Quaternion_InterpolateFast returns a quaternion
identical to q2. If t is any other value in the range [0.0, 1.0],
Q3Quaternion_InterpolateFast returns a quaternion that is interpolated
between the two quaternions.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-82 QuickDraw 3D Mathematical Utilities Reference

The interpolation returned by Q3Quaternion_InterpolateFast is not as
smooth or constant as that returned by Q3Quaternion_InterpolateLinear,
but Q3Quaternion_InterpolateFast is usually faster than
Q3Quaternion_InterpolateLinear.

Q3Quaternion_InterpolateLinear 20

You can use the Q3Quaternion_InterpolateLinear function to interpolate
linearly between two quaternions.

TQ3Quaternion *Q3Quaternion_InterpolateLinear (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2,

float t,

TQ3Quaternion *result) ;

q1 A quaternion.

q2 A quaternion.

t An interpolation factor. This parameter should contain a value
between 0.0 and 1.0.

result On exit, a quaternion that is a smooth and constant
interpolation between the two specified quaternions.

DESCRIPTION

The Q3Quaternion_InterpolateLinear function returns, as its function
result and in the result parameter, a quaternion that interpolates smoothly
between the two quaternions specified by the q1 and q2 parameters, according
to the factor specified by the t parameter. If the value of t is 0.0,
Q3Quaternion_InterpolateLinear returns a quaternion identical to q1. If
the value of t is 1.0, Q3Quaternion_InterpolateLinear returns a quaternion
identical to q2. If t is any other value in the range [0.0, 1.0],
Q3Quaternion_InterpolateLinear returns a quaternion that is interpolated
between the two quaternions in a smooth and constant manner.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-83

Q3Vector3D_TransformQuaternion 20

You can use the Q3Vector3D_TransformQuaternion function to transform a
vector by a quaternion.

TQ3Vector3D *Q3Vector3D_TransformQuaternion (

const TQ3Vector3D *vector,

const TQ3Quaternion *quaternion,

TQ3Vector3D *result);

vector A three-dimensional vector.

quaternion A quaternion.

result On exit, a three-dimensional vector that is the result of
transforming the specified vector by the specified quaternion.

DESCRIPTION

The Q3Vector3D_TransformQuaternion function returns, as its function result
and in the result parameter, a three-dimensional vector that is the result of
transforming the vector specified by the vector parameter using the
quaternion specified by the quaternion parameter.

Q3Point3D_TransformQuaternion 20

You can use the Q3Point3D_TransformQuaternion function to transform a
point by a quaternion.

TQ3Point3D *Q3Point3D_TransformQuaternion (

const TQ3Point3D *point,

const TQ3Quaternion *quaternion,

TQ3Point3D *result);

point A three-dimensional point.

quaternion A quaternion.

result On exit, a three-dimensional point that is the result of
transforming the specified point by the specified quaternion.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-84 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Point3D_TransformQuaternion function returns, as its function result
and in the result parameter, a three-dimensional point that is the result of
transforming the point specified by the point parameter using the quaternion
specified by the quaternion parameter.

Managing Bounding Boxes 20

QuickDraw 3D provides routines that you can use to manage bounding boxes.

Q3BoundingBox_Copy 20

You can use the Q3BoundingBox_Copy function to make a copy of a
bounding box.

TQ3BoundingBox *Q3BoundingBox_Copy (

const TQ3BoundingBox *src,

TQ3BoundingBox *dest);

src A pointer to the bounding box to be copied.

dest On entry, a pointer to a buffer large enough to hold a bounding
box. On exit, a pointer to a copy of the bounding box specified
by the src parameter.

DESCRIPTION

The Q3BoundingBox_Copy function returns, as its function result and in the
dest parameter, a copy of the bounding box specified by the src parameter.
Q3BoundingBox_Copy does not allocate any memory for the destination
bounding box; the dest parameter must point to space allocated in the heap or
on the stack before you call Q3BoundingBox_Copy.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-85

Q3BoundingBox_Union 20

You can use the Q3BoundingBox_Union function to find the union of two
bounding boxes.

TQ3BoundingBox *Q3BoundingBox_Union (

const TQ3BoundingBox *v1,

const TQ3BoundingBox *v2,

TQ3BoundingBox *result);

v1 A pointer to a bounding box.

v2 A pointer to a bounding box.

result On exit, a pointer to the union of the bounding boxes v1 and v2.

DESCRIPTION

The Q3BoundingBox_Union function returns, as its function result and in the
result parameter, a pointer to the bounding box that is the union of the two
bounding boxes specified by the parameters v1 and v2. The result parameter
can point to the memory occupied by either v1 or v2, thereby performing the
union operation in place.

Q3BoundingBox_Set 20

You can use the Q3BoundingBox_Set function to set the defining points of a
bounding box.

TQ3BoundingBox *Q3BoundingBox_Set (

TQ3BoundingBox *bBox,

const TQ3Point3D *min,

const TQ3Point3D *max,

TQ3Boolean isEmpty);

bBox A pointer to a bounding box.

min A pointer to a three-dimensional point.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-86 QuickDraw 3D Mathematical Utilities Reference

max A pointer to a three-dimensional point.

isEmpty A Boolean value that indicates whether the specified bounding
box is empty (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3BoundingBox_Set function assigns the values min and max to the min
and max fields of the bounding box specified by the bBox parameter.
Q3BoundingBox_Set also assigns the value of the isEmpty parameter to the
isEmpty field of the bounding box.

Q3BoundingBox_UnionPoint3D 20

You can use the Q3BoundingBox_UnionPoint3D function to find the union of a
bounding box and a three-dimensional point.

TQ3BoundingBox *Q3BoundingBox_UnionPoint3D (

const TQ3BoundingBox *bBox,

const TQ3Point3D *pt3D,

TQ3BoundingBox *result);

bBox A pointer to a bounding box.

pt3D A three-dimensional point.

result On exit, a pointer to the union of the specified bounding box
and the specified point.

DESCRIPTION

The Q3BoundingBox_UnionPoint3D function returns, as its function result and
in the result parameter, a pointer to the bounding box that is the union of the
bounding box specified by the bBox parameter and the three-dimensional point
specified by the pt3D parameter. The result parameter can point to the
memory pointed to by bBox, thereby performing the union operation in place.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-87

Q3BoundingBox_UnionRationalPoint4D 20

You can use the Q3BoundingBox_UnionRationalPoint4D function to find the
union of a bounding box and a rational four-dimensional point.

TQ3BoundingBox *Q3BoundingBox_UnionRationalPoint4D (

const TQ3BoundingBox *bBox,

const TQ3RationalPoint4D *pt4D,

TQ3BoundingBox *result);

bBox A pointer to a bounding box.

pt4D A rational four-dimensional point.

result On exit, a pointer to the union of the specified bounding box
and the specified point.

DESCRIPTION

The Q3BoundingBox_UnionRationalPoint4D function returns, as its function
result and in the result parameter, a pointer to the bounding box that is the
union of the bounding box specified by the bBox parameter and the rational
four-dimensional point specified by the pt4D parameter. The result parameter
can point to the memory pointed to by bBox, thereby performing the union
operation in place.

Q3BoundingBox_SetFromPoints3D 20

You can use the Q3BoundingBox_SetFromPoints3D function to find the
bounding box that bounds an arbitrary list of three-dimensional points.

TQ3BoundingBox *Q3BoundingBox_SetFromPoints3D (

TQ3BoundingBox *bBox,

const TQ3Point3D *pts,

unsigned long nPts,

unsigned long structSize);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-88 QuickDraw 3D Mathematical Utilities Reference

bBox A pointer to a bounding box.

pts A pointer to a list of three-dimensional points.

nPts The number of points in the specified list.

structSize The number of bytes of data that separate two successive points
in the specified list of points.

DESCRIPTION

The Q3BoundingBox_SetFromPoints3D function returns, as its function result
and in the bBox parameter, a pointer to a bounding box that contains all the
points in the list of three-dimensional points specified by the pts parameter.
The nPts parameter indicates how many points are in that list, and the
structSize parameter indicates the offset between any two successive points
in the list. By suitably specifying the value of the structSize parameter, you
can have QuickDraw 3D extract points that are embedded in an array of larger
data structures.

Q3BoundingBox_SetFromRationalPoints4D 20

You can use the Q3BoundingBox_SetFromRationalPoints4D function to
find the bounding box that bounds an arbitrary list of rational four-
dimensional points.

TQ3BoundingBox *Q3BoundingBox_SetFromRationalPoints4D (

TQ3BoundingBox *bBox,

const TQ3RationalPoint4D *pts,

unsigned long nPts,

unsigned long structSize);

bBox A pointer to a bounding box.

pts A pointer to a list of rational four-dimensional points.

nPts The number of points in the specified list.

structSize The number of bytes of data that separate two successive points
in the specified list of points.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-89

DESCRIPTION

The Q3BoundingBox_SetFromRationalPoints4D function returns, as its
function result and in the bBox parameter, a pointer to a bounding box that
contains all the points in the list of rational four-dimensional points specified
by the pts parameter. The nPts parameter indicates how many points are in
that list, and the structSize parameter indicates the offset between any two
successive points in the list. By suitably specifying the value of the structSize
parameter, you can have QuickDraw 3D extract points that are embedded in an
array of larger data structures.

Managing Bounding Spheres 20

QuickDraw 3D provides routines that you can use to manage bounding spheres.

Q3BoundingSphere_Copy 20

You can use the Q3BoundingSphere_Copy function to make a copy of a
bounding sphere.

TQ3BoundingSphere *Q3BoundingSphere_Copy (

const TQ3BoundingSphere *src,

TQ3BoundingSphere *dest);

src A pointer to the bounding sphere to be copied.

dest On entry, a pointer to a buffer large enough to hold a bounding
sphere. On exit, a pointer to a copy of the bounding sphere
specified by the src parameter.

DESCRIPTION

The Q3BoundingSphere_Copy function returns, as its function result and in the
dest parameter, a copy of the bounding sphere specified by the src parameter.
Q3BoundingSphere_Copy does not allocate any memory for the destination
bounding sphere; the dest parameter must point to space allocated in the heap
or on the stack before you call Q3BoundingSphere_Copy.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-90 QuickDraw 3D Mathematical Utilities Reference

Q3BoundingSphere_Union 20

You can use the Q3BoundingSphere_Union function to find the union of two
bounding spheres.

TQ3BoundingSphere *Q3BoundingSphere_Union (

const TQ3BoundingSphere *s1,

const TQ3BoundingSphere *s2,

TQ3BoundingSphere *result);

s1 A pointer to a bounding sphere.

s2 A pointer to a bounding sphere.

result On exit, a pointer to the union of the bounding spheres s1
and s2.

DESCRIPTION

The Q3BoundingSphere_Union function returns, as its function result and in
the result parameter, a pointer to the bounding sphere that is the union of the
two bounding spheres specified by the parameters s1 and s2. The result
parameter can point to the memory occupied by either s1 or s2, thereby
performing the union operation in place.

Q3BoundingSphere_Set 20

You can use the Q3BoundingSphere_Set function to set the defining origin and
radius of a bounding sphere.

TQ3BoundingSphere *Q3BoundingSphere_Set (

TQ3BoundingSphere *bSphere,

const TQ3Point3D *origin,

float radius,

TQ3Boolean isEmpty);

bSphere A pointer to a bounding sphere.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-91

origin A pointer to a three-dimensional point.

radius A floating-point value that specifies the desired radius of the
bounding sphere.

isEmpty A Boolean value that indicates whether the specified bounding
sphere is empty (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3BoundingSphere_Set function assigns the values origin and radius to
the origin and radius fields of the bounding sphere specified by the bSphere
parameter. Q3BoundingSphere_Set also assigns the value of the isEmpty
parameter to the isEmpty field of the bounding sphere.

Q3BoundingSphere_UnionPoint3D 20

You can use the Q3BoundingSphere_UnionPoint3D function to find the union
of a bounding sphere and a three-dimensional point.

TQ3BoundingSphere *Q3BoundingSphere_UnionPoint3D (

const TQ3BoundingSphere *bSphere,

const TQ3Point3D *pt3D,

TQ3BoundingSphere *result);

bSphere A pointer to a bounding sphere.

pt3D A three-dimensional point.

result On exit, a pointer to the union of the specified bounding sphere
and the specified point.

DESCRIPTION

The Q3BoundingSphere_UnionPoint3D function returns, as its function result
and in the result parameter, a pointer to the bounding sphere that is the union
of the bounding sphere specified by the bSphere parameter and the three-
dimensional point specified by the pt3D parameter. The result parameter can
point to the memory pointed to by bSphere, thereby performing the union
operation in place.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-92 QuickDraw 3D Mathematical Utilities Reference

Q3BoundingSphere_UnionRationalPoint4D 20

You can use the Q3BoundingSphere_UnionRationalPoint4D function to find
the union of a bounding sphere and a rational four-dimensional point.

TQ3BoundingSphere *Q3BoundingSphere_UnionRationalPoint4D (

const TQ3BoundingSphere *bSphere,

const TQ3RationalPoint4D *pt4D,

TQ3BoundingSphere *result);

bSphere A pointer to a bounding sphere.

pt4D A rational four-dimensional point.

result On exit, a pointer to the union of the specified bounding sphere
and the specified point.

DESCRIPTION

The Q3BoundingSphere_UnionRationalPoint4D function returns, as its
function result and in the result parameter, a pointer to the bounding sphere
that is the union of the bounding sphere specified by the bSphere parameter
and the rational four-dimensional point specified by the pt4D parameter. The
result parameter can point to the memory pointed to by bSphere, thereby
performing the union operation in place.

Q3BoundingSphere_SetFromPoints3D 20

You can use the Q3BoundingSphere_SetFromPoints3D function to find the
bounding sphere that bounds an arbitrary list of three-dimensional points.

TQ3BoundingSphere *Q3BoundingSphere_SetFromPoints3D (

TQ3BoundingSphere *bSphere,

const TQ3Point3D *pts,

unsigned long nPts,

unsigned long structSize);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 20-93

bSphere A pointer to a bounding sphere.

pts A pointer to a list of three-dimensional points.

nPts The number of points in the specified list.

structSize The number of bytes of data that separate two successive points
in the specified list of points.

DESCRIPTION

The Q3BoundingSphere_SetFromPoints3D function returns, as its function
result and in the bSphere parameter, a pointer to a bounding sphere that
contains all the points in the list of three-dimensional points specified by the
pts parameter. The nPts parameter indicates how many points are in that list,
and the structSize parameter indicates the offset between any two successive
points in the list. By suitably specifying the value of the structSize parameter,
you can have QuickDraw 3D extract points that are embedded in an array of
larger data structures.

Q3BoundingSphere_SetFromRationalPoints4D 20

You can use the Q3BoundingSphere_SetFromRationalPoints4D function to
find the bounding sphere that bounds an arbitrary list of rational four-
dimensional points.

TQ3BoundingSphere *Q3BoundingSphere_SetFromRationalPoints4D (

TQ3BoundingSphere *bSphere,

const TQ3RationalPoint4D *pts,

unsigned long nPts,

unsigned long structSize);

bSphere A pointer to a bounding sphere.

pts A pointer to a list of rational four-dimensional points.

nPts The number of points in the specified list.

structSize The number of bytes of data that separate two successive points
in the specified list of points.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-94 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3BoundingSphere_SetFromRationalPoints4D function returns, as its
function result and in the bSphere parameter, a pointer to a bounding sphere
that contains all the points in the list of rational four-dimensional points
specified by the pts parameter. The nPts parameter indicates how many points
are in that list, and the structSize parameter indicates the offset between any
two successive points in the list. By suitably specifying the value of the
structSize parameter, you can have QuickDraw 3D extract points that are
embedded in an array of larger data structures.

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-95

Summary of QuickDraw 3D Mathematical Utilities 20

C Summary 20

Constants 20

Real Zero Definition

#ifdef FLT_EPSILON

define kQ3RealZero (FLT_EPSILON)

#else

define kQ3RealZero ((float)1.19209290e-07)

#endif

Maximum Floating-Point Value

#ifdef FLT_MAX

define kQ3MaxFloat (FLT_MAX)

#else

define kQ3MaxFloat ((float)3.40282347e+38)

#endif

Pi

#define kQ3Pi (3.1415926535898)

#define kQ32Pi (2.0 * kQ3Pi)

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-96 Summary of QuickDraw 3D Mathematical Utilities

Data Types 20

Bounding Boxes and Spheres

typedef struct TQ3BoundingBox {

TQ3Point3D min;

TQ3Point3D max;

TQ3Boolean isEmpty;

} TQ3BoundingBox;

typedef struct TQ3BoundingSphere {

TQ3Point3D origin;

float radius;

TQ3Boolean isEmpty;

} TQ3BoundingSphere;

QuickDraw 3D Mathematical Utilities 20

Setting Points and Vectors

TQ3Point2D *Q3Point2D_Set (TQ3Point2D *point2D, float x, float y);

TQ3Param2D *Q3Param2D_Set (TQ3Param2D *param2D, float u, float v);

TQ3Point3D *Q3Point3D_Set (TQ3Point3D *point3D,

float x,

float y,

float z);

TQ3RationalPoint3D *Q3RationalPoint3D_Set (

TQ3RationalPoint3D *point3D,

float x,

float y,

float w);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-97

TQ3RationalPoint4D *Q3RationalPoint4D_Set (

TQ3RationalPoint4D *point4D,

float x,

float y,

float z,

float w);

TQ3PolarPoint *Q3PolarPoint_Set (

TQ3PolarPoint *polarPoint,

float r,

float theta);

TQ3SphericalPoint *Q3SphericalPoint_Set (

TQ3SphericalPoint *sphericalPoint,

float rho,

float theta,

float phi);

TQ3Vector2D *Q3Vector2D_Set (TQ3Vector2D *vector2D,

float x,

float y);

TQ3Vector3D *Q3Vector3D_Set (TQ3Vector3D *vector3D,

float x,

float y,

float z);

Converting Dimensions of Points and Vectors

TQ3Point3D *Q3Point2D_To3D (const TQ3Point2D *point2D,

TQ3Point3D *result);

TQ3RationalPoint4D *Q3Point3D_To4D (

const TQ3Point3D *point3D,

TQ3RationalPoint4D *result);

TQ3Point2D *Q3RationalPoint3D_To2D (

const TQ3RationalPoint3D *point3D,

TQ3Point2D *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-98 Summary of QuickDraw 3D Mathematical Utilities

TQ3Point3D *Q3RationalPoint4D_To3D (

const TQ3RationalPoint4D *point4D,

TQ3Point3D *result);

TQ3Vector3D *Q3Vector2D_To3D (const TQ3Vector2D *vector2D,

TQ3Vector3D *result);

TQ3Vector2D *Q3Vector3D_To2D (const TQ3Vector3D *vector3D,

TQ3Vector2D *result);

Subtracting Points

TQ3Vector2D *Q3Point2D_Subtract (

const TQ3Point2D *p1,

const TQ3Point2D *p2,

TQ3Vector2D *result);

TQ3Vector2D *Q3Param2D_Subtract (

const TQ3Param2D *p1,

const TQ3Param2D *p2,

TQ3Vector2D *result);

TQ3Vector3D *Q3Point3D_Subtract (

const TQ3Point3D *p1,

const TQ3Point3D *p2,

TQ3Vector3D *result);

Calculating Distances Between Points

float Q3Point2D_Distance (const TQ3Point2D *p1, const TQ3Point2D *p2);

float Q3Param2D_Distance (const TQ3Param2D *p1, const TQ3Param2D *p2);

float Q3Point3D_Distance (const TQ3Point3D *p1, const TQ3Point3D *p2);

float Q3RationalPoint3D_Distance (

const TQ3RationalPoint3D *p1,

const TQ3RationalPoint3D *p2);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-99

float Q3RationalPoint4D_Distance (

const TQ3RationalPoint4D *p1,

const TQ3RationalPoint4D *p2);

float Q3Point2D_DistanceSquared(const TQ3Point2D *p1, const TQ3Point2D *p2);

float Q3Param2D_DistanceSquared(const TQ3Param2D *p1, const TQ3Param2D *p2);

float Q3Point3D_DistanceSquared(const TQ3Point3D *p1, const TQ3Point3D *p2);

float Q3RationalPoint3D_DistanceSquared (

const TQ3RationalPoint3D *p1,

const TQ3RationalPoint3D *p2);

float Q3RationalPoint4D_DistanceSquared (

const TQ3RationalPoint4D *p1,

const TQ3RationalPoint4D *p2);

Determining Point Relative Ratios

TQ3Point2D *Q3Point2D_RRatio (const TQ3Point2D *p1,

const TQ3Point2D *p2,

float r1,

float r2,

TQ3Point2D *result);

TQ3Param2D *Q3Param2D_RRatio (const TQ3Param2D *p1,

const TQ3Param2D *p2,

float r1,

float r2,

TQ3Param2D *result);

TQ3Point3D *Q3Point3D_RRatio (const TQ3Point3D *p1,

const TQ3Point3D *p2,

float r1,

float r2,

TQ3Point3D *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-100 Summary of QuickDraw 3D Mathematical Utilities

TQ3RationalPoint4D *Q3RationalPoint4D_RRatio (

const TQ3RationalPoint4D *p1,

const TQ3RationalPoint4D *p2,

float r1,

float r2,

TQ3RationalPoint4D *result);

Adding and Subtracting Points and Vectors

TQ3Point2D *Q3Point2D_Vector2D_Add (

const TQ3Point2D *point2D,

const TQ3Vector2D *vector2D,

TQ3Point2D *result);

TQ3Param2D *Q3Param2D_Vector2D_Add (

const TQ3Param2D *param2D,

const TQ3Vector2D *vector2D,

TQ3Param2D *result);

TQ3Point3D *Q3Point3D_Vector3D_Add (

const TQ3Point3D *point3D,

const TQ3Vector3D *vector3D,

TQ3Point3D *result);

TQ3Point2D *Q3Point2D_Vector2D_Subtract (

const TQ3Point2D *point2D,

const TQ3Vector2D *vector2D,

TQ3Point2D *result);

TQ3Param2D *Q3Param2D_Vector2D_Subtract (

const TQ3Param2D *param2D,

const TQ3Vector2D *vector2D,

TQ3Param2D *result);

TQ3Point3D *Q3Point3D_Vector3D_Subtract (

const TQ3Point3D *point3D,

const TQ3Vector3D *vector3D,

TQ3Point3D *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-101

Scaling Vectors

TQ3Vector2D *Q3Vector2D_Scale (const TQ3Vector2D *vector2D,

float scalar,

TQ3Vector2D *result);

TQ3Vector3D *Q3Vector3D_Scale (const TQ3Vector3D *vector3D,

float scalar,

TQ3Vector3D *result);

Determining the Lengths of Vectors

float Q3Vector2D_Length (const TQ3Vector2D *vector2D);

float Q3Vector3D_Length (const TQ3Vector3D *vector3D);

Normalizing Vectors

TQ3Vector2D *Q3Vector2D_Normalize (

const TQ3Vector2D *vector2D,

TQ3Vector2D *result);

TQ3Vector3D *Q3Vector3D_Normalize (

const TQ3Vector3D *vector3D,

TQ3Vector3D *result);

Adding and Subtracting Vectors

TQ3Vector2D *Q3Vector2D_Add (const TQ3Vector2D *v1,

const TQ3Vector2D *v2,

TQ3Vector2D *result);

TQ3Vector3D *Q3Vector3D_Add (const TQ3Vector3D *v1,

const TQ3Vector3D *v2,

TQ3Vector3D *result);

TQ3Vector2D *Q3Vector2D_Subtract (

const TQ3Vector2D *v1,

const TQ3Vector2D *v2,

TQ3Vector2D *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-102 Summary of QuickDraw 3D Mathematical Utilities

TQ3Vector3D *Q3Vector3D_Subtract (

const TQ3Vector3D *v1,

const TQ3Vector3D *v2,

TQ3Vector3D *result);

Determining Vector Cross Products

float Q3Vector2D_Cross (const TQ3Vector2D *v1,

const TQ3Vector2D *v2);

TQ3Vector3D *Q3Vector3D_Cross (const TQ3Vector3D *v1,

const TQ3Vector3D *v2,

TQ3Vector3D *result);

TQ3Vector3D *Q3Point3D_CrossProductTri (

const TQ3Point3D *point1,

const TQ3Point3D *point2,

const TQ3Point3D *point3,

TQ3Vector3D *crossVector);

Determining Vector Dot Products

float Q3Vector2D_Dot (const TQ3Vector2D *v1, const TQ3Vector2D *v2);

float Q3Vector3D_Dot (const TQ3Vector3D *v1, const TQ3Vector3D *v2);

Transforming Points and Vectors

TQ3Vector2D *Q3Vector2D_Transform (

const TQ3Vector2D *vector2D,

const TQ3Matrix3x3 *matrix3x3,

TQ3Vector2D *result);

TQ3Vector3D *Q3Vector3D_Transform (

const TQ3Vector3D *vector3D,

const TQ3Matrix4x4 *matrix4x4,

TQ3Vector3D *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-103

TQ3Point2D *Q3Point2D_Transform (

const TQ3Point2D *point2D,

const TQ3Matrix3x3 *matrix3x3,

TQ3Point2D *result);

TQ3Param2D *Q3Param2D_Transform (

const TQ3Param2D *param2D,

const TQ3Matrix3x3 *matrix3x3,

TQ3Param2D *result);

TQ3Point3D *Q3Point3D_Transform (

const TQ3Point3D *point3D,

const TQ3Matrix4x4 *matrix4x4,

TQ3Point3D *result);

TQ3RationalPoint4D *Q3RationalPoint4D_Transform (

const TQ3RationalPoint4D *point4D,

const TQ3Matrix4x4 *matrix4x4,

TQ3RationalPoint4D *result);

TQ3Status Q3Point3D_To3DTransformArray (

const TQ3Point3D *inVertex,

const TQ3Matrix4x4 *matrix,

TQ3Point3D *outVertex,

long numVertices,

unsigned long inStructSize,

unsigned long outStructSize);

TQ3Status Q3Point3D_To4DTransformArray (

const TQ3Point3D *inVertex,

const TQ3Matrix4x4 *matrix,

TQ3RationalPoint4D *outVertex,

long numVertices,

unsigned long inStructSize,

unsigned long outStructSize);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-104 Summary of QuickDraw 3D Mathematical Utilities

TQ3Status Q3RationalPoint4D_To4DTransformArray (

const TQ3RationalPoint4D *inVertex,

const TQ3Matrix4x4 *matrix,

TQ3RationalPoint4D *outVertex,

long numVertices,

unsigned long inStructSize,

unsigned long outStructSize);

Negating Vectors

TQ3Vector2D *Q3Vector2D_Negate(const TQ3Vector2D *vector2D,

TQ3Vector2D *result);

TQ3Vector3D *Q3Vector3D_Negate(const TQ3Vector3D *vector3D,

TQ3Vector3D *result);

Converting Points from Cartesian to Polar or Spherical Form

TQ3PolarPoint *Q3Point2D_ToPolar (

const TQ3Point2D *point2D,

TQ3PolarPoint *result);

TQ3Point2D *Q3PolarPoint_ToPoint2D (

const TQ3PolarPoint *polarPoint,

TQ3Point2D *result);

TQ3SphericalPoint *Q3Point3D_ToSpherical (

const TQ3Point3D *point3D,

TQ3SphericalPoint *result);

TQ3Point3D *Q3SphericalPoint_ToPoint3D (

const TQ3SphericalPoint *sphericalPoint,

TQ3Point3D *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-105

Determining Point Affine Combinations

TQ3Point2D *Q3Point2D_AffineComb (

const TQ3Point2D *points2D,

const float *weights,

unsigned long nPoints,

TQ3Point2D *result);

TQ3Param2D *Q3Param2D_AffineComb (

const TQ3Param2D *params2D,

const float *weights,

unsigned long nPoints,

TQ3Param2D *result);

TQ3Point3D *Q3Point3D_AffineComb (

const TQ3Point3D *points3D,

const float *weights,

unsigned long nPoints,

TQ3Point3D *result);

TQ3RationalPoint3D *Q3RationalPoint3D_AffineComb (

const TQ3RationalPoint3D *points3D,

const float *weights,

unsigned long nPoints,

TQ3RationalPoint3D *result);

TQ3RationalPoint4D *Q3RationalPoint4D_AffineComb (

const TQ3RationalPoint4D *points4D,

const float *weights,

unsigned long nPoints,

TQ3RationalPoint4D *result);

Managing Matrices

TQ3Matrix3x3 *Q3Matrix3x3_Copy(const TQ3Matrix3x3 *matrix3x3,

TQ3Matrix3x3 *result);

TQ3Matrix4x4 *Q3Matrix4x4_Copy(const TQ3Matrix4x4 *matrix4x4,

TQ3Matrix4x4 *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-106 Summary of QuickDraw 3D Mathematical Utilities

TQ3Matrix3x3 *Q3Matrix3x3_SetIdentity (

TQ3Matrix3x3 *matrix3x3);

TQ3Matrix4x4 *Q3Matrix4x4_SetIdentity (

TQ3Matrix4x4 *matrix4x4);

TQ3Matrix3x3 *Q3Matrix3x3_Transpose (

const TQ3Matrix3x3 *matrix3x3,

TQ3Matrix3x3 *result);

TQ3Matrix4x4 *Q3Matrix4x4_Transpose (

const TQ3Matrix4x4 *matrix4x4,

TQ3Matrix4x4 *result);

TQ3Matrix3x3 *Q3Matrix3x3_Invert (

const TQ3Matrix3x3 *matrix3x3,

TQ3Matrix3x3 *result);

TQ3Matrix4x4 *Q3Matrix4x4_Invert (

const TQ3Matrix4x4 *matrix4x4,

TQ3Matrix4x4 *result);

TQ3Matrix3x3 *Q3Matrix3x3_Adjoint (

const TQ3Matrix3x3 *matrix3x3,

TQ3Matrix3x3 *result);

TQ3Matrix3x3 *Q3Matrix3x3_Multiply (

const TQ3Matrix3x3 *matrixA,

const TQ3Matrix3x3 *matrixB,

TQ3Matrix3x3 *result);

TQ3Matrix4x4 *Q3Matrix4x4_Multiply (

const TQ3Matrix4x4 *matrixA,

const TQ3Matrix4x4 *matrixB,

TQ3Matrix4x4 *result);

float Q3Matrix3x3_Determinant (const TQ3Matrix3x3 *matrix3x3);

float Q3Matrix4x4_Determinant (const TQ3Matrix4x4 *matrix4x4);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-107

Setting Up Transformation Matrices

TQ3Matrix3x3 *Q3Matrix3x3_SetTranslate (

TQ3Matrix3x3 *matrix3x3,

float xTrans,

float yTrans);

TQ3Matrix3x3 *Q3Matrix3x3_SetScale (

TQ3Matrix3x3 *matrix3x3,

float xScale,

float yScale);

TQ3Matrix3x3 *Q3Matrix3x3_SetRotateAboutPoint (

TQ3Matrix3x3 *matrix3x3,

const TQ3Point2D *origin,

float angle);

TQ3Matrix4x4 *Q3Matrix4x4_SetTranslate (

TQ3Matrix4x4 *matrix4x4,

float xTrans,

float yTrans,

float zTrans);

TQ3Matrix4x4 *Q3Matrix4x4_SetScale (

TQ3Matrix4x4 *matrix4x4,

float xScale,

float yScale,

float zScale);

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateAboutPoint (

TQ3Matrix4x4 *matrix4x4,

const TQ3Point3D *origin,

float xAngle,

float yAngle,

float zAngle);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-108 Summary of QuickDraw 3D Mathematical Utilities

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateAboutAxis (

TQ3Matrix4x4 *matrix4x4,

const TQ3Point3D *origin,

const TQ3Vector3D *orientation,

float angle);

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_X (

TQ3Matrix4x4 *matrix4x4, float angle);

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_Y (

TQ3Matrix4x4 *matrix4x4, float angle);

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_Z (

TQ3Matrix4x4 *matrix4x4, float angle);

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_XYZ (

TQ3Matrix4x4 *matrix4x4,

float xAngle,

float yAngle,

float zAngle);

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateVectorToVector (

TQ3Matrix4x4 *matrix4x4,

const TQ3Vector3D *v1,

const TQ3Vector3D *v2);

TQ3Matrix4x4 *Q3Matrix4x4_SetQuaternion (

TQ3Matrix4x4 *matrix,

const TQ3Quaternion *quaternion);

Utility Functions

#define Q3Math_DegreesToRadians(x) ((x) * kQ3Pi / 180.0)

#define Q3Math_RadiansToDegrees(x) ((x) * 180.0 / kQ3Pi)

#define Q3Math_Min(x,y) ((x) <= (y) ? (x) : (y))

#define Q3Math_Max(x,y) ((x) >= (y) ? (x) : (y))

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-109

Managing Quaternions

TQ3Quaternion *Q3Quaternion_Set (

TQ3Quaternion *quaternion,

float w,

float x,

float y,

float z);

TQ3Quaternion *Q3Quaternion_SetIdentity (

TQ3Quaternion *quaternion);

TQ3Quaternion *Q3Quaternion_Copy (

const TQ3Quaternion *quaternion,

TQ3Quaternion *result);

TQ3Boolean Q3Quaternion_IsIdentity (

const TQ3Quaternion *quaternion);

TQ3Quaternion *Q3Quaternion_Invert (

const TQ3Quaternion *quaternion,

TQ3Quaternion *result);

TQ3Quaternion *Q3Quaternion_Normalize (

const TQ3Quaternion *quaternion,

TQ3Quaternion *result);

float Q3Quaternion_Dot (const TQ3Quaternion *q1,

const TQ3Quaternion *q2);

TQ3Quaternion *Q3Quaternion_Multiply (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2,

TQ3Quaternion *result);

TQ3Quaternion *Q3Quaternion_SetRotateAboutAxis (

TQ3Quaternion *quaternion,

const TQ3Vector3D *axis,

float angle);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-110 Summary of QuickDraw 3D Mathematical Utilities

TQ3Quaternion *Q3Quaternion_SetRotateX (

TQ3Quaternion *quaternion,

float angle);

TQ3Quaternion *Q3Quaternion_SetRotateY (

TQ3Quaternion *quaternion,

float angle);

TQ3Quaternion *Q3Quaternion_SetRotateZ (

TQ3Quaternion *quaternion,

float angle);

TQ3Quaternion *Q3Quaternion_SetRotateXYZ (

TQ3Quaternion *quaternion,

float xAngle,

float yAngle,

float zAngle);

TQ3Quaternion *Q3Quaternion_SetMatrix (

TQ3Quaternion *quaternion,

const TQ3Matrix4x4 *matrix);

TQ3Quaternion *Q3Quaternion_SetRotateVectorToVector (

TQ3Quaternion *quaternion,

const TQ3Vector3D *v1,

const TQ3Vector3D *v2);

TQ3Quaternion *Q3Quaternion_MatchReflection (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2,

TQ3Quaternion *result);

TQ3Quaternion *Q3Quaternion_InterpolateFast (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2,

float t,

TQ3Quaternion *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-111

TQ3Quaternion *Q3Quaternion_InterpolateLinear (

const TQ3Quaternion *q1,

const TQ3Quaternion *q2,

float t,

TQ3Quaternion *result) ;

TQ3Vector3D *Q3Vector3D_TransformQuaternion (

const TQ3Vector3D *vector,

const TQ3Quaternion *quaternion,

TQ3Vector3D *result);

TQ3Point3D *Q3Point3D_TransformQuaternion (

const TQ3Point3D *point,

const TQ3Quaternion *quaternion,

TQ3Point3D *result);

Managing Bounding Boxes

TQ3BoundingBox *Q3BoundingBox_Copy (

const TQ3BoundingBox *src,

TQ3BoundingBox *dest);

TQ3BoundingBox *Q3BoundingBox_Union (

const TQ3BoundingBox *v1,

const TQ3BoundingBox *v2,

TQ3BoundingBox *result);

TQ3BoundingBox *Q3BoundingBox_Set (

TQ3BoundingBox *bBox,

const TQ3Point3D *min,

const TQ3Point3D *max,

TQ3Boolean isEmpty);

TQ3BoundingBox *Q3BoundingBox_UnionPoint3D (

const TQ3BoundingBox *bBox,

const TQ3Point3D *pt3D,

TQ3BoundingBox *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

20-112 Summary of QuickDraw 3D Mathematical Utilities

TQ3BoundingBox *Q3BoundingBox_UnionRationalPoint4D (

const TQ3BoundingBox *bBox,

const TQ3RationalPoint4D *pt4D,

TQ3BoundingBox *result);

TQ3BoundingBox *Q3BoundingBox_SetFromPoints3D (

TQ3BoundingBox *bBox,

const TQ3Point3D *pts,

unsigned long nPts,

unsigned long structSize);

TQ3BoundingBox *Q3BoundingBox_SetFromRationalPoints4D (

TQ3BoundingBox *bBox,

const TQ3RationalPoint4D *pts,

unsigned long nPts,

unsigned long structSize);

Managing Bounding Spheres

TQ3BoundingSphere *Q3BoundingSphere_Copy (

const TQ3BoundingSphere *src,

TQ3BoundingSphere *dest);

TQ3BoundingSphere *Q3BoundingSphere_Union (

const TQ3BoundingSphere *s1,

const TQ3BoundingSphere *s2,

TQ3BoundingSphere *result);

TQ3BoundingSphere *Q3BoundingSphere_Set (

TQ3BoundingSphere *bSphere,

const TQ3Point3D *origin,

float radius,

TQ3Boolean isEmpty);

TQ3BoundingSphere *Q3BoundingSphere_UnionPoint3D (

const TQ3BoundingSphere *bSphere,

const TQ3Point3D *pt3D,

TQ3BoundingSphere *result);

C H A P T E R 2 0

QuickDraw 3D Mathematical Utilities

Summary of QuickDraw 3D Mathematical Utilities 20-113

TQ3BoundingSphere *Q3BoundingSphere_UnionRationalPoint4D (

const TQ3BoundingSphere *bSphere,

const TQ3RationalPoint4D *pt4D,

TQ3BoundingSphere *result);

TQ3BoundingSphere *Q3BoundingSphere_SetFromPoints3D (

TQ3BoundingSphere *bSphere,

const TQ3Point3D *pts,

unsigned long nPts,

unsigned long structSize);

TQ3BoundingSphere *Q3BoundingSphere_SetFromRationalPoints4D (

TQ3BoundingSphere *bSphere,

const TQ3RationalPoint4D *pts,

unsigned long nPts,

unsigned long structSize);

C H A P T E R 2 1

Contents

21-1

Contents

Figure 21-0
Listing 21-0
Table 21-0

21 QuickDraw 3D Color Utilities

About the QuickDraw 3D Color Utilities 21-3
Using the QuickDraw 3D Color Utilities 21-4
QuickDraw 3D Color Utilities Reference 21-5

Data Structures 21-5
Color Structures 21-5

QuickDraw 3D Color Utilities 21-6
Summary of the QuickDraw 3D Color Utilities 21-13

C Summary 21-13
Data Types 21-13
QuickDraw 3D Color Utilities 21-13

This document was created with FrameMaker 4.0.4

C H A P T E R 2 1

About the QuickDraw 3D Color Utilities

21-3

QuickDraw 3D Color Utilities 21

This chapter describes the QuickDraw 3D Color Utilities, a set of functions that
you can use to manage colors. You can use these functions to develop
distinctive color schemes for the user interface elements of your application.

About the QuickDraw 3D Color Utilities 21

QuickDraw 3D provides a set of utility routines that you can use to manage
colors. You can use these routines to add, subtract, scale, interpolate, and
perform other operations on colors. These utilities are intended to facilitate the
creation of distinctive color schemes (that is, sets of correlated colors) for user
interface elements in your application. You can, however, use these routines to
manage colors anywhere in your application.

QuickDraw 3D supports one color space, the

RGB color space

 defined by three
color component values (one each for red, green, and blue). The RGB color
space can be visualized as a cube, as in Figure 21-1, with corners of black, the
three primary colors (red, green, and blue), the three secondary colors (cyan,
magenta, and yellow), and white. See also Color Plate 2 at the front of this book.

Figure 21-1

RGB color space

Blue

Black

Green

Yellow

White

Magenta

Cyan

This document was created with FrameMaker 4.0.4

C H A P T E R 2 1

QuickDraw 3D Color Utilities

21-4

Using the QuickDraw 3D Color Utilities

You specify a single color in the RGB color space by filling in a structure of type

TQ3ColorRGB

:

typedef struct TQ3ColorRGB {

float r; /*red component*/

float g; /*green component*/

float b; /*blue component*/

} TQ3ColorRGB;

The QuickDraw 3D Color utilities all operate on structures of type

TQ3ColorRGB

. Each field in an

TQ3ColorRGB

 structure should contain a value in
the range 0.0 to 1.0, inclusive.

Using the QuickDraw 3D Color Utilities 21

You can use the

Q3ColorRGB_Set

 function to set the fields of an RGB color
structure. For example, to specify the color white, you can call

Q3ColorRGB_Set

as shown in Listing 21-1.

Listing 21-1

Specifying the color white

TQ3ColorRGB myColor;

Q3ColorRGB_Set(&myColor, 1.0, 1.0, 1.0);

Most of the QuickDraw 3D Color Utilities operate on two existing colors and
return a third color. For example, you can call the

Q3ColorRGB_Add

 function to
add together two colors, as shown in Listing 21-2.

Listing 21-2

Adding two colors

TQ3ColorRGB myColor1, myColor2, myResult;

TQ3ColorRGB *myResultPtr;

myResultPtr = Q3ColorRGB_Add(&myColor1, &myColor2, &myResult);

C H A P T E R 2 1

QuickDraw 3D Color Utilities

QuickDraw 3D Color Utilities Reference

21-5

As you can see,

Q3ColorRGB_Add

 returns the address of the resulting RGB color
structure both in the

myResult

 parameter and as its function result. This allows
you to nest calls to the QuickDraw 3D Color Utilities in function calls, as
follows:

Q3ColorRGB_Add(Q3ColorRGB_Add(&myColor1, &myColor2, &myResult),

&myColor3, &myResult);

This line of code adds the colors specified by the

myColor1

 and

myColor2

parameters and adds that sum to the color specified by the

myColor3

parameter. If this line of code completes successfully, the parameter

myResult

is a pointer to an RGB color structure that contains the sum of all three colors.

QuickDraw 3D Color Utilities Reference 21

This section describes the color utilities provided by QuickDraw 3D, as well as
the basic color data structures.

Data Structures 21

This section describes the data structures that you use to specify colors.

Color Structures 21

You use an

RGB color structure

 to specify a color. The RGB color structure is
defined by the

TQ3ColorRGB

 data type.

typedef struct TQ3ColorRGB {

float r; /*red component*/

float g; /*green component*/

float b; /*blue component*/

} TQ3ColorRGB;

C H A P T E R 2 1

QuickDraw 3D Color Utilities

21-6

QuickDraw 3D Color Utilities Reference

Field descriptions

r

The red component of the color. The value in this field
should be between 0.0 and 1.0.

g

The green component of the color. The value in this field
should be between 0.0 and 1.0.

b

The blue component of the color. The value in this field
should be between 0.0 and 1.0.

You use an

ARGB color structure

 to specify a color together with an alpha
channel. The ARGB color structure is defined by the

TQ3ColorARGB

 data type.

typedef struct TQ3ColorARGB {

float a; /*alpha channel*/

float r; /*red component*/

float g; /*green component*/

float b; /*blue component*/

} TQ3ColorARGB;

Field descriptions

a

The alpha channel of the color. The value in this field
should be between 0.0 (transparent) and 1.0. (solid).

r

The red component of the color. The value in this field
should be between 0.0 and 1.0.

g

The green component of the color. The value in this field
should be between 0.0 and 1.0.

b

The blue component of the color. The value in this field
should be between 0.0 and 1.0.

QuickDraw 3D Color Utilities 21

This section describes the QuickDraw 3D utilities you can use to handle
colors. Because most of these routines return a pointer to an RGB color
structure both as a function result and through the

result

 parameter, you
can nest these routines.

C H A P T E R 2 1

QuickDraw 3D Color Utilities

QuickDraw 3D Color Utilities Reference

21-7

Q3ColorRGB_Set 21

You can use the

Q3ColorRGB_Set

 function to set the fields of an RGB color
structure.

TQ3ColorRGB *Q3ColorRGB_Set (

TQ3ColorRGB *color,

float r,

float g,

float b);

color

On exit, a pointer to an RGB color structure.

r

The red component of the color.

g

The green component of the color.

b

The blue component of the color.

DESCRIPTION

The

Q3ColorRGB_Set

 function returns, as its function result and in the

color

parameter, a pointer to an RGB color structure whose fields contain the values
in the

r

,

g

, and

b

 parameters.

Q3ColorARGB_Set 21

You can use the

Q3ColorARGB_Set

 function to set the fields of an ARGB color
structure.

TQ3ColorARGB *Q3ColorARGB_Set (

TQ3ColorARGB *color,

float a,

float r,

float g,

float b);

C H A P T E R 2 1

QuickDraw 3D Color Utilities

21-8

QuickDraw 3D Color Utilities Reference

color

On exit, a pointer to an ARGB color structure.

a

The alpha channel of the color.

r

The red component of the color.

g

The green component of the color.

b

The blue component of the color.

DESCRIPTION

The

Q3ColorARGB_Set

 function returns, as its function result and in the

color

parameter, a pointer to an ARGB color structure whose fields contain the
values in the

a

,

r

,

g

, and

b

 parameters.

Q3ColorRGB_Add 21

You can use the

Q3ColorRGB_Add

 function to add two colors.

TQ3ColorRGB *Q3ColorRGB_Add (

const TQ3ColorRGB *c1,

const TQ3ColorRGB *c2,

TQ3ColorRGB *result);

c1

An RGB color structure.

c2 An RGB color structure.

result On exit, a pointer to an RGB color structure for the color that is
the sum of the two specified colors.

DESCRIPTION

The Q3ColorRGB_Add function returns, as its function result and in the result
parameter, a pointer to an RGB color structure that represents the sum of the
colors specified by the c1 and c2 parameters.

C H A P T E R 2 1

QuickDraw 3D Color Utilities

QuickDraw 3D Color Utilities Reference 21-9

Q3ColorRGB_Subtract 21

You can use the Q3ColorRGB_Subtract function to subtract one color from
another.

TQ3ColorRGB *Q3ColorRGB_Subtract (

const TQ3ColorRGB *c1,

const TQ3ColorRGB *c2,

TQ3ColorRGB *result);

c1 An RGB color structure.

c2 An RGB color structure.

result On exit, a pointer to an RGB color structure for the color that is
the difference of the two specified colors.

DESCRIPTION

The Q3ColorRGB_Subtract function returns, as its function result and in the
result parameter, a pointer to an RGB color structure that represents the result
of subtracting the color specified by the c2 parameter from the color specified
by the c1 parameter.

Q3ColorRGB_Scale 21

You can use the Q3ColorRGB_Scale function to scale a color.

TQ3ColorRGB *Q3ColorRGB_Scale (

const TQ3ColorRGB *color,

float scale,

TQ3ColorRGB *result);

color An RGB color structure.

scale A scaling factor.

result On exit, a pointer to an RGB color structure for the color that is
the scale of the specified color.

C H A P T E R 2 1

QuickDraw 3D Color Utilities

21-10 QuickDraw 3D Color Utilities Reference

DESCRIPTION

The Q3ColorRGB_Scale function returns, as its function result and in the
result parameter, a pointer to an RGB color structure that represents the result
of scaling the color specified by the color parameter by the factor specified by
the scale parameter.

Q3ColorRGB_Clamp 21

You can use the Q3ColorRGB_Clamp function to clamp a color.

TQ3ColorRGB *Q3ColorRGB_Clamp (

const TQ3ColorRGB *color,

TQ3ColorRGB *result);

color An RGB color structure.

result On exit, a pointer to an RGB color structure for the color that is
the clamped version of the specified color.

DESCRIPTION

The Q3ColorRGB_Clamp function returns, as its function result and in
the result parameter, a pointer to an RGB color structure that clamps
each component of the color specified by the color parameter. A clamped
component lies between 0.0 and 1.0, inclusive.

Q3ColorRGB_Lerp 21

You can use the Q3ColorRGB_Lerp function to interpolate two colors linearly.

TQ3ColorRGB *Q3ColorRGB_Lerp (

const TQ3ColorRGB *first,

const TQ3ColorRGB *last,

float alpha,

TQ3ColorRGB *result);

C H A P T E R 2 1

QuickDraw 3D Color Utilities

QuickDraw 3D Color Utilities Reference 21-11

first An RGB color structure.

last An RGB color structure.

alpha An alpha value.

result On exit, a pointer to an RGB color structure for the color that is
the linear interpolation, by the specified alpha value, of the two
specified colors.

DESCRIPTION

The Q3ColorRGB_Lerp function returns, as its function result and in the result
parameter, a pointer to an RGB color structure that is linearly interpolated
between the two colors specified by the first and last parameters. The alpha
parameter specifies the desired alpha value for the interpolation.

Q3ColorRGB_Accumulate 21

You can use the Q3ColorRGB_Accumulate function to accumulate colors.

TQ3ColorRGB *Q3ColorRGB_Accumulate (

const TQ3ColorRGB *src,

TQ3ColorRGB *result);

src An RGB color structure.

result On entry, an RGB color structure. On exit, a pointer to an RGB
color structure for the color that is the result of adding the
source color to the result color.

DESCRIPTION

The Q3ColorRGB_Accumulate function returns, as its function result and in the
result parameter, a pointer to an RGB color structure that is the result of
adding the color specified by the src parameter to the color specified by the
result parameter.

C H A P T E R 2 1

QuickDraw 3D Color Utilities

21-12 QuickDraw 3D Color Utilities Reference

Q3ColorRGB_Luminance 21

You can use the Q3ColorRGB_Luminance function to compute the luminance of
a color.

float *Q3ColorRGB_Luminance (

const TQ3ColorRGB *color,

float *luminance);

color An RGB color structure.

luminance On exit, the luminance of the specified color.

DESCRIPTION

The Q3ColorRGB_Luminance function returns, as its function result and in the
luminance parameter, the luminance of the color specified by the color
parameter. A color’s luminance is computed using this formula:

luminance =
 (0.30078125 × color.r) + (0.58984375 × color.g) + (0.109375 × color.b)

C H A P T E R 2 1

QuickDraw 3D Color Utilities

Summary of the QuickDraw 3D Color Utilities 21-13

Summary of the QuickDraw 3D Color Utilities 21

C Summary 21

Data Types 21

Color Structures

typedef struct TQ3ColorRGB {

float r; /*red component*/

float g; /*green component*/

float b; /*blue component*/

} TQ3ColorRGB;

typedef struct TQ3ColorARGB {

float a; /*alpha channel*/

float r; /*red component*/

float g; /*green component*/

float b; /*blue component*/

} TQ3ColorARGB;

QuickDraw 3D Color Utilities 21

TQ3ColorRGB *Q3ColorRGB_Set (TQ3ColorRGB *color,

float r, float g, float b);

TQ3ColorARGB *Q3ColorARGB_Set (TQ3ColorARGB *color,

float a, float r, float g, float b);

C H A P T E R 2 1

QuickDraw 3D Color Utilities

21-14 Summary of the QuickDraw 3D Color Utilities

TQ3ColorRGB *Q3ColorRGB_Add (const TQ3ColorRGB *c1,

const TQ3ColorRGB *c2,

TQ3ColorRGB *result);

TQ3ColorRGB *Q3ColorRGB_Subtract (

const TQ3ColorRGB *c1,

const TQ3ColorRGB *c2,

TQ3ColorRGB *result);

TQ3ColorRGB *Q3ColorRGB_Scale (const TQ3ColorRGB *color,

float scale,

TQ3ColorRGB *result);

TQ3ColorRGB *Q3ColorRGB_Clamp (const TQ3ColorRGB *color,

TQ3ColorRGB *result);

TQ3ColorRGB *Q3ColorRGB_Lerp (const TQ3ColorRGB *first,

const TQ3ColorRGB *last,

float alpha,

TQ3ColorRGB *result);

TQ3ColorRGB *Q3ColorRGB_Accumulate (

const TQ3ColorRGB *src, TQ3ColorRGB *result);

float *Q3ColorRGB_Luminance (const TQ3ColorRGB *color, float *luminance);

BI-1

Bibliography

Farin, Gerald,

NURB Curves and Surfaces From Projective Geometry To Practical
Use,

 A.K. Peters, Wellesley, MA, 1995.

Foley, J., A. van Dam, S. Feiner, and J. Hughes,

Computer Graphics: Principles and
Practice,

second edition, Addison-Wesley, Reading, MA, 1990.

Foley, J., A. van Dam, S. Feiner, J. Hughes, and R. Phillips,

Introduction to
Computer Graphics,

 Addison-Wesley, Reading, MA, 1994.

Fraleigh, John B., and R. A. Beauregard,

Linear Algebra,

 Addison-Wesley, 1987.

Glassner, A.S. ed.,

Graphics Gems,

 Harcourt Brace Jovanovich, Boston, 1990 and
following.

Hart, John C., G. Francis, and L. Kaufman, “Visualizing Quaternion Rotation,”

ACM Transactions on Computer Graphics,

 vol. 13, no. 3, July 1994, 256-276.

Hearn, Donald, and M. Pauline Baker,

Computer Graphics,

second edition,
Prentice-Hall, Englewood Cliffs, NJ, 1986.

Kernighan, Brian W., and Dennis M. Ritchie,

The C Programming Language,

Prentice-Hall, Englewood Cliffs, NJ, 1978.

Kernighan, Brian W., and Rob Pike,

The UNIX Programming Environment,

Prentice-Hall, Englewood Cliffs, NJ, 1984.

Rogers, David F.,

Procedural Elements for Computer Graphics,

 McGraw-Hill
Publishing Company, New York, 1985.

Rogers, David F., and J. Alan Adams,

Mathematical Elements for Computer
Graphics,

 McGraw-Hill Publishing Company, New York, 1990.

Vince, John,

The Language of Computer Graphics,

 Van Nostrand Reinhold, New
York, 1990.

Watt, Alan,

3D Computer Graphics,

second edition, Addison-Wesley, Reading,
MA, 1993.

Watt, Alan, and M. Watt,

Advanced Animation and Rendering Techniques,

Addison-Wesley, Wokingham, England, 1992.

This document was created with FrameMaker 4.0.4

GL-1

Glossary

2D

Two-dimensional. See also

planar.

3D

Three-dimensional. See also

spatial.

3DMF

See

QuickDraw 3D Object
Metafile.

3D pointing device

Any physical device
capable of controlling movements or
specifying positions in three-dimensional
space.

3D Viewer

A shared library that you can
use to display 3D objects and other data
in a window and to allow users limited
interaction with those objects. See also

viewer object.

accelerator

See

graphics accelerator.

adjoint

The transpose of a matrix in
which each element has been replaced by
its cofactor.

adjoint matrix

See

adjoint.

affine matrix

A matrix that specifies an
affine transform.

affine transform

Any arbitrary
concatenation of scale, translate, and rotate
transforms. An affine transform preserves
parallel lines in the objects transformed.

aliasing

The jagged edges (or staircasing)
that result from drawing an image on a
raster device such as a computer screen.
Compare

antialiasing.

alpha channel

A color component in
some color spaces whose value represents
the opacity of the color defined in the other
components. Compare

ARGB color
structure.

ambient coefficient

A measure of an
object’s level of reflection of ambient light.

ambient light

An amount of light of a
specific color that is added to the
illumination of all surfaces in a model.

ambient reflection coefficient

See

ambient coefficient.

antialiasing

The smoothing of jagged
edges on a displayed shape by modifying
the transparencies of individual pixels
along the shape’s edge. Compare

aliasing.

API

See

application programming
interface.

application coordinate system

See

world
coordinate system.

application space

See

world coordinate
system.

application programming interface
(API)

The total set of constants, data
structures, routines, and other
programming elements that allow
developers to use some part of the system
software.

area

A rectangular section of a plane.
Defined by the

TQ3Area

 data type.

This document was created with FrameMaker 4.0.4

G L O S S A R Y

GL-2

ARGB color space

A color space whose
components measure the intensity of red,
green, and blue, together with the opacity
(or alpha component) of the color thus
defined.

ARGB color structure

A data structure
that contains information about a color and
its opacity. Defined by the

TQ3ColorARGB

data type.

artifact

Any oddity or unwanted feature
of a rendered image. Compare

aliasing.

aspect ratio

The ratio of the width of an
image or other rectangular area to its height.

aspect ratio camera

A type of perspective
camera defined in terms of a viewing angle
and a horizontal-to-vertical aspect ratio.

aspect ratio camera data structure

A data
structure that contains basic information
about an aspect ratio camera. Defined
by the

TQ3ViewAngleAspectCameraData

data type.

attenuation

The loss of light intensity
over distance.

attribute

See

attribute object.

attribute metahandler

A metahandler
that defines methods for handling custom
attribute data.

attribute object

A type of QuickDraw 3D
object that determines some of the
characteristics of a model, such as the color
of objects or parts of objects in the model,
the transparency of objects, and so forth. An
attribute is of type

TQ3Element

. See also

ambient coefficient, diffuse color,
highlight state, normal vector, shading
parameterization, specular color, specular

reflection exponent, standard surface
parameterization, surface shader, surface
tangent, transparency color.

attribute set

A collection of zero or
more different attribute types and their
associated data.

axis

See

coordinate axis.

back clipping plane

See

yon plane.

backface culling

Ignoring backfacing
polygons during rendering. Backface
culling can reduce the amount of time
required to render a model. Compare

hidden surface removal.

backfacing polygon

Any polygon in a
surface whose surface normal points away
from a view’s camera.

backfacing style

A type of QuickDraw 3D
object that determines whether or not a
renderer draws shapes that face away from
a scene’s camera.

badge

A visual element in a frame of a 3D
model displayed by the 3D Viewer that
distinguishes the frame from a static image.

base class

See

parent class.

big-endian

Data formatting in which each
field is addressed by referring to its most
significant byte. See also

little-endian.

binary file

A file object whose data is
a stream of raw binary data, the type of
which is indicated by object type codes.
Compare

text file.

bitmap

A two-dimensional array of
values, each of which represents the state of
one pixel

.

Defined by the

TQ3Bitmap

 data
type. See also

pixmap, storage pixmap.

G L O S S A R Y

GL-3

bounding box

A rectangular box, aligned
with the coordinate axes, that completely
encloses an object. Defined by the

TQ3BoundingBox

 data type.

bounding loop

A section of code in which
all bounding box or sphere calculation takes
place. A bounding loop begins with a call to
the

Q3View_StartBoundingBox

 (or

Q3View_StartBoundingSphere

) routine
and should end when a call to

Q3View_EndBoundingBox

 (or

Q3View_EndBoundingSphere

) returns
some value other than

kQ3ViewStatusRetraverse

. A bounding
loop is a type of submitting loop. See also

picking loop, rendering loop, writing loop.

bounding sphere

A sphere that
completely encloses an object. Defined by
the

TQ3BoundingSphere

 data type.

bounding volume

A bounding box or a
bounding sphere.

bounds

See

bounding volume.

box

A three-dimensional object defined
by an origin (that is, a corner of the box)
and three vectors that define the edges of
the box meeting in that corner. Defined by
the

TQ3BoxData

 data type.

B-spline curve

A curve that passes
smoothly through a series of control points.

B-spline polynomial

A parametric
equation that defines a B-spline curve.

B-spline surface

A surface that passes
smoothly through a series of control points.

camera

See

camera object.

camera angle button

A button in the
controller strip of a viewer object that, when
held down, causes a pop-up menu to
appear listing the available cameras.
Compare

distance button, move button,
rotate button, zoom button.

camera coordinate system

The coordinate
system defined by a view’s camera. Also
called the

view coordinate system

. Compare

local coordinate system

,

window
coordinate system,

world coordinate
system

.

camera data structure

A data structure
that contains basic information about a
camera. Defined by the

TQ3CameraData

data type.

camera location

The position, in the
world coordinate system, of a camera. Also
called the

eye point.

 Compare

camera
placement structure

.

camera object

A type of QuickDraw 3D
object that you can use to define a point of
view, a range of visible objects, and a
method of projection for generating a
two-dimensional image of those objects
from a three-dimensional model. A camera
object is an instance of the

TQ3CameraObject

class. See also

aspect ratio camera,
orthographic camera, view plane camera.

camera placement

The location,
orientation, and direction of a camera. See
also

camera placement structure

.

camera placement structure

A data
structure that contains information about
the placement (that is, the location,
orientation, and direction) of a camera.
Defined by the

TQ3CameraPlacement

data type.

G L O S S A R Y

GL-4

camera range

The spatial extent that lies
between the hither and yon planes of a
camera. See also

camera range structure.

camera range structure

A data structure
that contains information about the hither
and yon clipping planes for a camera.
Defined by the

TQ3CameraRange

 data type.

camera space

See

camera coordinate
system.

camera vector

See

viewing direction.

camera view port

The rectangular portion
of a view plane that is to be mapped onto
the area specified by the current draw
context.

camera view port structure

A data
structure that contains information about
the view port of a camera. Defined by the

TQ3CameraViewPort

 data type.

cap

A plane figure having the shape of an
oval that closes the base of a cone or one
end of a cylinder.

Cartesian coordinate system

A system of
assigning planar positions to objects in
terms of their distances from two mutually
perpendicular lines (the

x

 and

y

 coordinate
axes), or of assigning spatial positions to
objects in terms of their distances from three
mutually perpendicular lines (the

x,

y,

 and

z

coordinate axes). Compare

polar coordinate
system, spherical coordinate system.

center of projection

The point at which
the projectors in a perspective projection
intersect.

child class

A class that is immediately
below some other class (the parent class) in
the QuickDraw 3D class hierarchy. For

example, the light class is a child class of the
shape class. A child class inherits all of the
methods of its parent. Also called a

subclass.

clamp

For a shader effect, to replicate the
boundaries of the effect across the portion
of the mapped area that lies outside the
valid range 0.0 to 1.0. Compare wrap.

class See QuickDraw 3D class.

class type See object type.

clipping plane Either of the two planes
that limit the part of a model that is
rendered. See also hither plane, yon plane.

closed Not open. Compare open.

color space A specification of a particular
method for representing colors. Compare
RGB color space.

complement The set of points that lie
outside a given solid object. The
complement of the object A is represented
by the function ¬A. Compare intersection,
union.

component See mesh component.

concave polygon A polygon with at least
one interior angle greater than 180°.
Compare convex polygon.

conic See conic section.

conic section Any two-dimensional curve
that is formed by the intersection of a plane
with a right circular cone. The most
common conic sections are ellipses, circles,
parabolas, and hyperbolas. Compare
nonuniform rational B-spline (NURB).

G L O S S A R Y

GL-5

connected Said of a pair of mesh vertices
if an unbroken path of edges exists linking
one vertex to the other. Compare mesh
component.

constant shading A method of shading
surfaces in which the incident light color
and intensity are calculated for a single
point on a polygon and then applied to the
entire polygon. Compare Gouraud
shading, Phong shading.

constant subdivision A method of
subdividing smooth curves and surfaces. In
this method, the renderer subdivides a
curve into some given number of polyline
segments and a surface into a certain-sized
mesh of polygons. Compare screen-space
subdivision, world-space subdivision.

constructive solid geometry (CSG) A
way of modeling solid objects constructed
from the union, intersection, or difference of
other solid objects.

container face The face in a mesh that
contains a particular contour.

contour A list of vertices. In a mesh, a
contour specifies a hole in a face. Compare
container face.

controller See controller object.

controller channel Any piece of
information sent from an application to an
input device. Compare controller value.

controller data structure A data structure
that contains information about a controller.
Defined by the TQ3ControllerData
data type.

controller object A QuickDraw 3D object
that represents a 3D pointing device. A
controller object is an instance of the
TQ3ControllerObject class. See also
tracker object.

controller state See controller state object.

controller state object A QuickDraw 3D
object that represents the current channels
and other settings of a controller. A
controller state object is an instance of the
TQ3ControllerStateObject class.

controller strip A rectangular area at the
bottom of a viewer object that contains one
or more controls (usually buttons). Compare
camera angle button, distance button,
move button, rotate button, zoom button.

controller value Any piece of information
sent from an input device to an application.
Compare controller channel.

control point A geometric point used to
control the curvature of a curve or surface.
Compare knot.

convex polygon A polygon whose
interior angles are all less than or equal
to 180°. Compare concave polygon.

coordinate axis A line in a plane or in
space that helps to define the position of
geometric objects. See also x axis, y axis,
z axis.

coordinates (1) See coordinate system.
(2) See tracker coordinates.

coordinate space See coordinate system.

G L O S S A R Y

GL-6

coordinate system Any system of
assigning planar or spatial positions to
objects. Compare Cartesian coordinate
system, polar coordinate system, spherical
coordinate system.

corner See mesh corner.

cross product The vector that is
perpendicular to two given vectors and
whose magnitude is the product of the
magnitudes of those two vectors multiplied
by the sine of the angle between them. The
cross product of the vectors u and v is
denoted u × v. Compare dot product.

CSG See constructive solid geometry.

CSG equation A value that encodes
which CSG operations are to be performed
on a model’s CSG objects.

CSG object ID A number, attached to an
object as an attribute, that identifies an
object for CSG operations.

C standard I/O library See standard I/O
library.

C string object A QuickDraw 3D object
that contains a standard C string (that is,
an array of characters terminated by the
null character).

culling See backface culling.

custom Supplied by your application, not
by QuickDraw 3D.

custom surface parameterization A
parameterization of a surface supplied by
your application. Compare natural surface
parameterization, standard surface
parameterization.

database file A metafile in which all
shared objects contained in the file are listed
in the file’s table of contents. See also
normal file, stream file.

database mode The mode in which a
database file is opened. See also normal
mode, stream mode.

default surface parameterization See
standard surface parameterization.

degrees of freedom (DOF) The number of
dimensions that are independently
specifiable by a particular input device. For
example, a slider or a dial has one degree of
freedom; a mouse typically has two degrees
of freedom.

device coordinate system See window
coordinate system.

device space See window coordinate
system.

differential scaling A scale transform in
which the scaling values dx, dy, and dz are
not all identical. Compare uniform scaling.

diffuse coefficient A measure of an
object’s level of diffuse reflection.

diffuse color The color of the light of a
diffuse reflection.

diffuse reflection The type of reflection
that is characteristic of light reflected from
a dull, nonshiny surface. Also called
Lambertian reflection. Compare specular
reflection.

diffuse reflection coefficient See diffuse
coefficient.

directional light A light source that emits
parallel rays of light in a specific direction.

G L O S S A R Y

GL-7

directional light data structure A data
structure that contains information about a
directional light. Defined by the
TQ3DirectionalLightData data type.

dirty state A Boolean value that indicates
whether an unknown object is preserved in
its original state (kQ3False) or should be
updated when written back to the file object
from which it was originally read (kQ3True).

display group A type of group that
contains drawable objects. See also ordered
display group, proxy display group.

distance button A button in the controller
strip of a viewer object that, when clicked,
puts the cursor into trucking mode.
Subsequent dragging up or down in the
picture area causes the object to move
farther away or closer. Compare camera
angle button, move button, rotate button,
zoom button.

DOF See degrees of freedom.

dot product The floating-point number
obtained by multiplying corresponding
scalar components of two vectors and then
adding together all those products. The dot
product of the vectors u and v is denoted
u ⋅ v. Compare cross product.

drawable flag A group state flag that
determines whether a group is to be drawn
when it is passed to a view for rendering or
picking. Compare inline flag, picking flag.

draw context See draw context object.

draw context coordinate system See
window coordinate system.

draw context data structure A data
structure that contains basic information
about a draw context. Defined by the
TQ3DrawContextData data type.

draw context object A QuickDraw 3D
object that maintains information specific to
a particular window system or drawing
destination. A draw context object is an
instance of the TQ3DrawContextObject
class. See also Macintosh draw context,
pixmap draw context.

draw context space See window
coordinate system.

drawing destination The window
or other output destination for a
rendered model.

edge A straight line that connects two
vertices. See also mesh edge.

edge tolerance A measure of how close a
point must be to a line for a hit to occur.
Compare vertex tolerance.

element See element object.

element object Any QuickDraw 3D
object that can be part of a set. An
element object is an instance of the
TQ3ElementObject class.

elevation projection A type of
orthographic projection in which the view
plane is perpendicular to one of the
principal axes of the object being projected.
See also front elevation projection, side
elevation projection, top elevation
projection. Compare isometric projection.

G L O S S A R Y

GL-8

error A nonrecoverable condition that
causes the currently executing
QuickDraw 3D routine to fail. See also fatal
error, notice, warning.

Error Manager The part of QuickDraw 3D
that you can use to handle any errors or
other exceptional conditions that occur
during the execution of QuickDraw 3D
routines.

even-odd rule A method of determining
which planar areas defined by an arbitrary
list of vertices are inside a polygon. To
determine whether a particular bounded
region is inside or outside a polygon, shoot
a ray from any point in that region in any
direction that does not intersect any vertex.
If the ray cuts an odd number of edges, that
region is inside the polygon; if the ray cuts
an even number of edges, that region is
outside the polygon.

eye point See camera location.

face A closed figure that forms part of the
surface of an object. Usually faces are
planar, but mesh faces do not need to be
planar. See also mesh face.

face attribute An attribute that defines a
characteristic of a polygonal object.

face index In a mesh, a unique integer
(between 0 the total number of faces in the
mesh minus 1) associated with a face.
Compare vertex index.

facet See face.

faceted shading See constant shading.

fall-off value A measure of the
attenuation of a spot light’s intensity from
the edge of the hot angle to the edge of the
outer angle. See also hot angle, outer angle.

far plane See yon plane.

fatal error An error whose effects persist
even after the call that caused it has ended.

field of view The horizontal or vertical
angular expanse visible through a camera.
See also aspect ratio camera.

file See file object.

file idle method A callback routine that is
called during lengthy file operations.
Compare view idle method.

file mode A set of flags that determine
which operations can be performed on a
piece of storage.

file mode flag A value used to construct a
file mode.

file object A type of QuickDraw 3D object
that you can use to access disk- or
memory-based data stored in a container.
A file object is an instance of the
TQ3FileObject class. See also storage
object.

file status value A value returned by the
Q3File_EndWrite function that indicates
whether QuickDraw 3D has finished
writing the model to a file object.

fill style A type of QuickDraw 3D object
that determines whether an object is drawn
as a solid filled object or is decomposed into
its components (namely, into a set of edges
or points).

G L O S S A R Y

GL-9

flat shading See constant shading.

frame See viewer pane.

front clipping plane See hither plane.

front elevation projection A type of
elevation projection in which the view
plane is parallel to the front of the object
being projected.

frustum A solid figure created by cutting
a cone or pyramid with two parallel planes.
Compare view frustum.

frustum coordinate system See camera
coordinate system.

frustum space See camera coordinate
system.

frustum-to-window transform A
transform that defines the relationship
between a frustum coordinate system and a
window coordinate system. Compare
local-to-world transform, world-to-
frustum transform.

general polygon A closed plane figure
defined by one or more lists of vertices (that
is, defined by one or more contours).
Defined by the TQ3GeneralPolygonData
data type. See also simple polygon.

generic renderer A renderer that you can
use solely to collect state information. The
generic renderer does not draw any image.

geometric object A type of
QuickDraw 3D object that describes a
particular kind of drawable shape, such as a
triangle or a box. A geometric object is an
instance of the TQ3GeometryObject class.
See also box, general polygon, line,
marker, mesh, NURB curve, NURB patch,
point, polygon, triangle, trigrid.

geometric primitive Any of the basic
geometric objects defined by QuickDraw 3D.

geometry See geometric object.

geometry attribute An attribute that
defines a characteristic of a nonpolygonal
geometric object.

global coordinate system See world
coordinate system.

global space See world coordinate
system.

Gouraud shading A method of shading
surfaces in which the incident light color
and intensity are calculated for each vertex
of a polygon and then interpolated linearly
across the entire polygon. Compare
constant shading, Phong shading.

graphics accelerator Any hardware
device used by QuickDraw 3D to
accelerate rendering.

group See group object.

group object A type of QuickDraw 3D
object that you can use to collect objects
together into hierarchical models. A
group object is an instance of the
TQ3GroupObject class.

group position A pointer to a data
structure maintained internally by
QuickDraw 3D that indicates the position
of a group element in the group.

group state flag A value that indicates the
state of some characteristic of a group.

G L O S S A R Y

GL-10

group state value A set of group state
flags that determine how a group is
traversed during rendering or picking, or
during computation of its bounding box
or sphere.

handle storage object A storage object
that represents a handle to a dynamically
allocated block of RAM.

hidden line removal The process of
removing any lines in a model that are
hidden by opaque surfaces of objects.

hidden surface removal The process of
removing any surfaces in a model that are
hidden by opaque surfaces of objects.
Compare backface culling.

hierarchy See QuickDraw 3D class
hierarchy.

highlight state An attribute having data
of type TQ3Boolean that determines
whether a highlight style overrides the
material attributes of an object (kQ3True)
or not.

highlight style A type of QuickDraw 3D
object that determines the material
attributes of a geometric object (or a group
of geometric objects) that override the
normal attributes of the object (or group
of objects).

high-order bit See most significant bit.

hit An object in a model that is close
enough to the pick geometry. See also
hit list.

hit data structure A data structure that
contains information about a hit. Defined
by the TQ3HitData data type.

hither plane The clipping plane closest to
the camera.

hit information mask A value that
indicates the type of information you want
returned for the items in a hit list.

hit list A list of all objects in a model that
are close to the pick geometry.

hit list sorting value A value that
determines the kind of sorting that is to be
done on a hit list.

hit path structure A data structure that
contains information about the path
through a model hierarchy to a specific
picked object. Defined by the TQ3HitPath
data type.

hit testing See picking.

hot angle The half-angle (specified in
radians) from the center of a spot light’s
cone of light within which the light remains
at constant full intensity. See also fall-off
value, outer angle.

identity matrix Any n × n square matrix
with elements aij such that aij = 1 if i = j and
aij = 0 otherwise. Compare inverse.

idle method See file idle method, view
idle method.

illumination shader A shader that
determines the effects of the view’s group
of lights on the objects in a model. Compare
Lambert illumination shader, Phong
illumination shader.

image The two-dimensional product of
rendering.

G L O S S A R Y

GL-11

image plane structure A data structure
that contains information about an image
plane. Defined by the TQ3ImagePlane
data type.

immediate mode A mode of defining and
rendering a model in which the application
maintains the only copy of the model data.
See also retained mode.

immediate object An object that is
rendered in immediate mode. See also
retained object.

infinite light See directional light.

information group A group that contains
one or more strings (and no other types of
QuickDraw 3D objects).

inherit To have the data and methods
of a parent class apply to a child class.
Compare override.

inheritance The property of the
QuickDraw 3D class hierarchy whereby a
child class inherits the data and methods of
its parent class.

initial line See polar axis.

inline A method of executing groups that
does not push and pop the graphics state
stack before and after it is executed.

inline flag A group state flag that
determines whether or not a group should
be executed inline. Compare drawable flag,
picking flag.

inner product See dot product.

input/output (I/O) The parts of a
computer system that transfer data to or
from peripheral devices.

instantiable class A class of which
instances can be created. All leaf classes are
instantiable, and many parent classes are
instantiable as well. (For example, both the
class TQ3AttributeSet and its parent class
TQ3SetObject are instantiable.)

interacting The process of selecting and
manipulating objects in a model.

interactive renderer A renderer that uses
a fast and accurate algorithm for drawing
solid, shaded surfaces. See also wireframe
renderer.

interpolated shading See Gouraud
shading.

interpolation style A type of
QuickDraw 3D object that determines the
method of interpolation a renderer uses
when applying lighting or other shading
effects to a surface.

intersection The set of points that lie
inside both of two given solid objects.
The intersection of the objects A and B is
represented by the function A ∩ B.
Compare complement, union.

inverse For an n × n square matrix A with
a nonzero determinant, the matrix B such
that AB = BA =I, where I is the n × n identity
matrix.

inverse matrix See inverse.

I/O See input/output.

I/O proxy display group A display group
that contains several representations of a
single geometric object.

isometric projection A type of
orthographic projection in which the view
plane is not perpendicular to any of the

G L O S S A R Y

GL-12

principal axes of the object being projected
but makes equal angles with each of those
axes. Compare elevation projection.

join point See knot.

knot A point on a curve that joins two
segments of the curve.

knot vector An array of numbers that
defines a curve’s knots.

Lambertian reflection See diffuse
reflection.

Lambert illumination A method of
calculating the illumination of a point on
a surface based on diffuse reflection.
Compare null illumination, Phong
illumination.

Lambert illumination shader An
illumination shader that implements a
Lambert illumination model. Compare null
illumination shader, Phong illumination
shader.

leaf class A class that has no children.

leaf object An instance of a leaf class.

leaf type The object type of a leaf object.

least significant bit (LSB) The bit
contributing the least value in a string of
bits. Same as low-order bit. Compare most
significant bit.

left-handed coordinate system A
coordinate system that obeys the left-hand
rule. In a left-handed coordinate system,
positive rotations of an axis are clockwise.
Compare right-handed coordinate system.

left-hand rule A method of determining
the direction of the positive z axis (and
thereby the front of a planar surface).

According to the left-hand rule, if the
thumb of the left hand points in the
direction of the positive x axis and the index
finger points in the direction of the positive
y axis, then the middle finger points in the
direction of the positive z axis. Compare
right-hand rule.

light See light object.

light attenuation See attenuation.

light data structure A data structure that
contains basic information about a light.
Defined by the TQ3LightData data type.

light fall-off See fall-off value.

light group A group that contains one or
more lights (and no other types of
QuickDraw 3D objects).

light object A type of QuickDraw 3D
object that you can use to illuminate the
surfaces in a model. A light object is an
instance of the TQ3LightObject class.
See also ambient light, directional light,
point light, spot light.

line A straight segment in three-
dimensional space defined by its two
endpoints, with an optional set of
attributes. Defined by the TQ3LineData
data type.

line of projection See projector.

little-endian Data formatting in which
each field is addressed by referring to its
least significant byte. See also big-endian.

local coordinate system The coordinate
system in which an individual geometric
objects is defined. Also called the object
coordinate system or the modeling coordinate

G L O S S A R Y

GL-13

system. Compare camera coordinate
system, window coordinate system, world
coordinate system.

local space See local coordinate system.

local-to-world transform A transform
that defines the relationship between an
object’s local coordinate system and the
world coordinate system. Compare
frustum-to-window transform, world-to-
frustum transform.

low-order bit See least significant bit.

LSB See least significant bit.

luminance The intensity of light in a color.

Macintosh draw context A draw context
that is associated with a Macintosh window.

Macintosh draw context data structure A
data structure that contains information
about a Macintosh draw context. Defined
by the TQ3MacDrawContextData data type.

Macintosh FSSpec storage object A
storage object that represents the data fork
of a Macintosh file using a file system
specification structure (of type FSSpec).

Macintosh storage object A storage object
that represents the data fork of a Macintosh
file using a file reference number. Compare
Macintosh FSSpec storage object.

mapping The process of transforming one
coordinate space into another.

marker A two-dimensional object
typically used to indicate the position of an
object (or part of an object) in a window.
Defined by the TQ3MarkerData data type.

matrix A rectangular array of numbers.
QuickDraw 3D defines 3-by-3 and 4-by-4
matrices using the TQ3Matrix3x3 and
TQ3Matrix4x4 data types.

matrix transform Any transform specified
by an affine, invertible 4-by-4 matrix.

memory storage object A storage object
that represents a dynamically allocated
block of RAM. Compare handle storage
object.

mesh A collection of vertices, faces, and
edges that represent a topological
polyhedron. Defined by the TQ3Mesh
data type.

mesh component A collection of
connected vertices in a mesh. Defined by
the TQ3MeshComponent data type.

mesh corner A mesh face together with
one of its vertices. You can associate a set of
attributes with a mesh corner. The attributes
in a corner override any existing attributes
of the associated vertex.

mesh edge A line that connects two mesh
vertices. A mesh edge is part of one or more
mesh faces. Defined by the TQ3MeshEdge
data type.

mesh face A closed figure that forms part
of a mesh. Unlike the faces of other
geometric objects, mesh faces do not need
to be planar. Defined by the TQ3MeshFace
data type.

mesh iterator structure A data structure
used by QuickDraw 3D to maintain
information when iterating through parts of
a mesh. Defined by the TQ3MeshIterator
data type.

G L O S S A R Y

GL-14

mesh part See mesh part object.

mesh part object A distinguishable part
of a mesh. A mesh part object is an instance
of the TQ3MeshPartObject class.

mesh vertex A vertex (that is, a
three-dimensional point) that is contained
in a mesh. Defined by the TQ3MeshVertex
data type.

metafile A file format (that is, a
description of the format of a kind of file).
See also QuickDraw 3D Object Metafile.

metafile object A basic unit contained in a
file that conforms to the QuickDraw 3D
Object Metafile.

metahandler An application-defined
function that QuickDraw 3D calls to build
a method table for a custom object type.
Compare attribute metahandler.

method An item of data associated with a
particular object class. The data is usually a
function pointer or other information used
by the object class.

metric pick See metric pick object.

metric pick object A pick object whose
pick geometry has a pick origin.

model A collection of synthetic three-
dimensional geometric objects and groups
of geometric objects. A model represents
a prototype.

modeling The process of creating a
representation of real or abstract objects.

modeling coordinate system See local
coordinate system.

modeling space See local coordinate
system.

most significant bit (MSB) The bit
contributing the greatest value in a string of
bits. Same as high-order bit. Compare least
significant bit.

move button A button in the controller
strip of a viewer object that, when clicked,
puts the cursor into move mode.
Subsequent dragging on an object in the
picture area causes the object to be moved
to a new location. Compare camera angle
button, distance button, rotate button,
zoom button.

MSB See most significant bit.

natural attribute An attribute that can
naturally be contained in a set of attributes
of a specific type.

natural surface parameterization A
parameterization of a surface that can be
derived directly from the definition of the
surface. Compare custom surface
parameterization, standard surface
parameterization.

near plane See hither plane.

nonuniform rational B-spline (NURB)
A curve defined by nonuniform parametric
ratios of B-spline polynomials. NURB
curves can be used to define very complex
curves and surfaces, as well as very
common geometric objects (for instance, the
conic sections). See also control point, knot,
NURB curve, NURB patch.

normal (a.) Perpendicular. (n.) A normal
vector.

normal file A metafile in which the
specification of an object in the file never
occurs more than once. In other words, a

G L O S S A R Y

GL-15

file object that contains a table of contents
that lists all multiply-referenced objects in
the file. See also normal file, stream file.

normalized vector A vector whose length
is 1.

normal mode The mode in which a
normal file is opened. See also database
mode, stream mode.

normal vector A vector that is normal
(that is perpendicular) to a surface or planar
object at a specific point.

notice A condition that is less severe than
a warning, and that will likely not cause
problems. See also error, warning.

notify function See tracker notify
function.

null illumination A method of
calculating the illumination of a point on a
surface that depends only on the diffuse
color of the point. Compare Lambert
illumination, Phong illumination.

null illumination shader An illumination
shader that implements a null illumination
model. Compare Lambert illumination
shader, Phong illumination shader.

NURB See nonuniform rational B-spline.

NURB curve A three-dimensional curve
represented by a NURB equation. Defined
by the TQ3NURBCurveData data type.

NURB patch A three-dimensional surface
represented by a NURB equation. Defined
by the TQ3NURBPatchData data type.

object (1) See QuickDraw 3D object.
(2) See metafile object.

object coordinate system See local
coordinate system.

object space See local coordinate system.

object type The identifier of the class of
which a QuickDraw 3D object is an
instance. Also called the class type.

oblique projection A type of parallel
projection in which the view plane is not
perpendicular to the viewing direction.
Compare orthographic projection.

off-axis viewing A method of perspective
projection in which the center of the
projected object on the view plane is not on
the camera vector.

opaque (1) For a data structure, not
publicly defined. You must use
QuickDraw 3D functions to get and set
values in an opaque data structure. For an
object, having data and methods that are
not publicly defined. (2) For a geometric
object, not allowing light to pass though.

open Said of a storage object whenever its
associated storage is in use—for example,
when an application is reading data from a
file object attached to the storage object.

order For a NURB curve or patch, one
more than the highest degree equation used
to define the curve or patch. For example,
the order of a NURB curve defined by cubic
polynomial equations is 4.

ordered display group A display group in
which the objects in the group are sorted by
their type.

G L O S S A R Y

GL-16

orientation style A type of QuickDraw 3D
object that determines which side of a
planar surface is considered to be the
“front” side.

origin In Cartesian coordinates, the point
(0, 0) or (0, 0, 0). The coordinate axes
intersect at the origin.

original QuickDraw See QuickDraw.

orthogonal Perpendicular.

orthographic camera A type of camera
that uses orthographic projection.

orthographic camera data structure
A data structure that contains basic
information about an orthographic
camera. Defined by the
TQ3OrthographicCameraData data type.

orthographic projection A type of parallel
projection in which the view plane is
perpendicular to the viewing direction.
Compare oblique projection. See also
elevation projection, isometric projection.

outer angle The half-angle (specified in
radians) from the center of a spot light’s
cone to the edge of the cone. See also
fall-off value, hot angle.

outer product See cross product.

override To define class data or methods
that replace those of the parent class.
Compare inherit.

parallel projection A method of
projecting a model onto a viewing plane
that uses parallel projectors. See also
oblique projection, orthographic
projection. Compare perspective
projection.

parameterization A parametric function
that picks out all points on a geometric
object, such as a pixmap or a surface.
Compare surface parameterization.

parametric curve Any curve whose points
are described by one or more parametric
functions. A two-dimensional parametric
curve can be described by the parametric
functions x = x(t) and y = y(t). A three-
dimensional parametric curve is described
by the parametric functions x = x(t), y = y(t),
and z = z(t). Compare B-spline polynomial,
nonuniform rational B-spline (NURB).

parametric equation See parametric
function.

parametric function A function of one or
more parameters (often denoted by s and t
or u and v).

parametric point A position in two- or
three-dimensional space picked out by a
parametric function. Defined by the
TQ3Param2D and TQ3Param3D data types.
Compare point, point object, rational point.

parent class The class (if any) of which a
given class is a subclass. In other words, a
class’ parent class is the class immediately
above that class in the QuickDraw 3D class
hierarchy. For example, the shape class is
the parent class of the light class. Also
called a base class or a superclass.

patch A portion of a surface defined by a
set of points. Compare NURB patch.

perspective foreshortening A feature of
perspective projections wherein the size of
a projected object varies inversely with
the distance of the object from the center
of projection.

G L O S S A R Y

GL-17

perspective projection A method of
projecting a model onto a viewing plane
that uses nonparallel projectors. Compare
parallel projection.

Phong illumination A method of
calculating the illumination of a point on a
surface based on both diffuse reflection and
specular reflection. Compare Lambert
illumination, null illumination.

Phong illumination shader An
illumination shader that implements a
Phong illumination model. Compare
Lambert illumination shader, null
illumination shader.

Phong shading A method of shading
surfaces in which the incident light color
and intensity are calculated for a series of
points along each edge of a polygon and
then interpolated across the entire polygon.
Compare constant shading, Gouraud
shading.

pick (n.) See pick object. (v.) To determine
whether a specified object is close enough
to a pick geometry for a hit to be recorded.

pick data structure A data structure that
contains basic information about a pick
object. Defined by the TQ3PickData
data type.

pick detail See hit information mask.

pick geometry The geometric object used
in any picking method.

pick hit See hit.

pick hit list See hit list.

picking The process of identifying the
objects in a view that are close to a specified
geometric object.

picking flag A binary flag in a group state
value that determines whether a group is
eligible for picking. Compare drawable
flag, inline flag.

picking ID An arbitrary 32-bit value that
you can use to determine which object was
selected by a pick operation.

picking ID style A type of style object
that determines the picking ID of an object
or group of objects in a model.

picking loop A section of code in which
all picking takes place. A picking loop
begins with a call to the
Q3View_StartPicking routine and should
end when a call to Q3View_EndPicking
returns some value other than
kQ3ViewStatusRetraverse. A picking
loop is a type of submitting loop. See
also bounding loop, rendering loop,
writing loop.

picking parts style A type of
QuickDraw 3D object that determines
which parts of a geometric object (for
instance, a mesh) are eligible for inclusion
in a hit list.

pick object A QuickDraw 3D object that is
used to select geometric objects in a model
that are close to a specified geometric
object. A pick object is an instance of the
TQ3PickObject class.

pick origin A point in space that
determines the origin of sorting hits.
Compare metric pick object.

pick parts mask A value that indicates the
kinds of objects placed in a hit list.

G L O S S A R Y

GL-18

picture area The portion of a window
occupied by a viewer object that contains
the displayed image.

pixel image See pixmap

pixel map See pixmap

pixmap A two-dimensional array of
values, each of which represents the color of
one pixel. Defined by the TQ3Pixmap data
type. See also bitmap, storage pixmap.

pixmap draw context A draw context that
is associated with a pixmap.

pixmap draw context data structure A
data structure that contains information
about a pixmap draw context. Defined by
the TQ3PixmapDrawContextData data type.

pixmap texture object A texture object in
which the texture is defined by a pixmap.

planar Contained completely in two
dimensions (as, for example, a circle). See
also spatial.

plane constant The value d in the plane
equation ax+by+cz+d = 0.

plan elevation projection See top
elevation projection.

plane equation An equation that defines
a plane. A plane equation can always be
reduced to the form ax+by+cz+d = 0.
Defined by the TQ3PlaneEquation
data type.

point A dimensionless position in two- or
three-dimensional space. Defined by the
TQ3Point2D and TQ3Point3D data types.
Compare parametric point, point object,
rational point.

point light A light source that emits rays
of light in all directions from a specific
location.

point light data structure A data structure
that contains information about a point
light. Defined by the TQ3PointLightData
data type.

point object A dimensionless position in
three-dimensional space, with an optional
set of attributes. Defined by the
TQ3PointData data type.

point of interest The point in world space
at which a camera is aimed. The point of
interest and the camera location determine
the viewing direction.

point pick object See window-point
pick object.

polar coordinate system A system of
assigning planar positions to objects in
terms of their distances (r) from a point (the
polar origin, or pole) along a ray that forms
a given angle (θ) with a coordinate line (the
polar axis). The polar origin has the polar
coordinates (0, θ), for any angle θ. Compare
Cartesian coordinate system, spherical
coordinate system.

polar axis A fixed ray that radiates from
the polar origin, in terms of which polar
coordinates are determined. Also called the
initial line.

polar origin The point in a plane from
which the polar axis radiates. Also called
the pole.

polar point A point in a plane described
using polar coordinates.

pole See polar origin.

G L O S S A R Y

GL-19

polygon A closed plane figure. See
general polygon, simple polygon.

polygon mesh A mesh whose faces are
composed of polygons.

polyhedron A solid figure composed
of faces.

postmultiplied A term that describes the
order in which matrices are multiplied.
Matrix [A] is postmultiplied by matrix [B]
if matrix [A] is replaced by [A] × [B].
Compare premultiplied.

premultiplied A term that describes the
order in which matrices are multiplied.
Matrix [A] is premultiplied by matrix [B] if
matrix [A] is replaced by [B] × [A].
Compare postmultiplied.

primitive See geometric primitive.

private See opaque.

projection (1) A method of mapping
three-dimensional objects into two
dimensions. See also parallel projection,
perspective projection. Compare camera
object. (2) The image on the view plane that
results from mapping three-dimensional
objects into two dimensions.

projection plane See view plane.

projective transform See
frustum-to-window transform.

projector A ray that intersects both a
point on an object in a model and the view
plane, thereby projecting the object in the
model onto the view plane.

prototype The object (or collection of
objects) represented in a model. Compare
model, synthetic.

prototypical Of or pertaining to a
prototype. Compare model, synthetic.

proxy display group See I/O proxy
display group.

quaternion A quadruple of floating-point
numbers that obeys the laws of quaternion
arithmetic. Defined by the TQ3Quaternion
data type.

quaternion transform A type of
transform that rotates and twists an object
according to the mathematical properties of
quaternions.

QuickDraw A collection of system
software routines on Macintosh computers
that perform two-dimensional drawing on
the user’s screen.

QuickDraw 3D A graphics library
developed by Apple Computer, Inc., that
you can use to create, configure, render, and
interact with models of three-dimensional
objects. You can also use QuickDraw 3D to
read and write 3D data.

QuickDraw 3D class A structure for the
data that characterize QuickDraw 3D
objects, together with a set of methods
that operate on that data. Compare
QuickDraw 3D object. See also child class,
leaf class, parent class.

QuickDraw 3D class hierarchy The
hierarchical arrangement of QuickDraw 3D
object classes.

QuickDraw 3D object Any instance of a
QuickDraw 3D class. See also object type.

G L O S S A R Y

GL-20

QuickDraw 3D Object Metafile (3DMF)
An extensible file format defined by Apple
Computer, Inc., for storing 3D data and
interchanging 3D data between applications.

QuickDraw 3D Pointing Device Manager
A set of functions that you can use to
manage three-dimensional pointing devices.

QuickDraw 3D shading architecture
An environment in which shaders can
be applied at various stages in the
imaging pipeline.

radius vector The ray that radiates from
the polar origin and that forms a given
angle with the polar axis (or two given
angles with the x and z axes). A polar or
spherical point lies at a given distance along
the radius vector. See also polar coordinate
system, spherical coordinate system.

rasterization The process of determining
values for the pixels in a rendered image.
Also called scan conversion.

rational point A dimensionless position
in two- or three-dimensional space together
with a floating-point weight. Defined
by the TQ3RationalPoint3D and
TQ3RationalPoint4D data types.
Compare point.

ray A point of origin and a direction.
Defined by the TQ3Ray3D data type.

real See prototypical.

rectangle pick object See
window-rectangle pick object.

reference count The number of times a
shared object is being accessed.

render To create an image (on the screen
or some other medium) of a model.

renderer See renderer object.

renderer object A QuickDraw 3D object
that you can use to render a model—that is,
to create an image from a view and a
model. A renderer object is an instance of
the TQ3RendererObject class.

rendering The process of creating an
image (on the screen or some other
medium) of a model. See also rasterization.

rendering loop A section of code in
which all rendering takes place. A
rendering loop begins with a call to the
Q3View_StartRendering routine and
should end when a call to
Q3View_EndRendering returns some value
other than kQ3ViewStatusRetraverse.
A rendering loop is a type of submitting
loop. See also bounding loop, picking
loop, writing loop.

retained mode A mode of defining and
rendering a model in which the graphics
library (for instance, QuickDraw 3D)
maintains a copy of the model. See also
immediate mode.

retained object An object that is defined
and rendered in retained mode. See also
immediate object.

RGB color space A color space whose
three components measure the intensity of
red, green, and blue.

RGB color structure A data structure that
contains information about a color. Defined
by the TQ3ColorRGB data type.

right-handed coordinate system A
coordinate system that obeys the right-hand
rule. In a right-handed coordinate system,

G L O S S A R Y

GL-21

positive rotations of an axis are
counterclockwise. Compare left-handed
coordinate system.

right-hand rule A method of determining
the direction of the positive z axis (and
thereby the front of a planar surface).
According to the right-hand rule, if the
thumb of the right hand points in the
direction of the positive x axis and the index
finger points in the direction of the positive
y axis, then the middle finger points in the
direction of the positive z axis. Compare
left-hand rule.

rotate To reposition an object by revolving
(or turning) each point of the object by the
same angle around a point or axis.

rotate-about-axis transform A type of
transform that rotates an object about an
arbitrary axis in space by a specified
number of radians at an arbitrary point
in space.

rotate-about-axis transform data
structure A data structure that contains
information on a rotate transform about
an arbitrary axis in space at an arbitrary
point in space. Defined by the
TQ3RotateAboutAxisTransformData
data type.

rotate-about-point transform A type of
transform that rotates an object about the x,
y, or z axis by a specified number of radians
at an arbitrary point in space.

rotate-about-point transform data
structure A data structure that contains
information on a rotate transform about
an arbitrary point in space. Defined by
the TQ3RotateAboutPointTransformData
data type.

rotate button A button in the controller
strip of a viewer object that, when clicked,
puts the cursor into rotate mode.
Subsequent dragging of the cursor in the
picture area causes the displayed object
to rotate in the direction in which the
cursor is dragged. Compare camera angle
button, distance button, move button,
zoom button.

rotate transform A type of transform that
rotates an object about the x, y, or z axis at
the origin by a specified number of radians.

rotate transform data structure A data
structure that contains information about
a rotate transform. Defined by the
TQ3RotateTransformData data type.

rotation A transform that causes an object
to revolve around a point or an axis.
Compare rotate-about-axis transform,
rotate-about-point transform, rotate
transform.

scalar product See dot product.

scale To reposition and resize an object by
multiplying the x, y, and z coordinates of
each of its points by values dx, dy, and dz.
Compare differential scaling, uniform
scaling.

scale transform A type of transform that
scales an object along the x, y, and z axes by
specified values.

scan conversion See rasterization.

scene A combination of objects, lights,
and draw context.

screen coordinate system See window
coordinate system.

G L O S S A R Y

GL-22

screen space See window coordinate
system.

screen-space picking The process of
testing whether the projections of three-
dimensional objects onto the screen
intersect or are close enough to a specified
two-dimensional object on the screen.

screen-space subdivision A method of
subdividing smooth curves and surfaces.
In this method, the renderer subdivides a
curve (or surface) into polylines (or
polygons) whose sides have a maximum
length of some specified number of pixels.
Compare constant subdivision,
world-space subdivision.

serpentine Said of a trigrid in which
quadrilaterals are divided into triangles in
an alternating fashion.

set See set object.

set object A collection of zero or more
elements, each of which has both an
element type and some associated element
data. A set object is an instance of the
TQ3SetObject class.

shader See shader object.

shader object A type of QuickDraw 3D
object that you can use to manipulate visual
effects that depend on the illumination
provided by a view’s group of lights, the
color and other material properties (such as
the reflectance and texture) of surfaces in a
model, and the position and orientation of
the lights and objects in a model. A shader
object is an instance of the
TQ3ShaderObject class.

shading parameterization A surface
uv parameterization used when shading
a surface.

shadow-receiving style A type of
QuickDraw 3D object that determines
whether or not objects in a model receive
shadows when obscured by other objects
in the model.

shape See shape object.

shape object A type of QuickDraw 3D
object that affects how and where a
renderer renders an object in a view. A
shape object is an instance of the
TQ3ShapeObject class.

shape part See shape part object.

shape part object A distinguishable part
of a shape object. A shape part object is an
instance of the TQ3ShapePartObject class.
See also mesh part object.

shared object A QuickDraw 3D object
that may be referenced by many objects or
the application at the same time. A shared
object is an instance of the
TQ3SharedObject class.

side elevation projection A type of
elevation projection in which the view
plane is parallel to a side of the object
being projected.

simple polygon A closed plane figure
defined by a list of vertices (that is, defined
by a single contour). Defined by the
TQ3PolygonData data type. See also
general polygon.

smooth shading See Gouraud shading,
Phong shading.

G L O S S A R Y

GL-23

space (1) See coordinate system. (2) The
two- or three-dimensional extent defined by
a coordinate system.

spatial Contained completely in three
dimensions (as, for example, a box). See
also planar.

specular coefficient A measure of an
object’s level of specular reflection.

specular color The color of the light of a
specular reflection.

specular control See specular reflection
exponent.

specular exponent See specular reflection
exponent.

specular highlight A bright area on
an object’s surface caused by specular
reflection.

specular reflection The type of reflection
that is characteristic of light reflected from a
shiny surface. Compare diffuse reflection.

specular reflection coefficient See
specular coefficient.

specular reflection exponent A value that
determines how quickly the specular
reflection diminishes as the viewing
direction moves away from the direction of
reflection.

spherical coordinate system A system of
assigning spatial positions to objects in
terms of their distances from the origin (ρ)
along a ray that forms a given angle (θ)
with the x axis and another angle (φ) with
the z axis. Compare Cartesian coordinate
system, polar coordinate system.

spherical point A point in space
described using spherical coordinates.

spot light A light source that emits a
circular cone of light in a specific direction
from a specific location. See also fall-off
value, hot angle, outer angle.

spot light data structure A data structure
that contains information about a spot
light. Defined by the TQ3SpotLightData
data type.

standard I/O library A collection of
functions that provide character I/O and
file manipulation services for C programs.
Compare UNIX storage object.

standard surface parameterization A
parametric function that maps the unit
square to an object’s surface. Compare
custom surface parameterization, natural
surface parameterization.

storage object A QuickDraw 3D object
that represents any piece of storage in a
computer (for example, a file on disk, an
area of memory, or some data on the
Clipboard). A storage object is an instance
of the TQ3StorageObject class.

storage pixmap A two-dimensional array
of values contained in a storage object, each
of which represents the color of one pixel.
Defined by the TQ3StoragePixmap data
type. See also bitmap, pixmap.

stream file A metafile that contains no
internal references. In other words, a file
object that does not contain a table of
contents and in which any references to
objects are simply copies of the objects
themselves. See also normal file, stream file.

G L O S S A R Y

GL-24

stream mode The mode in which a stream
file is opened. See also database mode,
normal mode.

string See string object.

string object A QuickDraw 3D object
that contains a sequence of characters.
A string object is an instance of the
TQ3StringObject class. See also C
string object.

style See style object.

style object A type of QuickDraw 3D
object that determines some of the basic
characteristics of the renderer used to
render the curves and surfaces in a scene. A
style object is an instance of the
TQ3StyleObject class.

subclass See child class.

subdivision method A method of
subdividing smooth curves and surfaces.
See constant subdivision, screen-space
subdivision, world-space subdivision.

subdivision method specifier An
indicator of the number of parts into
which a smooth curve or surface is to
be subdivided.

subdivision style A type of
QuickDraw 3D object that determines how
a renderer decomposes smooth curves and
surfaces into polylines and polygonal
meshes for display purposes.

subdivision style data structure A data
structure that contains information about
the type of subdivision of curves and
surfaces used by a renderer. Defined by the
TQ3SubdivisionStyleData data type.

submit To make an object (or group of
objects) eligible for drawing, picking,
writing, or bounding box or sphere
calculation. Compare submitting loop.

submitting loop A section of code in
which all submitting takes place. Compare
bounding loop, picking loop, rendering
loop, writing loop.

superclass See parent class.

surface-based shader A shader that
affects the surfaces of geometric objects
based on their material properties, position,
and orientation (and other factors).
Compare view-based shader.

surface parameterization A parametric
function that picks out all points on a
surface. See also custom surface
parameterization, natural surface
parameterization, standard surface
parameterization.

surface normal See normal vector.

surface shader A shader that is applied
when calculating the appearance of a
surface. Compare texture shader.

surface tangent A pair of vectors that
indicate the directions of changing u and v
parameters on a surface. Defined by the
TQ3Tangent2D data type.

surrounding light See ambient light.

synthetic Not real, as for example the
objects in a model. Compare prototypical.

synthetic camera See camera object.

tangent A line or plane that intersects a
curve or surface at a single point. Compare
surface tangent.

G L O S S A R Y

GL-25

tessellate To decompose a curve or
surface into polygonal faces.

text file A file object whose data is a
stream of ASCII characters with meaningful
labels for each type of object contained in
the file. Compare binary file.

texture See texture object.

texture mapping A technique wherein a
predefined image (the texture) is mapped
onto the surface of an object in a model.

texture object A type of QuickDraw 3D
object used to perform texture mapping.
Compare pixmap texture object.

texture parameterization A parametric
function that maps the unit square to
a texture.

texture shader A type of surface shader
that applies textures to surfaces.

tolerance See edge tolerance, vertex
tolerance.

top elevation projection A type of
elevation projection in which the view
plane is parallel to the top of the object
being projected. Also called plan elevation
projection.

tracker See tracker object.

tracker coordinates The current settings
(that is, position and orientation) of
a tracker.

tracker notify function A function that is
called whenever the coordinates of a tracker
change by more than a specified amount.

tracker object A QuickDraw 3D object
that represents the position and orientation
of a single element in your application’s

user interface. A tracker object is an
instance of the TQ3TrackerObject class.
See also controller object.

tracker serial number A unique number
that changes every time the coordinates of a
tracker are updated by a controller.

tracker threshold The amount by which a
tracker’s coordinates must change for the
tracker notify function to be called.

transform See transform object.

transform object A type of
QuickDraw 3D object that you can use to
modify or transform the appearance or
behavior of a QuickDraw 3D object. A
transform object is an instance of the
TQ3TransformObject class.

translate To reposition an object by
adding values dx, dy, and dz to the x, y, and z
coordinates of each of its points.

translate transform A type of transform
that translates an object along the x, y, and z
axes by specified values.

transparency The ability of an object to
allow light to pass through it.

transparency color A color of type
TQ3ColorRGB that determines the amount
of light that can pass through a surface.
The color (0, 0, 0) indicates complete
transparency, and (1, 1, 1) indicates
complete opacity.

transpose (n.) For an m × n matrix with
elements aij, the n × m matrix with elements
bij such that bij = aji. (v.) To form the
transpose of a given matrix.

transpose matrix See transpose.

G L O S S A R Y

GL-26

triangle A closed plane figure defined by
three edges. Defined by the
TQ3TriangleData data type.

trigrid A grid composed of triangular
facets. Defined by the TQ3TriGridData
data type.

type See object type.

under-color shader A shader associated
with some other shader that supplies an
under color for surfaces shaded by that
shader.

uniform scaling A scale transform in
which the scaling values dx, dy, and dz are all
identical. Compare differential scaling.

union The set of points that lie inside
either of two given solid objects. The union
of the objects A and B is represented by the
function A ∪ B. Compare complement,
intersection.

unit cube A box whose three defining
edges have a length of 1.

unit vector See normalized vector.

UNIX path name storage object A storage
object that represents a file using a
path name.

UNIX storage object A storage object that
represents a file using a structure of type
FILE (defined in the standard I/O library).
Compare UNIX path name storage object.

unknown object A type of QuickDraw 3D
object that is created when QuickDraw 3D
encounters data it doesn’t recognize while
reading a metafile. An unknown object is an
instance of the TQ3UnknownObject class.

up vector A vector that indicates which
direction is up. A camera has an up vector
that defines its orientation. Compare
camera placement.

user interface view See user interface
view object.

user interface view notify function A
function that is called whenever one of your
user interface views needs to be redrawn.

user interface view object A type of view
that allows the user to interact (using
interface elements such as a 3D cursor or
widgets) with the 3D objects displayed in
the view. A user interface view object is an
instance of the TQ3UIViewObject class.

valid range The range of u and v
parametric values for a standard surface
parameterization. For QuickDraw 3D, the
valid range is the closed interval [0.0, 1.0].

vector A pair or triple of floating-point
numbers that obeys the laws of vector
arithmetic. Defined by the TQ3Vector2D
and TQ3Vector3D data types. Compare
cross product, dot product, normal.

vector-normal interpolation shading See
Phong shading.

vector product See cross product.

vertex A dimensionless position in three-
or four-dimensional space at which two or
more lines (for instance, edges) intersect,
with an optional set of vertex attributes.
Defined by the TQ3Vertex3D and
TQ3Vertex4D data types. See also mesh
vertex.

G L O S S A R Y

GL-27

vertex attribute An attribute that defines
a characteristic of a vertex of a
polygonal object.

vertex index In a mesh, a unique integer
(between 0 the total number of vertices in
the mesh minus 1) associated with a vertex.
Compare face index.

vertex tolerance A measure of how close
two points must be for a hit to occur.
Compare edge tolerance.

view See view object.

view attribute An attribute that defines a
characteristic of a view object.

view-based shader A shader that operates
independently of the material properties or
orientation of objects (in other words, that
operates solely on aspects of the view, such
as the camera position). Compare surface-
based shader.

viewing box The rectangular box defined
by an orthographic camera and the hither
and yon clipping planes. Compare viewing
frustum.

view coordinate system See camera
coordinate system.

viewer See viewer object.

Viewer See 3D Viewer.

viewer badge See badge.

viewer controller strip See controller
strip.

viewer flags A set of bit flags that specify
information about the appearance and
behavior of a viewer object.

viewer frame See viewer pane.

viewer object An instance of the
3D Viewer. A viewer object is of type
ViewerObject.

viewer pane The portion of a window
occupied by a viewer object. The pane
includes the picture area and the controller
strip.

viewer state flags A set of bit flags
returned by the Q3ViewerGetState
function that specify information about the
current state of a viewer object.

viewing frustum The rectangular frustum
defined by a perspective camera and the
hither and yon clipping planes. Compare
viewing box.

view hints object An object in a metafile
that gives hints about how to render a scene.

view idle method A callback routine that
is called during lengthy rendering
operations. Compare file idle method.

view information structure A data
structure that contains information about
a view. Defined by the TQ3ViewInfo
data type.

viewing direction The direction of a
view’s camera. Also called the camera vector
or the viewing vector.

viewing vector See viewing direction.

view mapping matrix A matrix
maintained by QuickDraw 3D that
transforms the viewing frustum into a
standard rectangular solid. The world-to-
frustum transform is the product of the
transforms specified by the view orientation
matrix and the view mapping matrix.
Compare view orientation matrix.

G L O S S A R Y

GL-28

view object A type of QuickDraw 3D
object used to collect state information
that controls the appearance and position
of objects at the time of rendering. A
view object is an instance of the
TQ3ViewObject class.

view orientation matrix A matrix
maintained by QuickDraw 3D that rotates
and translates a view’s camera so that it is
pointing down the negative z axis. The
world-to-frustum transform is the product
of the transforms specified by the view
orientation matrix and the view mapping
matrix. Compare view mapping matrix.

view plane The plane onto which a model
is projected. Also called the projection plane.

view plane camera A type of perspective
camera defined in terms of an arbitrary
view plane.

view plane camera data structure A data
structure that contains basic information
about a view plane camera. Defined by the
TQ3ViewPlaneCameraData data type.

view plane coordinate system The
two-dimensional coordinate system whose
origin is the point at which the viewing
direction intersects the view plane and
whose positive y axis is parallel to the
camera’s up vector.

view port See camera view port.

view space See camera coordinate system.

view status value A value returned by
the Q3View_EndRendering function that
indicates whether the renderer has finished
processing the model.

view volume The part of world space that
is projected onto the view plane during
rendering. See also view box, view frustum.

virtual See synthetic.

virtual camera See camera object.

visual line determination See hidden
line removal.

visual surface determination See hidden
surface removal.

warning A condition that, though less
severe than an error, might cause an error
if your application continues execution
without handling the warning. See also
error, notice.

widget An element of an application’s 3D
user interface.

window coordinate system The
coordinate system defined by a window.
Also called the screen coordinate system or
the draw context coordinate system. Compare
camera coordinate system, local coordinate
system, world coordinate system.

window picking See screen-space
picking.

window-point pick data structure A data
structure that contains information about a
window-point pick object. Defined by the
TQ3WindowPointPickData data type.

window-point pick object A pick object
that tests for closeness between a point in a
window and the screen projections of the
objects in the model.

G L O S S A R Y

GL-29

window-rectangle pick data structure A
data structure that contains information
about a window-rectangle pick object.
Defined by the TQ3WindowRectPickData
data type.

window-rectangle pick object A pick
object that tests for closeness between a
rectangle in a window and the screen
projections of the objects in the model.

window space See window coordinate
system.

wireframe renderer A renderer that
creates line drawings of models. See also
interactive renderer.

world coordinate system The coordinate
system that defines the locations of all
geometric objects as they exist at rendering
or picking time, with all applicable
transforms acting on them. Also called the
global coordinate system or the application
coordinate system. Compare camera
coordinate system, local coordinate
system, window coordinate system.

world space See world coordinate system.

world-space subdivision A method of
subdividing smooth curves and surfaces
according to which the renderer subdivides
a curve (or surface) into polylines (or
polygons) whose sides have a world-space
length that is at most as large as a given
value. Compare constant subdivision,
screen-space subdivision.

world-to-frustum transform A transform
that defines the relationship between the
world coordinate system and the frustum

coordinate system. Compare frustum-
to-window transform, local-to-
world transform.

wrap For a shader effect, to replicate the
entire effect across the mapped area.
Compare clamp.

writing loop A section of code in which
all writing takes place. A writing loop
begins with a call to the
Q3View_StartWriting routine and should
end when a call to Q3View_EndWriting
returns some value other than
kQ3ViewStatusRetraverse. A writing
loop is a type of submitting loop. See
also bounding loop, picking loop,
rendering loop.

x axis In Cartesian coordinates, the
horizontal axis.

y axis In Cartesian coordinates, the
vertical axis.

yon plane The clipping plane farthest
away from the camera.

z axis In Cartesian coordinates, the axis
that represents depth.

zoom button A button in the controller
strip of a viewer object that, when clicked,
puts the cursor into zooming mode.
Subsequent dragging up or down in the
picture area causes the camera’s field of
view to increase or decrease. Compare
camera angle button, distance button,
move button, rotate button.

IN-1

Index

Symbols

¬

 (complement operator) 11-6

∩

 (intersection operator) 11-6

∪

 (union operator) 11-6

Numerals

3DMF.

See

 QuickDraw 3D Object Metafile
3D pointing devices

controlling a camera with 18-8 to 18-11
defined 18-4

3D Viewer 2-3 to 2-37.

See also

 viewer objects
checking for availability of 2-7
constants for 2-11 to 2-13
defined 2-3 to 2-5
routines for 2-14 to 2-33
using 2-7 to 2-11

A

adjoining matrices 20-60
ambient coefficients 5-15
ambient light

creating 8-19
defined 8-4
getting data of 8-20
routines for 8-19 to 8-21
setting data of 8-20

ambient reflection coefficients.

See

 ambient
coefficients

application coordinate systems.

See

 world
coordinate systems

application spaces.

See

 world coordinate systems
areas 4-36

ARGB color structure 21-6, 21-7
aspect ratio 9-22
aspect ratio camera data structure 9-21 to 9-22
aspect ratio cameras 9-15 to 9-16

creating 1-28 to 1-29, 9-43
data structure for 9-21
getting aspect ratio of 9-45
getting data of 9-43
getting field of view of 9-44
routines for 9-42 to 9-46
setting aspect ratio of 9-46
setting data of 9-44
setting field of view of 9-45

attenuation 8-5, 8-10
attribute inheritance 5-6
attribute metahandlers 5-4
attribute objects 5-3 to 5-29

adding to attribute sets 5-17
application-defined routines for 5-24 to 5-26
constants for 5-14 to 5-16
defined 5-3
drawing 5-16
registering custom 5-23 to 5-24
routines for 5-16 to 5-17
types of 5-4, 5-14 to 5-16

attributes.

See

 attribute objects
attribute sets

adding attributes to 5-17
creating 5-17
defined 5-3
determining elements of 5-18
drawing 5-21
emptying 5-20
getting a view’s 13-40
getting a view’s default 13-38
getting data of an element of 5-19
getting types of elements 5-20
inheriting attributes 5-22

This document was created with FrameMaker 4.0.4

I N D E X

IN-2

attribute sets

(continued)

removing elements from 5-21
routines for 5-17 to 5-22
setting a view’s default 13-39

axes.

See

 coordinate axes

B

back clipping planes.

See

 yon planes
backfacing styles 6-4 to 6-5

getting a view’s 13-33
routines for 6-14 to 6-16

badges 2-4, 2-6 to 2-7
binary files 17-4
bitmaps

defined 4-32
emptying 4-180
getting size of 4-181
routines for 4-180 to 4-181

boundary-handling methods 14-16, 14-17
bounding boxes

defined 20-4
routines for 20-84 to 20-89

bounding spheres
defined 20-5
routines for 20-89 to 20-94

boxes
defined 4-45 to 4-47
routines for 4-95 to 4-103
standard surface parameterization of 4-15, 4-46

B-spline polynomials 4-12
B-spline surfaces 4-12

C

camera angle button (3D Viewer) 2-5
camera coordinate systems 7-7, 9-12
camera data structure 9-4, 9-19 to 9-20
camera location 9-4

camera objects 9-3 to 9-53.

See also

 aspect ratio
cameras; orthographic cameras; view
plane cameras

adding to a view 1-31, 13-9, 13-10
creating 1-28 to 1-29
data structures for 9-17 to 9-22
defined 9-3
general routines for 9-22 to 9-29
getting data of 9-23
getting placement of 9-24
getting range of 9-25
getting transforms of 9-27 to 9-29
getting type of 9-22
getting view port of 9-26
introduced 1-5, 3-9
routines for 9-22 to 9-46
setting data of 9-24
setting placement of 9-25
setting range of 9-26
setting view port of 9-27
types of 9-3, 9-23
using 9-17

camera placements 9-4 to 9-5
camera placement structure 9-5, 9-18
camera ranges 9-6 to 9-7
camera range structure 9-7, 9-18
cameras.

See

 camera objects
camera spaces.

See

 camera coordinate systems
camera vector.

See

 viewing direction
camera view ports 9-7 to 9-11

defined 9-10 to 9-11
and draw context objects 9-11

camera view port structure 9-11, 9-19
Cartesian coordinates 7-5

routines for converting points to and
from 20-49 to 20-51

centers of projection 9-7
clamping 14-16, 14-17
classes.

See

 QuickDraw 3D classes.
class types.

See

 object types.
clipping planes 9-6 to 9-7, 9-18
colors.

See also

 QuickDraw 3D Color Utilities,
RGB color space

accumulating 21-11
adding 21-8

I N D E X

IN-3

colors

(continued)

calculating luminance 21-12
clamping 21-10
linearly interpolating 21-10
scaling 21-9
subtracting 21-9
utilities for manipulating 21-3 to 21-14

comments, writing to a file object 17-47
compiler settings 1-15
components.

See

 mesh components
connected 4-9
constant subdivision 6-7
constructive solid geometry (CSG) 11-6 to 11-8
container faces 4-8
contours 4-8
controller channels 18-6
controller objects

creating 18-13
data structures for 18-11 to 18-12
decommissioning 18-15
defined 18-4 to 18-6
determining if list of has changed 18-14
determining if tracker exists for 18-21
finding next 18-14
getting activation state of 18-16
getting button states of 18-24
getting channels of 18-18, 18-19, 18-47
getting signature of 18-17
getting tracker orientation of 18-27
getting tracker position of 18-25
getting value count of 18-20
getting values of 18-30
moving tracker orientation of 18-29
moving tracker position of 18-26
routines for 18-12 to 18-31
setting activation state of 18-16
setting button states of 18-24
setting channels of 18-48
setting tracker of 18-20
setting tracker orientation of 18-28
setting tracker position of 18-26
setting values of 18-31
tracking cursors 18-22 to 18-23
and tracker objects 18-4

controllers.

See

 controller objects

controller state objects
creating 18-32
defined 18-7
restoring 18-33
routines for 18-32 to 18-33
saving and reseting 18-32

controller states.

See

 controller state objects
controller strips 2-4, 2-5 to 2-6
controller values 18-6
control points 4-12, 4-51
coordinate axes

constants for 1-36
defined 7-5

coordinates.

See

 coordinate systems; tracker
coordinates

coordinate spaces.

See

 coordinate systems
coordinate systems 7-5, 7-5 to 7-10
corners.

See

 mesh corners
cross products 20-37 to 20-39
CSG.

See

 constructive solid geometry
CSG equations 11-7 to 11-8, 11-12
CSG object IDs 11-7, 11-12
C standard I/O library.

See

 standard I/O library
C string objects

creating 1-47
emptying character data of 1-50
getting character data of 1-48
getting length of 1-48
setting character data of 1-50

custom object types 3-28 to 3-33
custom surface parameterizations 4-16

D

database mode 17-5, 17-13
default surface parameterizations.

See

 standard
surface parameterizations

degrees, converting to radians 20-71
determinants 20-61 to 20-62
device coordinate systems.

See

 window
coordinate systems

device spaces.

See

 window coordinate systems
diffuse coefficient 14-5

I N D E X

IN-4

diffuse colors 5-15
diffuse reflection 14-5
diffuse reflection coefficient.

See

 diffuse
coefficient

directional light data structure 8-12
directional lights

creating 8-21
defined 8-5
getting data of 8-24
getting direction of 8-23
getting shadow state of 8-22
routines for 8-21 to 8-25
setting data of 8-25
setting direction of 8-23
setting shadow state of 8-22

display group objects
defined 10-4
introduced 3-10
routines for 10-24 to 10-27

distance button (3D Viewer) 2-5
distances between parametric points,

calculating 20-18, 20-21
distances between points, calculating 20-17 to

20-22
distances between rational points,

calculating 20-19, 20-20, 20-22
dot products 20-39 to 20-40
double buffers 12-8
drawable flags 10-6
draw context coordinate systems.

See

 window
coordinate systems

draw context data structure 12-9 to 12-10
draw context objects 12-3 to 12-34.

See also

Macintosh draw contexts; pixmap draw
contexts

adding to a view 1-30, 13-13
and camera view ports 9-11
creating 1-27 to 1-28
data structures for 12-8 to 12-12
defined 12-3
general routines for 12-12 to 12-22
introduced 3-8
routines for 12-12 to 12-29
types of 12-4

draw contexts.

See

 draw context objects
draw context spaces.

See

 window coordinate
systems

drawing destinations 12-3

E

edges.

See

 mesh edges
edge tolerances 15-5

getting 15-28
setting 15-28

element objects
getting size of 3-27
introduced 3-6
registering 3-25 to 3-27
subclasses of 3-9

elements.

See

 element objects
elevation projection 9-12
error-handling routines

defining 19-11
registering 19-5

Error Manager 19-3 to 19-15
application-defined routines in 19-11 to 19-13
defined 19-3 to 19-4
routines in 19-5 to 19-11

errors
defined 19-3
determining if fatal 19-7
getting directly 19-8
getting from a Macintosh draw context 19-10
getting from the UNIX operating system 19-10

even-odd rule 4-42
eye points.

See

 camera locations

F

face indices 4-131
faces.

See

mesh faces
facets.

See

 faces
fall-off 8-6 to 8-7
fall-off values 8-10 to 8-11, 8-14

I N D E X

IN-5

far planes.

See

 yon planes
fatal errors

defined 19-3
field of view 9-15 to 9-16, 9-22
file mode flags 17-12 to 17-13
file objects 17-3 to 17-80

accessing objects in directly 17-22 to 17-24
application-defined routines for 17-65 to 17-70
canceling 17-20
closing 17-19
constants for 17-12 to 17-13
creating 17-7 to 17-8, 17-15
defined 17-3 to 17-4
determining if open 17-18
getting mode 17-20
getting version 17-21
introduced 3-8
opening 17-17, 17-18
reading data from 17-8 to 17-11, 17-27 to 17-47
routines for 17-14 to 17-47
setting idle method of 17-24 to 17-25
and storage objects 17-4, 17-15 to 17-17
writing comments to 17-47
writing data to 17-11 to 17-12, 17-27 to 17-47
writing to 13-19 to 13-20

files.

See

 file objects
fill styles 6-6

getting a view’s 13-34
routines for 6-19 to 6-22

floating-point data, reading from and writing to
file objects 17-32 to 17-34

frames.

See

 viewer panes
front clipping planes.

See

 hither planes
frustum coordinate systems.

See

 camera
coordinate systems

frustum spaces.

See

 camera coordinate systems
frustum-to-window transforms 7-9, 13-32

G

general polygon contour data structure 4-44
general polygons 4-42 to 4-44

routines for 4-87 to 4-95
generic renderer 11-4, 11-14
geometric objects 4-3 to 4-213

attributes of 4-5 to 4-6
creating 4-17 to 4-18
data structures for 4-23 to 4-56
defined 4-3
deleting 4-17 to 4-18
drawing 4-58
general routines for 4-56 to 4-59
getting attribute set of 4-57
getting type of 4-56
introduced 3-9
routines for 4-56 to 4-181
setting attribute set of 4-58
types of 4-4, 4-57

geometries.

See

 geometric objects
global coordinate systems.

See

 world coordinate
systems

global spaces.

See

 world coordinate systems
graphics ports 12-11
graphics states, popping and pushing 10-7, 13-29

to 13-30
group objects 10-3 to 10-42

adding objects to 10-19, 10-20
constants for 10-11 to 10-13
counting objects in 10-17, 10-18
creating 10-7 to 10-8, 10-13 to 10-16
defined 10-3
emptying 10-23, 10-24
general routines for 10-16 to 10-24
getting type of 10-16
introduced 3-10
routines for 10-13 to 10-37
types of 10-3 to 10-5, 10-17

group positions 10-5
routines for 10-27 to 10-34

groups.

See

 group objects
group state flags 10-6 to 10-7, 10-11 to 10-13
group state values 10-6

I N D E X

IN-6

H

handle storage objects 16-4
routines for 16-19 to 16-21

hierarchy.

See

 QuickDraw 3D class hierarchy.
highlight states 6-6
highlight styles 6-6

getting a view’s 13-35
routines for 6-22 to 6-25

hit data structure 15-10, 15-23
hither planes 9-6 to 9-7, 9-18
hit information masks 15-18 to 15-19
hit lists

defined 15-4
emptying 15-31
getting number of hits in 15-29
sorting 15-7 to 15-9
specifying information returned in 15-18 to

15-19
specifying sort order of 15-18

hit list sorting values 15-18
hit path structure 15-22
hits

emptying data of 15-30
getting information about 15-9 to 15-11
getting number in hit list 15-29
identifying 15-5 to 15-7

hit testing.

See

 picking
hot angle 8-6

I

identity matrices 20-57
idle methods 13-27, 13-41 to 13-42, 17-24 to 17-25
illumination models 14-4 to 14-8
illumination shaders

attaching to a window 1-22
defined 14-4
routines for 14-25 to 14-27
types of 14-27

immediate mode 1-12 to 1-13, 4-18, 13-6
infinite lights.

See

 directional lights
information groups 10-5

inheritance.

See

 attribute inheritance
initial lines.

See

 polar axes
inline flags 10-7
inner products.

See

 dot products
integer data, reading from and writing to file

objects 17-27 to 17-32
interacting 1-5
interactive renderer 11-4
interpolation styles 6-5

getting a view’s 13-34
routines for 6-16 to 6-19

inverting matrices 20-59
I/O proxy display groups 10-5
isometric projection 9-12

J

join points.

See

 knots

K

knots 4-12, 4-51, 4-53
knot vectors 4-12

L

Lambertian reflection.

See

 diffuse reflection
Lambert illumination 14-26
Lambert illumination shader 14-4
light attenuation.

See

 attenuation
light data structure 8-4, 8-11 to 8-12
light fall-off.

See

 fall-off values
light groups

adding to a view 13-11
defined 10-4

light objects 8-3 to 8-47.

See also

 ambient light;
directional lights; point lights; spot lights

adding to a view 1-31
constants for 8-9 to 8-11
creating 1-24 to 1-27

I N D E X

IN-7

light objects

(continued)

data structures for 8-11 to 8-14
defined 8-3
general routines for 8-14 to 8-19
getting brightness of 8-16
getting color of 8-17
getting data of 8-18
getting state of 8-15
getting type of 8-15
introduced 1-5, 3-10
routines for 8-14 to 8-40
setting brightness of 8-17
setting color of 8-18
setting data of 8-19
setting state of 8-16
types of 8-4, 8-15

lights.

See

 light objects
lines 4-37 to 4-38

routines for 4-63 to 4-68
lines of projection.

See

 projectors
local coordinate systems 7-6 to 7-7
local spaces.

See

 local coordinate systems
local-to-world transforms 7-7, 13-31
luminance, calculating 21-12

M

Macintosh draw context data structure 12-10 to
12-11

Macintosh draw contexts
data structures for 12-10 to 12-11
defined 12-5 to 12-6
getting errors generated by 19-10
routines for 12-22 to 12-27

Macintosh FSSpec storage objects 16-4
routines for 16-24 to 16-26

Macintosh storage objects 16-4
routines for 16-21 to 16-24

macros, for traversing meshes 4-22
markers 4-55 to 4-56

routines for 4-173 to 4-180
material properties.

See

 attribute objects

matrices
adjoining 20-60
copying 20-56
defined 4-31 to 4-32
getting determinants of 20-61 to 20-62
inverting 20-59
multiplying 20-60 to 20-61
reading from and writing to file objects 17-44
routines for 20-55 to 20-62
transposing 20-58

matrix transforms 7-11
routines for 7-20 to 7-23

maximum, of two numbers 20-71
memory storage objects 16-4

routines for 16-13 to 16-19
mesh components 4-9
mesh corners 4-8
mesh edges 4-7
meshes 4-6 to 4-10

defined 4-6, 4-49 to 4-50
routines for 4-110 to 4-140
traversing 4-21 to 4-23, 4-140 to 4-160

mesh faces 4-6
assigning parameterizations to 4-19

mesh iterator functions 4-8, 4-140 to 4-160
mesh iterator structure 4-21, 4-49
mesh part objects

defined 4-9
picking 15-14 to 15-15
routines for 15-33 to 15-36

mesh parts.

See

 mesh part objects
mesh vertices 4-7
metafile 1-7
metahandler 3-28
metric pick objects 15-7
metric picks.

See

 metric pick objects
minimum, of two numbers 20-71
modeling 1-4
modeling coordinate systems.

See

 local
coordinate systems

modeling spaces.

See

 local coordinate systems
models

creating 1-18 to 1-21
picking 13-17 to 13-18

I N D E X

IN-8

models

(continued)

rendering 1-31 to 1-34, 13-13 to 13-17
writing 13-19 to 13-20

move button (3D Viewer) 2-6
multiplying matrices 20-60 to 20-61

N

natural attributes 5-4 to 5-5
natural surface parameterizations 4-15
near planes.

See

 hither planes
normal mode 17-5
notice-handling routines

defining 19-13
registering 19-6

notices 19-3, 19-9
notify functions.

See

 tracker notify functions
notify thresholds 18-34, 18-35
null illumination 14-27
NURB curves 4-10 to 4-13

defined 4-10
routines for 4-160 to 4-166

NURB patches 4-10 to 4-13
defined 4-10
routines for 4-166 to 4-173

O

object coordinate systems.

See

 local coordinate
systems

objects.

See

 metafile objects; QuickDraw 3D
objects

object spaces.

See

 local coordinate systems
object types 3-14 to 3-15
off-axis viewing 9-14
offscreen graphics worlds 12-6
opaque 3-3
ordered display groups 10-4
orientation styles 6-8

getting a view’s 13-36
routines for 6-28 to 6-30

original QuickDraw.

See

 QuickDraw
origins 7-5
orthographic camera data structure 9-20
orthographic cameras 9-11 to 9-13

creating 9-29
data structure for 9-20
defined 9-11
getting data of 9-30
managing sides of 9-31 to 9-34
routines for 9-29 to 9-34
setting data of 9-30

orthographic projection 9-11
outer angle 8-6
outer products.

See

 cross products

P

parallel projections 9-7
parameterizations 4-13
parametric curves 4-11
parametric points.

See also

 point objects; points;
rational points

calculating distances between 20-18, 20-21
defined 4-30
determining affine combinations of 20-52
setting 20-7
subtracting 20-16

perspective foreshortening 9-9
perspective projections 9-7, 9-9 to 9-10
Phong illumination 14-26
Phong illumination shader 14-4, 14-6 to 14-8
pick data structure 15-21
pick details.

See

 hit information masks
pick geometry 15-4
pick hit lists.

See

 hit lists
pick hits.

See

 hits
picking 15-3
picking flags 10-7
picking IDs 6-9
picking ID styles 6-9

defined 6-9
getting a view’s 13-37
routines for 6-33 to 6-36

I N D E X

IN-9

picking loops 15-4
picking parts styles 6-9 to 6-10

getting a view’s 13-38
routines for 6-36 to 6-38

pick objects 15-3 to 15-48
constants for 15-17 to 15-20
data structures for 15-20 to 15-24
defined 15-3 to 15-4
general routines for 15-25 to 15-31
getting data of 15-25
getting type of 15-25
introduced 3-7
routines for 15-24 to 15-42
setting data of 15-26
types of 15-4 to 15-5, 15-25

pick origins 15-7
pick parts masks 15-20
picture areas 2-4
pixel images.

See

 pixmaps
pixel maps.

See

 pixmaps
pixmap draw context data structure 12-12
pixmap draw contexts

data structures for 12-12
defined 12-6 to 12-7
routines for 12-27 to 12-29

pixmaps 4-33
pixmap texture objects 14-10
pixmap textures

routines for 14-30 to 14-31
plane constants 4-37
plane equations 4-37
pointing devices.

See

 QuickDraw 3D Pointing
Device Manager

point light data structure 8-13
point lights 8-5

creating 8-25
defined 8-5
getting attenuation of 8-27
getting data of 8-29
getting location of 8-28
getting shadow state of 8-26
routines for 8-25 to 8-30
setting attenuation of 8-28
setting data of 8-30

setting location of 8-29
setting shadow state of 8-26

point objects 4-37
routines for 4-59 to 4-63

point pick objects.

See

 window-point pick objects
points

adding vectors to 20-27 to 20-28
calculating distances between 20-17 to 20-22
calculating relative ratios between 20-23 to

20-26
converting coordinate forms 20-49 to 20-51
converting dimensions of 20-12 to 20-14
defined 4-24
determining affine combinations of 20-51 to

20-55
reading from and writing to file objects 17-38

to 17-39
setting 20-6, 20-7 to 20-8
subtracting 20-15 to 20-17
subtracting vectors from 20-29 to 20-30
transforming 20-42 to 20-48

points of interest 9-4
polar axes 4-26
polar coordinates

defined 7-6
routines for converting points to and

from 20-49 to 20-51
polar points

defined 4-26
setting 20-9

poles.

See

 polar origins
polylines 4-38 to 4-39

routines for 4-68 to 4-75
popping graphics states 13-30
primitives.

See

 geometric objects
private.

See

 opaque
projection planes.

See

 view planes
projections 9-7 to 9-16
projective transforms.

See

 frustum-to-window
transforms

projectors 9-7
proxy display groups.

See I/O proxy display
groups

pushing graphics states 13-29

I N D E X

IN-10

Q3A–Q3C

Q3AmbientLight_GetData function 8-20
Q3AmbientLight_New function 8-19
Q3AmbientLight_SetData function 8-20
Q3AttributeClass_Register function 5-23
Q3AttributeSet_Add function 5-17
Q3AttributeSet_Clear function 5-21
Q3AttributeSet_Contains function 5-18
Q3AttributeSet_Empty function 5-20
Q3AttributeSet_Get function 5-19
Q3AttributeSet_GetNextAttributeType

function 5-20
Q3AttributeSet_Inherit function 5-22
Q3AttributeSet_New function 5-17
Q3AttributeSet_Submit function 5-21
Q3Attribute_Submit function 5-16
Q3BackfacingStyle_Get function 6-15
Q3BackfacingStyle_New function 6-14
Q3BackfacingStyle_Set function 6-16
Q3BackfacingStyle_Submit function 6-15
Q3Bitmap_Empty function 4-180
Q3Bitmap_GetImageSize function 4-181
Q3BoundingBox_Copy function 20-84
Q3BoundingBox_SetFromPoints3D

function 20-87
Q3BoundingBox_SetFromRational

Points4D function 20-88
Q3BoundingBox_Set function 20-85
Q3BoundingBox_Union function 20-85
Q3BoundingBox_UnionPoint3D

function 20-86
Q3BoundingBox_UnionRationalPoint4D

function 20-87
Q3BoundingSphere_Copy function 20-89
Q3BoundingSphere_SetFromPoints3D

function 20-92
Q3BoundingSphere_SetFromRational

Points4D function 20-93
Q3BoundingSphere_Set function 20-90
Q3BoundingSphere_Union function 20-90
Q3BoundingSphere_UnionPoint3D

function 20-91
Q3BoundingSphere_UnionRational

Point4D function 20-92

Q3Box_EmptyData function 4-97
Q3Box_GetData function 4-96
Q3Box_GetFaceAttributeSet function 4-102
Q3Box_GetMajorAxis function 4-100
Q3Box_GetMinorAxis function 4-101
Q3Box_GetOrientation function 4-99
Q3Box_GetOrigin function 4-98
Q3Box_New function 4-95
Q3Box_SetData function 4-97
Q3Box_SetFaceAttributeSet function 4-102
Q3Box_SetMajorAxis function 4-100
Q3Box_SetMinorAxis function 4-101
Q3Box_SetOrientation function 4-99
Q3Box_SetOrigin function 4-98
Q3Box_Submit function 4-95
Q3Camera_GetData function 9-23
Q3Camera_GetPlacement function 9-24
Q3Camera_GetRange function 9-25
Q3Camera_GetType function 9-22
Q3Camera_GetViewPort function 9-26
Q3Camera_GetViewToFrustum function 9-28
Q3Camera_GetWorldToFrustum function 9-28
Q3Camera_GetWorldToView function 9-27
Q3Camera_SetData function 9-24
Q3Camera_SetPlacement function 9-25
Q3Camera_SetRange function 9-26
Q3Camera_SetViewPort function 9-27
Q3ColorARGB_Set function 21-7
Q3ColorRGB_Accumulate function 21-11
Q3ColorRGB_Add function 21-8
Q3ColorRGB_Clamp function 21-10
Q3ColorRGB_Lerp function 21-10
Q3ColorRGB_Luminance function 21-12
Q3ColorRGB_Scale function 21-9
Q3ColorRGB_Set function 21-7
Q3ColorRGB_Subtract function 21-9
Q3Comment_Write function 17-47
Q3Controller_Decommission function 18-15
Q3Controller_GetActivation

function 18-16
Q3Controller_GetButtons function 18-24
Q3Controller_GetChannel function 18-18
Q3Controller_GetListChanged

function 18-14
Q3Controller_GetSignature function 18-17

I N D E X

IN-11

Q3Controller_GetTrackerOrientation
function 18-27

Q3Controller_GetTrackerPosition
function 18-25

Q3Controller_GetValueCount
function 18-20

Q3Controller_GetValues function 18-30
Q3Controller_HasTracker function 18-21
Q3Controller_MoveTrackerOrientation

function 18-29
Q3Controller_MoveTrackerPosition

function 18-26
Q3Controller_New function 18-13
Q3Controller_Next function 18-14
Q3Controller_SetActivation

function 18-16
Q3Controller_SetButtons function 18-24
Q3Controller_SetChannel function 18-19
Q3Controller_SetTracker function 18-20
Q3Controller_SetTrackerOrientation

function 18-28
Q3Controller_SetTrackerPosition

function 18-26
Q3Controller_SetValues function 18-31
Q3ControllerState_New function 18-32
Q3ControllerState_Restore function 18-33
Q3ControllerState_SaveAndReset

function 18-32
Q3Controller_Track2DCursor

function 18-22
Q3Controller_Track3DCursor

function 18-23
Q3CString_EmptyData function 1-50
Q3CString_GetLength function 1-48
Q3CString_GetString function 1-48
Q3CString_New function 1-47
Q3CString_SetString function 1-50

Q3D–Q3G

Q3DirectionalLight_GetCastShadows
State function 8-22

Q3DirectionalLight_GetData function 8-24

Q3DirectionalLight_GetDirection
function 8-23

Q3DirectionalLight_New function 8-21
Q3DirectionalLight_SetCastShadows

State function 8-22
Q3DirectionalLight_SetData function 8-25
Q3DirectionalLight_SetDirection

function 8-23
Q3DisplayGroup_GetState function 10-25
Q3DisplayGroup_GetType function 10-25
Q3DisplayGroup_New function 10-14
Q3DisplayGroup_SetState function 10-26
Q3DisplayGroup_Submit function 10-27
Q3DrawContext_GetClearImageColor

function 12-14
Q3DrawContext_GetClearImageMethod

function 12-17
Q3DrawContext_GetData function 12-13
Q3DrawContext_GetDoubleBufferState

function 12-21
Q3DrawContext_GetMask function 12-18
Q3DrawContext_GetMaskState

function 12-20
Q3DrawContext_GetPane function 12-15
Q3DrawContext_GetPaneState

function 12-16
Q3DrawContext_GetType function 12-12
Q3DrawContext_SetClearImageColor

function 12-15
Q3DrawContext_SetClearImageMethod

function 12-18
Q3DrawContext_SetData function 12-14
Q3DrawContext_SetDoubleBufferState

function 12-21
Q3DrawContext_SetMask function 12-19
Q3DrawContext_SetMaskState

function 12-20
Q3DrawContext_SetPane function 12-16
Q3DrawContext_SetPaneState

function 12-17
Q3ElementClass_Register function 3-26
Q3ElementType_GetElementSize

function 3-27
Q3Error_Get function 19-8
Q3Error_IsFatalError function 19-7

I N D E X

IN-12

Q3Error_Register function 19-5
Q3Exit function 1-37

sample use of 1-18
Q3File_Cancel function 17-20
Q3File_Close function 17-19
Q3File_GetMode function 17-20
Q3File_GetNextObjectType function 17-22
Q3File_GetStorage function 17-15
Q3File_GetVersion function 17-21
Q3File_IsEndOfContainer function 17-26
Q3File_IsEndOfData function 17-26
Q3File_IsEndOfFile function 17-24
Q3File_IsNextObjectOfType function 17-22
Q3File_IsOpen function 17-18
Q3File_New function 17-15
Q3File_OpenRead function 17-17
Q3File_OpenWrite function 17-18
Q3File_ReadObject function 17-23
Q3File_SetIdleMethod function 17-25
Q3File_SetStorage function 17-16
Q3File_SkipObject function 17-23
Q3FillStyle_Get function 6-21
Q3FillStyle_New function 6-20
Q3FillStyle_Set function 6-22
Q3FillStyle_Submit function 6-20
Q3Float32_Read function 17-32
Q3Float32_Write function 17-33
Q3Float64_Read function 17-33
Q3Float64_Write function 17-34
Q3FSSpecStorage_Get function 16-25
Q3FSSpecStorage_New function 16-25
Q3FSSpecStorage_Set function 16-26
Q3GeneralPolygon_EmptyData function 4-90
Q3GeneralPolygon_GetData function 4-88
Q3GeneralPolygon_GetShapeHint

function 4-94
Q3GeneralPolygon_GetVertexAttribute

Set function 4-92
Q3GeneralPolygon_GetVertexPosition

function 4-90
Q3GeneralPolygon_New function 4-87
Q3GeneralPolygon_SetData function 4-89
Q3GeneralPolygon_SetShapeHint

function 4-94

Q3GeneralPolygon_SetVertexAttribute
Set function 4-93

Q3GeneralPolygon_SetVertexPosition
function 4-91

Q3GeneralPolygon_Submit function 4-88
Q3Geometry_GetAttributeSet function 4-57
Q3Geometry_GetType function 4-56
Q3Geometry_SetAttributeSet function 4-58
Q3Geometry_Submit function 4-58
Q3GetVersion function 1-39
Q3Group_AddObjectAfter function 10-20
Q3Group_AddObjectBefore function 10-19
Q3Group_AddObject function 10-19
Q3Group_CountObjects function 10-17
Q3Group_CountObjectsOfType

function 10-18
Q3Group_EmptyObjects function 10-23
Q3Group_EmptyObjectsOfType

function 10-24
Q3Group_GetFirstObjectPosition

function 10-34
Q3Group_GetFirstPosition function 10-28
Q3Group_GetFirstPositionOfType

function 10-28
Q3Group_GetLastObjectPosition

function 10-35
Q3Group_GetLastPosition function 10-29
Q3Group_GetLastPositionOfType

function 10-30
Q3Group_GetNextObjectPosition

function 10-35
Q3Group_GetNextPosition function 10-30
Q3Group_GetNextPositionOfType

function 10-31
Q3Group_GetPositionObject function 10-21
Q3Group_GetPreviousObjectPosition

function 10-36
Q3Group_GetPreviousPosition

function 10-32
Q3Group_GetPreviousPositionOfType

function 10-33
Q3Group_GetType function 10-16
Q3Group_New function 10-13
Q3Group_RemovePosition function 10-23
Q3Group_SetPositionObject function 10-22

I N D E X

IN-13

Q3H–Q3L

Q3HandleStorage_Get function 16-20
Q3HandleStorage_New function 16-19
Q3HandleStorage_Set function 16-21
Q3HighlightStyle_Get function 6-24
Q3HighlightStyle_New function 6-22
Q3HighlightStyle_Set function 6-24
Q3HighlightStyle_Submit function 6-23
Q3Hit_EmptyData function 15-30
Q3IlluminationShader_GetType

function 14-27
Q3InfoGroup_New function 10-15
Q3Initialize function 1-37

sample use of 1-17
Q3Int32_Read function 17-30
Q3Int32_Write function 17-31
Q3InteractiveRenderer_GetCSGEquation

function 11-19
Q3InteractiveRenderer_GetDouble

BufferBypass function 11-20
Q3InteractiveRenderer_GetPreferences

function 11-17
Q3InteractiveRenderer_SetCSGEquation

function 11-19
Q3InteractiveRenderer_SetDouble

BufferBypass function 11-20
Q3InteractiveRenderer_SetPreferences

function 11-18
Q3InterpolationStyle_Get function 6-18
Q3InterpolationStyle_New function 6-17
Q3InterpolationStyle_Set function 6-19
Q3InterpolationStyle_Submit

function 6-18
Q3IOProxyDisplayGroup_New function 10-16
Q3IsInitialized function 1-38
Q3LambertIllumination_New function 14-26
Q3Light_GetBrightness function 8-16
Q3Light_GetColor function 8-17
Q3Light_GetData function 8-18
Q3Light_GetState function 8-15
Q3Light_GetType function 8-15
Q3LightGroup_New function 10-14
Q3Light_SetBrightness function 8-17
Q3Light_SetColor function 8-18

Q3Light_SetData function 8-19
Q3Light_SetState function 8-16
Q3Line_EmptyData function 4-68
Q3Line_GetData function 4-64
Q3Line_GetVertexAttributeSet

function 4-67
Q3Line_GetVertexPosition function 4-65
Q3Line_New function 4-63
Q3Line_SetData function 4-65
Q3Line_SetVertexAttributeSet

function 4-67
Q3Line_SetVertexPosition function 4-66
Q3Line_Submit function 4-64

Q3M

Q3MacDrawContext_Get2DLibrary
function 12-24

Q3MacDrawContext_GetGrafPort
function 12-26

Q3MacDrawContext_GetGXViewPort
function 12-25

Q3MacDrawContext_GetWindow
function 12-23

Q3MacDrawContext_New function 12-22
Q3MacDrawContext_Set2DLibrary

function 12-24
Q3MacDrawContext_SetGrafPort

function 12-27
Q3MacDrawContext_SetGXViewPort

function 12-26
Q3MacDrawContext_SetWindow

function 12-23
Q3MacintoshError_Get function 19-10
Q3MacintoshStorage_Get function 16-22
Q3MacintoshStorage_GetType

function 16-24
Q3MacintoshStorage_New function 16-22
Q3MacintoshStorage_Set function 16-23
Q3Marker_EmptyData function 4-176
Q3Marker_GetBitmap function 4-179
Q3Marker_GetData function 4-175
Q3Marker_GetPosition function 4-176

I N D E X

IN-14

Q3Marker_GetXOffset function 4-177
Q3Marker_GetYOffset function 4-178
Q3Marker_New function 4-173
Q3Marker_SetBitmap function 4-180
Q3Marker_SetData function 4-175
Q3Marker_SetPosition function 4-177
Q3Marker_SetXOffset function 4-178
Q3Marker_SetYOffset function 4-179
Q3Marker_Submit function 4-174
Q3Math_DegreesToRadians function 20-71
Q3Math_Max function 20-71
Q3Math_Min function 20-71
Q3Math_RadiansToDegrees function 20-71
Q3Matrix3x3_Adjoint function 20-60
Q3Matrix3x3_Copy function 20-56
Q3Matrix3x3_Determinant function 20-61
Q3Matrix3x3_Invert function 20-59
Q3Matrix3x3_Multiply function 20-60
Q3Matrix3x3_SetIdentity function 20-57
Q3Matrix3x3_SetRotateAboutPoint

function 20-64
Q3Matrix3x3_SetScale function 20-63
Q3Matrix3x3_SetTranslate function 20-63
Q3Matrix3x3_Transpose function 20-58
Q3Matrix4x4_Copy function 20-56
Q3Matrix4x4_Determinant function 20-62
Q3Matrix4x4_Invert function 20-59
Q3Matrix4x4_Multiply function 20-61
Q3Matrix4x4_Read function 17-44
Q3Matrix4x4_SetIdentity function 20-57
Q3Matrix4x4_SetQuaternion function 20-71
Q3Matrix4x4_SetRotateAboutAxis

function 20-67
Q3Matrix4x4_SetRotateAboutPoint

function 20-66
Q3Matrix4x4_SetRotateVectorToVector

function 20-70
Q3Matrix4x4_SetRotate_X function 20-68
Q3Matrix4x4_SetRotate_XYZ function 20-69
Q3Matrix4x4_SetRotate_Y function 20-68
Q3Matrix4x4_SetRotate_Z function 20-69
Q3Matrix4x4_SetScale function 20-65
Q3Matrix4x4_SetTranslate function 20-65
Q3Matrix4x4_Transpose function 20-58
Q3Matrix4x4_Write function 17-44

Q3MatrixTransform_Get function 7-22
Q3MatrixTransform_New function 7-20
Q3MatrixTransform_Set function 7-22
Q3MatrixTransform_Submit function 7-21
Q3MemoryStorage_GetBuffer function 16-16
Q3MemoryStorage_GetType function 16-18
Q3MemoryStorage_NewBuffer function 16-14
Q3MemoryStorage_New function 16-13
Q3MemoryStorage_SetBuffer function 16-17
Q3MemoryStorage_Set function 16-15
Q3Mesh_ContourToFace function 4-115
Q3Mesh_DelayUpdates function 4-113
Q3MeshEdgePart_GetEdge function 15-35
Q3Mesh_FaceDelete function 4-113
Q3Mesh_FaceNew function 4-112
Q3MeshFacePart_GetFace function 15-34
Q3Mesh_FaceToContour function 4-114
Q3Mesh_FirstComponentEdge function 4-146
Q3Mesh_FirstComponentVertex

function 4-144
Q3Mesh_FirstContourEdge function 4-157
Q3Mesh_FirstContourFace function 4-159
Q3Mesh_FirstContourVertex function 4-158
Q3Mesh_FirstFaceContour function 4-156
Q3Mesh_FirstFaceEdge function 4-153
Q3Mesh_FirstFaceFace function 4-155
Q3Mesh_FirstFaceVertex function 4-154
Q3Mesh_FirstMeshComponent function 4-143
Q3Mesh_FirstMeshEdge function 4-149
Q3Mesh_FirstMeshFace function 4-21, 4-148
Q3Mesh_FirstMeshVertex function 4-147
Q3Mesh_FirstVertexEdge function 4-150
Q3Mesh_FirstVertexFace function 4-152
Q3Mesh_FirstVertexVertex function 4-151
Q3Mesh_GetComponentBoundingBox

function 4-122
Q3Mesh_GetComponentNumEdges

function 4-121
Q3Mesh_GetComponentNumVertices

function 4-120
Q3Mesh_GetComponentOrientable

function 4-123
Q3Mesh_GetContourFace function 4-137
Q3Mesh_GetContourNumVertices

function 4-138

I N D E X

IN-15

Q3Mesh_GetCornerAttributeSet
function 4-139

Q3Mesh_GetEdgeAttributeSet
function 4-136

Q3Mesh_GetEdgeComponent function 4-135
Q3Mesh_GetEdgeFaces function 4-134
Q3Mesh_GetEdgeOnBoundary function 4-135
Q3Mesh_GetEdgeVertices function 4-133
Q3Mesh_GetFaceAttributeSet

function 4-132
Q3Mesh_GetFaceComponent function 4-131
Q3Mesh_GetFaceIndex function 4-130
Q3Mesh_GetFaceNumContours function 4-130
Q3Mesh_GetFaceNumVertices function 4-128
Q3Mesh_GetFacePlaneEquation

function 4-129
Q3Mesh_GetNumComponents function 4-116
Q3Mesh_GetNumCorners function 4-118
Q3Mesh_GetNumEdges function 4-117
Q3Mesh_GetNumFaces function 4-118
Q3Mesh_GetNumVertices function 4-117
Q3Mesh_GetOrientable function 4-119
Q3Mesh_GetVertexAttributeSet

function 4-127
Q3Mesh_GetVertexComponent function 4-126
Q3Mesh_GetVertexCoordinates

function 4-124
Q3Mesh_GetVertexIndex function 4-125
Q3Mesh_GetVertexOnBoundary

function 4-126
Q3Mesh_New function 4-110
Q3Mesh_NextComponentEdge function 4-146
Q3Mesh_NextComponentVertex

function 4-145
Q3Mesh_NextContourEdge function 4-158
Q3Mesh_NextContourFace function 4-160
Q3Mesh_NextContourVertex function 4-159
Q3Mesh_NextFaceContour function 4-157
Q3Mesh_NextFaceEdge function 4-154
Q3Mesh_NextFaceFace function 4-156
Q3Mesh_NextFaceVertex function 4-155
Q3Mesh_NextMeshComponent function 4-144
Q3Mesh_NextMeshEdge function 4-150
Q3Mesh_NextMeshFace function 4-21, 4-149
Q3Mesh_NextMeshVertex function 4-148

Q3Mesh_NextVertexEdge function 4-151
Q3Mesh_NextVertexFace function 4-153
Q3Mesh_NextVertexVertex function 4-152
Q3MeshPart_GetComponent function 15-34
Q3MeshPart_GetType function 15-33
Q3Mesh_ResumeUpdates function 4-114
Q3Mesh_SetCornerAttributeSet

function 4-140
Q3Mesh_SetEdgeAttributeSet

function 4-137
Q3Mesh_SetFaceAttributeSet

function 4-133
Q3Mesh_SetVertexAttributeSet

function 4-128
Q3Mesh_SetVertexCoordinates

function 4-124
Q3Mesh_VertexDelete function 4-111
Q3Mesh_VertexNew function 4-111
Q3MeshVertexPart_GetVertex

function 15-35

Q3N–Q3O

Q3Notice_Get function 19-9
Q3Notice_Register function 19-6
Q3NULLIllumination_New function 14-27
Q3NURBCurve_EmptyData function 4-163
Q3NURBCurve_GetControlPoint

function 4-163
Q3NURBCurve_GetData function 4-161
Q3NURBCurve_GetKnot function 4-165
Q3NURBCurve_New function 4-160
Q3NURBCurve_SetControlPoint

function 4-164
Q3NURBCurve_SetData function 4-162
Q3NURBCurve_SetKnot function 4-165
Q3NURBCurve_Submit function 4-161
Q3NURBPatch_EmptyData function 4-169
Q3NURBPatch_GetControlPoint

function 4-169
Q3NURBPatch_GetData function 4-167
Q3NURBPatch_GetUKnot function 4-171
Q3NURBPatch_GetVKnot function 4-172

I N D E X

IN-16

Q3NURBPatch_New function 4-166
Q3NURBPatch_SetControlPoint

function 4-170
Q3NURBPatch_SetData function 4-168
Q3NURBPatch_SetUKnot function 4-171
Q3NURBPatch_SetVKnot function 4-173
Q3NURBPatch_Submit function 4-167
Q3ObjectClass_Unregister function 3-18
Q3Object_Dispose function 3-19
Q3Object_Duplicate function 3-20
Q3Object_GetLeafType function 3-22
Q3Object_GetType function 3-23
Q3Object_IsDrawable function 3-21
Q3Object_IsType function 3-23
Q3Object_IsWritable function 3-22
Q3Object_Submit function 3-20
Q3OrderedDisplayGroup_New function 10-15
Q3OrientationStyle_Get function 6-29
Q3OrientationStyle_New function 6-28
Q3OrientationStyle_Set function 6-30
Q3OrientationStyle_Submit function 6-29
Q3OrthographicCamera_GetBottom

function 9-34
Q3OrthographicCamera_GetData

function 9-30
Q3OrthographicCamera_GetLeft

function 9-31
Q3OrthographicCamera_GetRight

function 9-33
Q3OrthographicCamera_GetTop

function 9-32
Q3OrthographicCamera_New function 9-29
Q3OrthographicCamera_SetBottom

function 9-34
Q3OrthographicCamera_SetData

function 9-30
Q3OrthographicCamera_SetLeft

function 9-31
Q3OrthographicCamera_SetRight

function 9-33
Q3OrthographicCamera_SetTop

function 9-32

Q3P–Q3Q

Q3Param2D_AffineComb function 20-52
Q3Param2D_Distance function 20-18
Q3Param2D_DistanceSquared function 20-21
Q3Param2D_RRatio function 20-24
Q3Param2D_Set function 20-7
Q3Param2D_Subtract function 20-16
Q3Param2D_Transform function 20-43
Q3Param2D_Vector2D_Add function 20-27
Q3Param2D_Vector2D_Subtract

function 20-29
Q3PhongIllumination_New function 14-26
Q3Pick_EmptyHitList function 15-31
Q3Pick_GetData function 15-25
Q3Pick_GetEdgeTolerance function 15-28
Q3Pick_GetHitData function 15-30
Q3Pick_GetNumHits function 15-29
Q3Pick_GetType function 15-25
Q3Pick_GetVertexTolerance function 15-26
Q3PickIDStyle_Get function 6-35
Q3PickIDStyle_New function 6-33
Q3PickIDStyle_Set function 6-35
Q3PickIDStyle_Submit function 6-34
Q3PickPartsStyle_Get function 6-37
Q3PickPartsStyle_New function 6-36
Q3PickPartsStyle_Set function 6-38
Q3PickPartsStyle_Submit function 6-37
Q3Pick_SetData function 15-26
Q3Pick_SetEdgeTolerance function 15-28
Q3Pick_SetVertexTolerance function 15-27
Q3PixmapDrawContext_GetPixmap

function 12-28
Q3PixmapDrawContext_New function 12-28
Q3PixmapDrawContext_SetPixmap

function 12-29
Q3PixmapTexture_GetPixmap function 14-30
Q3PixmapTexture_New function 14-30
Q3PixmapTexture_SetPixmap function 14-31
Q3Point2D_AffineComb function 20-52
Q3Point2D_Distance function 20-18
Q3Point2D_DistanceSquared function 20-20
Q3Point2D_Read function 17-38
Q3Point2D_RRatio function 20-23
Q3Point2D_Set function 20-6

I N D E X

IN-17

Q3Point2D_Subtract function 20-15
Q3Point2D_To3D function 20-12
Q3Point2D_ToPolar function 20-49
Q3Point2D_Transform function 20-42
Q3Point2D_Vector2D_Add function 20-27
Q3Point2D_Vector2D_Subtract

function 20-29
Q3Point2D_Write function 17-38
Q3Point3D_AffineComb function 20-53
Q3Point3D_CrossProductTri function 20-39
Q3Point3D_Distance function 20-19
Q3Point3D_DistanceSquared function 20-21
Q3Point3D_Read function 17-39
Q3Point3D_RRatio function 20-25
Q3Point3D_Set function 20-7
Q3Point3D_Subtract function 20-17
Q3Point3D_To3DTransformArray

function 20-45
Q3Point3D_To4D function 20-13
Q3Point3D_To4DTransformArray

function 20-46
Q3Point3D_ToSpherical function 20-50
Q3Point3D_Transform function 20-44
Q3Point3D_TransformQuaternion

function 20-83
Q3Point3D_Vector3D_Add function 20-28
Q3Point3D_Vector3D_Subtract

function 20-30
Q3Point3D_Write function 17-39
Q3Point_EmptyData function 4-62
Q3Point_GetData function 4-60
Q3Point_GetPosition function 4-62
Q3PointLight_GetAttenuation

function 8-27
Q3PointLight_GetCastShadowsState

function 8-26
Q3PointLight_GetData function 8-29
Q3PointLight_GetLocation function 8-28
Q3PointLight_New function 8-25
Q3PointLight_SetAttenuation

function 8-28
Q3PointLight_SetCastShadowsState

function 8-26
Q3PointLight_SetData function 8-30
Q3PointLight_SetLocation function 8-29

Q3Point_New function 4-59
Q3Point_SetData function 4-61
Q3Point_SetPosition function 4-63
Q3Point_Submit function 4-60
Q3PolarPoint_Set function 20-9
Q3PolarPoint_ToPoint2D function 20-50
Q3Polygon_EmptyData function 4-84
Q3Polygon_GetData function 4-83
Q3Polygon_GetVertexAttributeSet

function 4-86
Q3Polygon_GetVertexPosition

function 4-84
Q3Polygon_New function 4-82
Q3Polygon_SetData function 4-83
Q3Polygon_SetVertexAttributeSet

function 4-86
Q3Polygon_SetVertexPosition

function 4-85
Q3Polygon_Submit function 4-82
Q3PolyLine_EmptyData function 4-71
Q3PolyLine_GetData function 4-70
Q3PolyLine_GetSegmentAttributeSet

function 4-74
Q3PolyLine_GetVertexAttributeSet

function 4-73
Q3PolyLine_GetVertexPosition

function 4-72
Q3PolyLine_New function 4-69
Q3PolyLine_SetData function 4-70
Q3PolyLine_SetSegmentAttributeSet

function 4-75
Q3PolyLine_SetVertexAttributeSet

function 4-74
Q3PolyLine_SetVertexPosition

function 4-72
Q3PolyLine_Submit function 4-69
Q3Pop_Submit function 13-30
Q3Push_Submit function 13-29
Q3Quaternion_Copy function 20-73
Q3Quaternion_Dot function 20-75
Q3Quaternion_InterpolateFast

function 20-81
Q3Quaternion_InterpolateLinear

function 20-82
Q3Quaternion_Invert function 20-74

I N D E X

IN-18

Q3Quaternion_IsIdentity function 20-73
Q3Quaternion_MatchReflection

function 20-80
Q3Quaternion_Multiply function 20-75
Q3Quaternion_Normalize function 20-74
Q3Quaternion_Set function 20-72
Q3Quaternion_SetIdentity function 20-72
Q3Quaternion_SetMatrix function 20-79
Q3Quaternion_SetRotateAboutAxis

function 20-76
Q3Quaternion_SetRotateVectorToVector

function 20-80
Q3Quaternion_SetRotateX function 20-77
Q3Quaternion_SetRotateXYZ function 20-78
Q3Quaternion_SetRotateY function 20-77
Q3Quaternion_SetRotateZ function 20-78
Q3QuaternionTransform_Get function 7-46
Q3QuaternionTransform_New function 7-45
Q3QuaternionTransform_Set function 7-47
Q3QuaternionTransform_Submit

function 7-46

Q3R–Q3S

Q3RationalPoint3D_AffineComb
function 20-54

Q3RationalPoint3D_Distance
function 20-19

Q3RationalPoint3D_DistanceSquared
function 20-22

Q3RationalPoint3D_Read function 17-40
Q3RationalPoint3D_Set function 20-8
Q3RationalPoint3D_To2D function 20-13
Q3RationalPoint3D_Write function 17-40
Q3RationalPoint4D_AffineComb

function 20-55
Q3RationalPoint4D_Distance

function 20-20
Q3RationalPoint4D_DistanceSquared

function 20-22
Q3RationalPoint4D_Read function 17-41
Q3RationalPoint4D_RRatio function 20-26
Q3RationalPoint4D_Set function 20-9

Q3RationalPoint4D_To3D function 20-14
Q3RationalPoint4D_To4DTransformArray

function 20-47
Q3RationalPoint4D_Transform

function 20-44
Q3RationalPoint4D_Write function 17-41
Q3RawData_Read function 17-36
Q3RawData_Write function 17-37
Q3ReceiveShadowsStyle_Get function 6-32
Q3ReceiveShadowsStyle_New function 6-31
Q3ReceiveShadowsStyle_Set function 6-33
Q3ReceiveShadowsStyle_Submit

function 6-31
Q3Renderer_Flush function 11-16
Q3Renderer_GetType function 11-15
Q3Renderer_NewFromType function 11-14
Q3Renderer_Sync function 11-15
Q3RotateAboutAxisTransform_GetAngle

function 7-38
Q3RotateAboutAxisTransform_GetData

function 7-35
Q3RotateAboutAxisTransform_Get

Orientation function 7-37
Q3RotateAboutAxisTransform_GetOrigin

function 7-36
Q3RotateAboutAxisTransform_New

function 7-34
Q3RotateAboutAxisTransform_SetAngle

function 7-39
Q3RotateAboutAxisTransform_SetData

function 7-35
Q3RotateAboutAxisTransform_Set

Orientation function 7-38
Q3RotateAboutAxisTransform_SetOrigin

function 7-36
Q3RotateAboutAxisTransform_Submit

function 7-34
Q3RotateAboutPointTransform_GetAbout

Point function 7-32
Q3RotateAboutPointTransform_GetAngle

function 7-31
Q3RotateAboutPointTransform_GetAxis

function 7-30
Q3RotateAboutPointTransform_GetData

function 7-29

I N D E X

IN-19

Q3RotateAboutPointTransform_New
function 7-28

Q3RotateAboutPointTransform_SetAbout
Point function 7-33

Q3RotateAboutPointTransform_SetAngle
function 7-32

Q3RotateAboutPointTransform_SetAxis
function 7-31

Q3RotateAboutPointTransform_SetData
function 7-30

Q3RotateAboutPointTransform_Submit
function 7-28

Q3RotateTransform_GetAngle function 7-27
Q3RotateTransform_GetAxis function 7-25
Q3RotateTransform_GetData function 7-24
Q3RotateTransform_New function 7-23
Q3RotateTransform_SetAngle function 7-27
Q3RotateTransform_SetAxis function 7-26
Q3RotateTransform_SetData function 7-25
Q3RotateTransform_Submit function 7-24
Q3ScaleTransform_Get function 7-41
Q3ScaleTransform_New function 7-40
Q3ScaleTransform_Set function 7-42
Q3ScaleTransform_Submit function 7-40
Q3Set_Add function 1-41
Q3Set_Clear function 1-44
Q3Set_Contains function 1-42
Q3Set_Empty function 1-43
Q3Set_Get function 1-41
Q3Set_GetNextElementType function 1-43
Q3Set_GetType function 1-40
Q3Set_New function 1-40
Q3Shader_GetType function 14-18
Q3Shader_GetUBoundary function 14-21
Q3Shader_GetUVTransform function 14-19
Q3Shader_GetVBoundary function 14-22
Q3Shader_SetUBoundary function 14-21
Q3Shader_SetUVTransform function 14-20
Q3Shader_SetVBoundary function 14-23
Q3Shader_Submit function 14-19
Q3Shape_GetSet function 1-45
Q3Shape_GetType function 1-45
Q3ShapePart_GetShape function 15-32
Q3ShapePart_GetType function 15-32
Q3Shape_SetSet function 1-46

Q3Shared_GetReference function 3-24
Q3Shared_GetType function 3-25
Q3Size_Pad function 17-34
Q3SphericalPoint_Set function 20-10
Q3SphericalPoint_ToPoint3D

function 20-51
Q3SpotLight_GetAttenuation function 8-32
Q3SpotLight_GetCastShadowsState

function 8-31
Q3SpotLight_GetData function 8-39
Q3SpotLight_GetDirection function 8-34
Q3SpotLight_GetFallOff function 8-38
Q3SpotLight_GetHotAngle function 8-36
Q3SpotLight_GetLocation function 8-33
Q3SpotLight_GetOuterAngle function 8-37
Q3SpotLight_New function 8-31
Q3SpotLight_SetAttenuation function 8-33
Q3SpotLight_SetCastShadowsState

function 8-32
Q3SpotLight_SetData function 8-39
Q3SpotLight_SetDirection function 8-35
Q3SpotLight_SetFallOff function 8-38
Q3SpotLight_SetHotAngle function 8-36
Q3SpotLight_SetLocation function 8-34
Q3SpotLight_SetOuterAngle function 8-37
Q3Storage_GetData function 16-11
Q3Storage_GetSize function 16-10
Q3Storage_GetType function 16-9
Q3Storage_SetData function 16-12
Q3String_GetType function 1-46
Q3String_Read function 17-35
Q3String_Write function 17-35
Q3Style_GetType function 6-12
Q3Style_Submit function 6-13
Q3SubdivisionStyle_GetData function 6-27
Q3SubdivisionStyle_New function 6-25
Q3SubdivisionStyle_SetData function 6-27
Q3SubdivisionStyle_Submit function 6-26

Q3T–Q3U

Q3Tangent2D_Read function 17-45
Q3Tangent2D_Write function 17-45

I N D E X

IN-20

Q3Tangent3D_Read function 17-46
Q3Tangent3D_Write function 17-46
Q3Texture_GetHeight function 14-29
Q3Texture_GetType function 14-28
Q3Texture_GetWidth function 14-29
Q3TextureShader_GetTexture

function 14-24
Q3TextureShader_New function 14-24
Q3TextureShader_SetTexture

function 14-25
Q3Tracker_ChangeButtons function 18-40
Q3Tracker_GetActivation function 18-36
Q3Tracker_GetButtons function 18-39
Q3Tracker_GetEventCoordinates

function 18-37
Q3Tracker_GetNotifyThresholds

function 18-34
Q3Tracker_GetOrientation function 18-44
Q3Tracker_GetPosition function 18-41
Q3Tracker_MoveOrientation function 18-46
Q3Tracker_MovePosition function 18-43
Q3Tracker_New function 18-34
Q3Tracker_SetActivation function 18-36
Q3Tracker_SetEventCoordinates

function 18-38
Q3Tracker_SetNotifyThresholds

function 18-35
Q3Tracker_SetOrientation function 18-45
Q3Tracker_SetPosition function 18-42
Q3Transform_GetMatrix function 7-19
Q3Transform_GetType function 7-18
Q3Transform_Submit function 7-20
Q3TranslateTransform_Get function 7-44
Q3TranslateTransform_New function 7-42
Q3TranslateTransform_Set function 7-44
Q3TranslateTransform_Submit

function 7-43
Q3Triangle_EmptyData function 4-78
Q3Triangle_GetData function 4-77
Q3Triangle_GetVertexAttributeSet

function 4-80
Q3Triangle_GetVertexPosition

function 4-79
Q3Triangle_New function 4-76
Q3Triangle_SetData function 4-78

Q3Triangle_SetVertexAttributeSet
function 4-81

Q3Triangle_SetVertexPosition
function 4-79

Q3Triangle_Submit function 4-76
Q3TriGrid_EmptyData function 4-105
Q3TriGrid_GetData function 4-104
Q3TriGrid_GetFacetAttributeSet

function 4-109
Q3TriGrid_GetVertexAttributeSet

function 4-107
Q3TriGrid_GetVertexPosition

function 4-106
Q3TriGrid_New function 4-103
Q3TriGrid_SetData function 4-105
Q3TriGrid_SetFacetAttributeSet

function 4-110
Q3TriGrid_SetVertexAttributeSet

function 4-108
Q3TriGrid_SetVertexPosition

function 4-107
Q3TriGrid_Submit function 4-104
Q3UnixError_Get function 19-10
Q3UnixPathStorage_Get function 16-31
Q3UnixPathStorage_New function 16-30
Q3UnixPathStorage_Set function 16-31
Q3UnixStorage_Get function 16-28
Q3UnixStorage_GetType function 16-29
Q3UnixStorage_New function 16-27
Q3UnixStorage_Set function 16-28
Q3UnknownBinary_EmptyData function 17-52
Q3UnknownBinary_GetData function 17-51
Q3Unknown_GetDirtyState function 17-48
Q3Unknown_GetType function 17-48
Q3Unknown_SetDirtyState function 17-49
Q3UnknownText_EmptyData function 17-51
Q3UnknownText_GetData function 17-50
Q3Uns16_Read function 17-28
Q3Uns16_Write function 17-29
Q3Uns32_Read function 17-29
Q3Uns32_Write function 17-30
Q3Uns64_Read function 17-31
Q3Uns64_Write function 17-32
Q3Uns8_Read function 17-27
Q3Uns8_Write function 17-28

I N D E X

IN-21

Q3V–Q3W

Q3Vector2D_Add function 20-35
Q3Vector2D_Cross function 20-37
Q3Vector2D_Dot function 20-40
Q3Vector2D_Length function 20-32
Q3Vector2D_Negate function 20-48
Q3Vector2D_Normalize function 20-33
Q3Vector2D_Read function 17-42
Q3Vector2D_Scale function 20-31
Q3Vector2D_Set function 20-11
Q3Vector2D_Subtract function 20-36
Q3Vector2D_To3D function 20-14
Q3Vector2D_Transform function 20-41
Q3Vector2D_Write function 17-42
Q3Vector3D_Add function 20-35
Q3Vector3D_Cross function 20-38
Q3Vector3D_Dot function 20-40
Q3Vector3D_Length function 20-33
Q3Vector3D_Negate function 20-49
Q3Vector3D_Normalize function 20-34
Q3Vector3D_Read function 17-43
Q3Vector3D_Scale function 20-31
Q3Vector3D_Set function 20-11
Q3Vector3D_Subtract function 20-37
Q3Vector3D_To2D function 20-15
Q3Vector3D_Transform function 20-42
Q3Vector3D_TransformQuaternion

function 20-83
Q3Vector3D_Write function 17-43
Q3ViewAngleAspectCamera_GetAspect

Ratio function 9-45
Q3ViewAngleAspectCamera_GetData

function 9-43
Q3ViewAngleAspectCamera_GetFOV

function 9-44
Q3ViewAngleAspectCamera_New

function 9-43
Q3ViewAngleAspectCamera_SetAspect

Ratio function 9-46
Q3ViewAngleAspectCamera_SetData

function 9-44
Q3ViewAngleAspectCamera_SetFOV

function 9-45
Q3View_Cancel function 13-16

Q3View_EndBoundingBox function 13-22
Q3View_EndBoundingSphere function 13-25
Q3View_EndPicking function 13-18
Q3View_EndRendering function 13-15
Q3View_EndWriting function 13-20
Q3ViewerAdjustCursor function 2-26
Q3ViewerClear function 2-33
Q3ViewerCopy function 2-31
Q3ViewerCut function 2-31
Q3ViewerDispose function 2-15
Q3ViewerDraw function 2-17
Q3ViewerEvent function 2-25
Q3ViewerGetBackgroundColor function 2-23
Q3ViewerGetBounds function 2-19
Q3ViewerGetButtonRect function 2-28
Q3ViewerGetCurrentButton function 2-29
Q3ViewerGetDimension function 2-30
Q3ViewerGetFlags function 2-18
Q3ViewerGetGroup function 2-22
Q3ViewerGetPict function 2-27
Q3ViewerGetPort function 2-21
Q3ViewerGetState function 2-27
Q3ViewerGetView function 2-17
Q3ViewerNew function 2-15
Q3ViewerPaste function 2-32
Q3ViewerRestoreView function 2-18
Q3ViewerSetBackgroundColor function 2-23
Q3ViewerSetBounds function 2-20
Q3ViewerSetCurrentButton function 2-29
Q3ViewerSetFlags function 2-19
Q3ViewerSetPort function 2-21
Q3ViewerUseData function 2-16
Q3ViewerUseFile function 2-16
Q3ViewerUseGroup function 2-22
Q3ViewerWriteData function 2-24
Q3ViewerWriteFile function 2-24
Q3View_GetAttributeSetState

function 13-40
Q3View_GetAttributeState function 13-40
Q3View_GetBackfacingStyleState

function 13-33
Q3View_GetCamera function 13-9
Q3View_GetDefaultAttributeSet

function 13-38
Q3View_GetDrawContext function 13-12

I N D E X

IN-22

Q3View_GetFillStyleState function 13-34
Q3View_GetFrustumToWindowMatrixState

function 13-32
Q3View_GetHighlightStyleState

function 13-35
Q3View_GetInterpolationStyleState

function 13-34
Q3View_GetLightGroup function 13-11
Q3View_GetLocalToWorldMatrixState

function 13-31
Q3View_GetOrientationStyleState

function 13-36
Q3View_GetPickIDStyleState

function 13-37
Q3View_GetPickPartsStyleState

function 13-38
Q3View_GetReceiveShadowsStyleState

function 13-36
Q3View_GetRenderer function 13-7
Q3View_GetSubdivisionStyleState

function 13-35
Q3View_GetWorldToFrustumMatrixState

function 13-31
Q3ViewHints_GetAttributeSet

function 17-57
Q3ViewHints_GetCamera function 17-54
Q3ViewHints_GetClearImageColor

function 17-64
Q3ViewHints_GetClearImageMethod

function 17-63
Q3ViewHints_GetDimensions function 17-59
Q3ViewHints_GetDimensionsState

function 17-58
Q3ViewHints_GetLightGroup function 17-55
Q3ViewHints_GetMask function 17-62
Q3ViewHints_GetMaskState function 17-60
Q3ViewHints_GetRenderer function 17-53
Q3ViewHints_New function 17-53
Q3ViewHints_SetAttributeSet

function 17-57
Q3ViewHints_SetCamera function 17-55
Q3ViewHints_SetClearImageColor

function 17-65
Q3ViewHints_SetClearImageMethod

function 17-64

Q3ViewHints_SetDimensions function 17-60
Q3ViewHints_SetDimensionsState

function 17-59
Q3ViewHints_SetLightGroup function 17-56
Q3ViewHints_SetMask function 17-62
Q3ViewHints_SetMaskState function 17-61
Q3ViewHints_SetRenderer function 17-54
Q3View_IsBoundingBoxVisible

function 13-26
Q3View_New function 13-7
Q3ViewPlaneCamera_GetCenterX

function 9-40
Q3ViewPlaneCamera_GetCenterY

function 9-41
Q3ViewPlaneCamera_GetData function 9-35
Q3ViewPlaneCamera_GetHalfHeight

function 9-39
Q3ViewPlaneCamera_GetHalfWidth

function 9-38
Q3ViewPlaneCamera_GetViewPlane

function 9-36
Q3ViewPlaneCamera_New function 9-35
Q3ViewPlaneCamera_SetCenterX

function 9-41
Q3ViewPlaneCamera_SetCenterY

function 9-42
Q3ViewPlaneCamera_SetData function 9-36
Q3ViewPlaneCamera_SetHalfHeight

function 9-39
Q3ViewPlaneCamera_SetHalfWidth

function 9-38
Q3ViewPlaneCamera_SetViewPlane

function 9-37
Q3View_SetCamera function 13-10
Q3View_SetDefaultAttributeSet

function 13-39
Q3View_SetDrawContext function 13-13
Q3View_SetIdleMethod function 13-27
Q3View_SetLightGroup function 13-11
Q3View_SetRendererByType function 13-9
Q3View_SetRenderer function 13-8
Q3View_StartBoundingBox function 13-21
Q3View_StartBoundingSphere

function 13-24
Q3View_StartPicking function 13-17

I N D E X

IN-23

Q3View_StartRendering function 13-14
Q3View_StartWriting function 13-19
Q3View_SubmitWriteData function 13-28
Q3Warning_Get function 19-8
Q3Warning_Register function 19-6
Q3WindowPointPick_GetData function 15-38
Q3WindowPointPick_GetPoint

function 15-37
Q3WindowPointPick_New function 15-36
Q3WindowPointPick_SetData function 15-38
Q3WindowPointPick_SetPoint

function 15-37
Q3WindowRectPick_GetData function 15-41
Q3WindowRectPick_GetRect function 15-40
Q3WindowRectPick_New function 15-39
Q3WindowRectPick_SetData function 15-41
Q3WindowRectPick_SetRect function 15-40

Q

quaternions
calculating dot products of 20-75
copying 20-73
defined 4-28 to 4-29
inverting 20-74
multiplying 20-75
normalizing 20-74
routines for 20-71 to 20-84
setting 20-72
setting from matrices 20-79
setting identity 20-72
setting to rotate about axes 20-76

quaternion transforms 7-16
getting matrix representations of 20-71
routines for 7-45 to 7-47

QuickDraw 3D
checking for features of 1-16
class hierarchy 3-4 to 3-10
configuring windows 1-21 to 1-24
defined 1-3
determining whether objects are drawable 3-21
determining whether objects are writable 3-22
disposing of objects 3-19

drawing objects 3-20
duplicating objects 3-20
extending 1-6 to 1-7
general constants for 1-34 to 1-36
general routines for 1-36 to 1-51
getting leaf object types 3-22
getting object types 3-23
getting the version of 1-38
initializing and terminating 1-16 to 1-18, 1-36

to 1-38
introduction to 1-3 to 1-55
managing object classes 3-18 to 3-19
naming conventions in 1-8 to 1-12
rendering modes 1-12 to 1-13
sample code for 1-14 to 1-34
unregistering object classes 3-18

QuickDraw 3D classes 3-3
QuickDraw 3D class hierarchy 3-4 to 3-11
QuickDraw 3D Color Utilities 21-3 to 21-14

data structures for 21-5 to 21-6
routines for 21-6 to 21-12

QuickDraw 3D Mathematical Utilities 20-3 to
20-113

data structures for 20-4 to 20-5
introduced 20-3 to 20-4
routines for 20-6 to 20-94

QuickDraw 3D Object Metafile 17-3
QuickDraw 3D objects 3-3 to 3-40

application-defined functions for 3-28 to 3-33
general routines for 3-18 to 3-24
routines for determining object types 3-22 to

3-24
routines for managing objects 3-19 to 3-22

QuickDraw 3D Pointing Device Manager 18-3 to
18-57

application-defined routines for 18-47 to 18-50
data structures for 18-11 to 18-12
defined 18-3
routines for 18-12 to 18-47

QuickDraw 3D shading architecture 14-3

I N D E X

IN-24

R

radians, converting to degrees 20-71
radius vectors 4-26, 4-27
rational points. See also points

calculating distances between 20-19, 20-20,
20-22

defined 4-25
determining affine combinations of 20-54,

20-55
reading from and writing to file objects 17-40

to 17-41
setting 20-8, 20-9

rays 4-29
rectangle pick objects. See window-rectangle pick

objects
reference counts 3-11 to 3-14

defined 3-7
reference objects 3-8
relative ratios between points, calculating 20-23

to 20-26
renderer objects 11-3 to 11-24

adding to a view 1-30, 13-8, 13-9
creating 11-13 to 11-14
defined 11-3
introduced 3-8
managing 11-17 to 11-21
routines for 11-13 to 11-21
types of 11-4 to 11-5, 11-15

renderers. See renderer objects
rendering 1-4
rendering loops 1-3, 1-31 to 1-34, 13-4 to 13-6
rendering modes 13-5 to 13-6
retained mode 1-12 to 1-13, 4-17, 13-5 to 13-6
RGB color space 21-3
RGB color structure 21-5, 21-7
right-handed rule 7-5
rotate-about-axis transform data structure 7-18
rotate-about-axis transforms 7-16

getting matrix representations of 20-67
routines for 7-33 to 7-39

rotate-about-point transform data structure 7-17
rotate-about-point transforms 7-15

getting matrix representations of 20-64, 20-66
routines for 7-28 to 7-33

rotate button (3D Viewer) 2-5
rotate transform data structure 7-17
rotate transforms 7-14

routines for 7-23 to 7-27

S

sample routines
MyAddCornersToMesh 4-22 to 4-23
MyBoxNotifyFunc 18-10
MyBuildMesh 4-19
MyCountAttributesInSet 5-9
MyCreateShadedTriangle 14-13
MyCreateViewer 2-9
MyDraw 1-32 to 1-34
MyEnvironmentHas3DViewer 2-7
MyEnvironmentHasQuickDraw3D 1-16
MyFindKnobBox 18-8
MyFinishUp 1-18
MyGetInputFile 17-8
MyHandleClickInWindow 15-12 to 15-13
MyImmediateModePickID 15-15
MyInitialize 1-17
MyNewCamera 1-28 to 1-29
MyNewDrawContext 1-27 to 1-28
MyNewLights 1-25 to 1-26
MyNewModel 1-20 to 1-21
MyNewPointLight 8-8
MyNewView 1-30 to 1-31
MyNewWindow 1-22 to 1-24
MyObjectMetaHandler 3-17
MyOnActivation 18-9 to 18-10
MyPollKNobBox 18-10 to 18-11
MyRead3DMFModel 17-9
MySetMeshFacesDiffuseColor 4-21 to

4-22
MySetTriangleVerticesDiffuseColor

5-7
MyStartUpQuickDraw3D 5-13
MyTemperatureDataCopyReplace 5-12
MyTemperatureDataDispose 5-11
MyTemperatureDataMetaHandler 5-10 to

5-11

I N D E X

IN-25

sample routines (continued)
MyToggleOrderedGroupLights 10-9
MyTurnOnOrOffViewLights 10-8

scalar products. See dot products
scale transforms 7-12 to 7-13

getting matrix representations of 20-63, 20-65
routines for 7-39 to 7-42

screen coordinate systems. See window
coordinate systems

screen-space picking 15-3
screen spaces. See window coordinate systems
screen-space subdivision 6-7
serpentine 4-47
set objects

adding elements to 1-41
creating 1-40
defined 1-39
determining element types of 1-42
determining next element type of 1-43
emptying 1-43
getting an element’s data 1-41
getting type of 1-40
introduced 3-8
removing an element type from 1-44
routines for 1-39 to 1-44
types of 1-40

sets. See set objects
shader objects 14-3 to 14-34

constants for 14-17
defined 14-3 to 14-4
general routines for 14-18 to 14-24
introduced 3-10
routines for 14-18 to 14-31

shaders. See shader objects
shadow-receiving styles 6-9

getting a view’s 13-36
routines for 6-30 to 6-33

shape objects
getting a set 1-45
getting type of 1-45
introduced 3-8
routines for 1-44 to 1-46
setting a set 1-46
subclasses of 3-9
types of 1-45

shape part objects
getting 15-24
introduced 3-8
routines for 15-31 to 15-36

shape parts. See shape part objects
shapes. See shape objects
shared objects

defined 3-7
getting references to 3-24
getting type of 3-25
routines for 3-24 to 3-25
subclasses of 3-7 to 3-9
types of 3-25

simple polygons 4-41 to 4-42
routines for 4-81 to 4-87

spaces. See coordinate systems
specular coefficients 14-7
specular colors 5-15
specular controls. See specular reflection

exponents
specular exponents. See specular reflection

exponents
specular highlights 14-7
specular reflection 14-6
specular reflection exponents 14-7
spherical coordinates

defined 7-6
routines for converting points to and

from 20-49 to 20-51
spherical points

defined 4-27
setting 20-10

spot light data structure 8-13 to 8-14
spot lights 8-6 to 8-7

creating 8-31
defined 8-6
getting attenuation of 8-32
getting data of 8-39
getting direction of 8-34
getting fall-off value of 8-38
getting hot angle of 8-36
getting location of 8-33
getting outer angle of 8-37
getting shadow state of 8-31
routines for 8-30 to 8-40

I N D E X

IN-26

spot lights (continued)
setting attenuation of 8-33
setting data of 8-39
setting direction of 8-35
setting fall-off value of 8-38
setting hot angle of 8-36
setting location of 8-34
setting outer angle of 8-37
setting shadow state of 8-32

standard I/O library 16-3, 16-4 to 16-5
standard surface parameterizations 4-15
storage objects 16-3 to 16-36

creating 16-5 to 16-8
defined 16-3 to 16-5
and file objects 17-4
general routines for 16-9 to 16-13
getting and setting information 16-8 to 16-9
getting data from 16-11
getting size of data 16-10
getting type of 16-9
introduced 3-9
routines for 16-9 to 16-32
setting data for 16-12
types of 16-10

storage pixmaps 4-35, 14-15
stream mode 17-5, 17-13
string objects. See also C string objects

getting type of 1-46
introduced 3-9
routines for 1-46 to 1-51
types of 1-47

strings. See string objects
style objects 6-3 to 6-44

data structures for 6-11 to 6-12
defined 6-3 to 6-10
general routines for 6-12 to 6-13
introduced 3-10
routines for 6-12 to 6-38
types of 6-3

styles. See style objects
subdivision methods 6-7
subdivision method specifiers 6-7
subdivision style data structure 6-11

subdivision styles 6-7
getting a view’s 13-35
routines for 6-25 to 6-27

submitting loops. See picking loops; rendering
loops; writing loops

surface-based shaders
introduced 14-3
types of 14-4

surface parameterization
assigning to a mesh face 4-19

surface parameterizations 4-13 to 4-17. See also
custom surface parameterization; natural
surface parameterizations; standard
surface parameterizations

surface shaders 14-4
surface tangents 4-30
surrounding light. See ambient light
synthetic cameras. See camera objects

T

table of contents 17-5
tangents 4-30 to 4-31

reading from and writing to file objects 17-45
to 17-46

text files 17-4
text mode 17-13
texture mapping 14-10
texture objects 14-10, 14-11 to 14-15

introduced 3-10
routines for 14-28 to 14-31

textures. See texture objects
texture shaders

attaching to objects 14-11 to 14-14
defined 14-4
routines for 14-24 to 14-25

tolerances. See edge tolerances, vertex tolerances
TQ3Area data type 4-36
TQ3AttributeCopyInheritMethod

function 5-25
TQ3AttributeInheritMethod function 5-26
TQ3Bitmap data type 4-32
TQ3BoundingBox data type 20-5

I N D E X

IN-27

TQ3BoundingSphere data type 20-5
TQ3BoxData data type 4-46
TQ3CameraData data type 9-19
TQ3CameraPlacement data type 9-18
TQ3CameraRange data type 9-18
TQ3CameraViewPort data type 9-19
TQ3ChannelGetMethod function 18-47
TQ3ChannelSetMethod function 18-48
TQ3ColorARGB data type 21-6
TQ3ColorRGB data type 21-5
TQ3ComputeBounds data type 13-22, 13-24
TQ3ControllerData data type 18-11
TQ3DirectionalLightData data type 8-12
TQ3DrawContextData data type 12-4, 12-9
TQ3ElementCopyAddMethod function 3-29
TQ3ElementCopyDuplicateMethod

function 3-30
TQ3ElementCopyGetMethod function 3-31
TQ3ElementCopyReplaceMethod

function 3-32
TQ3ElementDeleteMethod function 3-33
TQ3ErrorMethod function 19-11
TQ3FileIdleMethod function 17-69
TQ3GeneralPolygonContourData data

type 4-44
TQ3GeneralPolygonData data type 4-43
TQ3HitData data type 15-23
TQ3HitPath data type 15-22
TQ3LightData data type 8-11
TQ3LineData data type 4-38
TQ3MacDrawContextData data type 12-10
TQ3MarkerData data type 4-55
TQ3Matrix3x3 data type 4-32
TQ3Matrix4x4 data type 4-32
TQ3MeshIterator data type 4-49
TQ3MetaHandler function 3-28
TQ3NoticeMethod function 19-13
TQ3NURBCurveData data type 4-51
TQ3NURBPatchData data type 4-52
TQ3NURBPatchTrimCurveData data type 4-54
TQ3NURBPatchTrimLoopData data type 4-54
TQ3Object data type 3-5
TQ3ObjectReadDataMethod function 17-66
TQ3ObjectTraverseMethod function 17-67
TQ3ObjectUnregisterMethod function 3-29

TQ3ObjectWriteMethod function 17-68
TQ3OrthographicCameraData data type 9-20
TQ3Param2D data type 4-30
TQ3Param3D data type 4-30
TQ3PickData data type 15-21
TQ3Pixmap data type 4-34
TQ3PixmapDrawContextData data type 12-12
TQ3PlaneEquation data type 4-37
TQ3Point2D data type 4-24
TQ3Point3D data type 4-24
TQ3PointData data type 4-37
TQ3PointLightData data type 8-13
TQ3PolarPoint data type 4-26
TQ3PolygonData data type 4-41
TQ3PolyLineData data type 4-39
TQ3Quaternion data type 4-28
TQ3RationalPoint3D data type 4-25
TQ3RationalPoint4D data type 4-25
TQ3Ray3D data type 4-29
TQ3RotateAboutAxisTransformData data

type 7-18
TQ3RotateAboutPointTransformData data

type 7-17
TQ3RotateTransformData data type 7-17
TQ3SphericalPoint data type 4-27
TQ3SpotLightData data type 8-13
TQ3StoragePixmap data type 4-35
TQ3SubdivisionStyleData data type 6-11
TQ3Tangent2D data type 4-30
TQ3Tangent3D data type 4-31
TQ3TrackerNotifyFunc function 18-50
TQ3TriangleData data type 4-40
TQ3TriGridData data type 4-48
TQ3UnknownBinaryData data type 17-14
TQ3UnknownTextData data type 17-14
TQ3Vector2D data type 4-28
TQ3Vector3D data type 4-28
TQ3Vertex3D data type 4-31
TQ3ViewAngleAspectCameraData data

type 9-21
TQ3ViewIdleMethod function 13-41
TQ3ViewPlaneCameraData data type 9-21
TQ3WarningMethod function 19-12
TQ3WindowPointPickData data type 15-21
TQ3WindowRectPickData data type 15-22

I N D E X

IN-28

tracker coordinates 18-7
tracker notify functions 18-7, 18-50
tracker objects

changing button state of 18-40
and controller objects 18-4
creating 18-34
defined 18-7
getting activation state of 18-36
getting button state of 18-39
getting event coordinates of 18-37
getting notify thresholds 18-34
getting orientation of 18-44
getting position of 18-41
moving orientation of 18-46
moving position of 18-43
routines for 18-33 to 18-46
setting activation state of 18-36
setting event coordinates of 18-38
setting notify thresholds 18-35
setting orientation of 18-45
setting position of 18-42
specifying notify functions for 18-50

trackers. See tracker objects
tracker serial numbers 18-7
tracker thresholds 18-7
transformation matrices

setting up 20-62 to 20-71
transform objects 7-3 to 7-54

data structures for 7-17 to 7-18
defined 7-3
general routines for 7-18 to 7-20
getting a view’s 13-30 to 13-32
getting type of 7-18
introduced 3-10
routines for 7-18 to 7-47
types of 7-3 to 7-4, 7-11 to 7-16, 7-19

transforms. See transform objects
translate transforms 7-11 to 7-12

getting matrix representations of 20-63, 20-65
routines for 7-42 to 7-45

transparency 11-9
transparency colors 5-15, 11-9
transposing matrices 20-58
triangles 4-40

routines for 4-76 to 4-81

trigrids 4-47 to 4-49
routines for 4-103 to 4-110

trim curve data structure 4-54
trim loop data structure 4-54
two-dimensional graphics libraries 12-5, 12-11
types. See object types.

U

UNIX operating system
getting errors generated by 19-10

UNIX path name storage objects 16-4
routines for 16-30 to 16-32

UNIX storage objects 16-4
routines for 16-27 to 16-30

unknown binary data structure 17-14
unknown objects

data structures for 17-13 to 17-14
defined 17-47
emptying the contents of 17-51, 17-52
getting type of 17-48
introduced 3-10
routines for 17-47 to 17-52

unknown text data structure 17-14
unregistering object classes 3-18
up vectors 9-4
uv transforms 4-16

V

valid ranges 14-16
vector products. See cross products
vectors

adding and subtracting 20-34 to 20-37
calculating cross products of 20-37 to 20-39
calculating dot products of 20-39 to 20-40
converting dimensions of 20-14 to 20-15
defined 4-28
getting lengths of 20-32 to 20-33
negating 20-48 to 20-49
normalizing 20-33 to 20-34

I N D E X

IN-29

vectors (continued)
reading from and writing to file objects 17-42

to 17-43
scaling 20-30 to 20-32
setting 20-11 to 20-12
transforming 20-41 to 20-42

vertex indices 4-125
vertex tolerances 15-5

getting 15-26
setting 15-27

vertices 4-31. See also mesh vertices
view coordinate systems. See camera coordinate

systems
Viewer. See 3D Viewer
viewer badges. See badges
viewer controller strips. See controller strips
viewer flags 2-9, 2-12 to 2-13
viewer frames 2-4
viewer frames. See viewer panes
viewer objects

attaching data to 2-10
constants for 2-11 to 2-13
creating 2-8 to 2-9, 2-15
defined 2-4
disposing of 2-15
drawing 2-17
getting bounds of 2-19
getting flags of 2-18
getting port of 2-21
getting state of 2-27
getting the view of 2-17
handling editing commands for 2-31 to 2-33
handling events for 2-11, 2-25 to 2-26
restoring the view of 2-18
routines for 2-14 to 2-33
setting bounds of 2-20
setting data displayed in 2-16
setting file displayed in 2-16
setting flags of 2-19
setting port of 2-21
using 2-7 to 2-11

viewer panes 2-4
viewers. See viewer objects
viewer state flags 2-14

view hints objects 17-7
introduced 3-9
routines for 17-52 to 17-65

viewing boxes 7-8
viewing directions 9-4
viewing frustra 7-8
viewing vectors. See viewing directions
view objects 13-3 to 13-48

application-defined routines for 13-41 to 13-42
canceling submitting 13-16
creating 1-29 to 1-31, 13-7
defined 13-3
ending rendering 13-15
getting camera of 13-9
getting draw context of 13-12
getting light group of 13-11
getting the renderer for 13-7
introduced 3-7
managing attribute set of 13-38 to 13-41
managing bounds of 13-21 to 13-27
managing style states of 13-33 to 13-38
picking in 13-17 to 13-18
popping and pushing graphics states 13-29 to

13-30
rendering in 13-13 to 13-17
routines for 13-7 to 13-41
setting camera of 13-10
setting draw context of 13-13
setting idle method of 13-27
setting light group of 13-11
setting renderer for 13-8, 13-9
starting rendering 13-14

view plane camera data structure 9-20 to 9-21
view plane cameras 9-13 to 9-14

creating 9-35
data structure for 9-20
getting data of 9-35
managing characteristics of 9-36 to 9-42
routines for 9-35 to 9-42
setting data of 9-36

view plane coordinate system 9-14
view planes 7-8, 9-7 to 9-11
view ports. See camera view ports
view ports (QuickDraw GX) 12-11
views. See view objects

I N D E X

IN-30

view spaces. See camera coordinate systems
view status values 1-32, 13-15, 13-18, 13-20
view-to-frustum transforms 9-28
virtual cameras. See camera objects

W, X

warning-handling routines 19-6, 19-12
warnings 19-3, 19-8
window coordinate systems 7-9
window picking. See screen-space picking
window-point pick data structure 15-21
window-point pick objects

creating 15-36
defined 15-4
getting the data of 15-38
getting the point of 15-37
routines for 15-36 to 15-39
setting the data of 15-38
setting the point of 15-37

window-rectangle pick data structure 15-22
window-rectangle pick objects

creating 15-39
defined 15-4
getting the data of 15-41
getting the rectangle of 15-40
routines for 15-39 to 15-42
setting the data of 15-41
setting the rectangle of 15-40

windows, configuring for QuickDraw 3D 1-21 to
1-24

window spaces. See window coordinate systems
wireframe renderer 11-4
world coordinate systems 7-6
world spaces. See world coordinate systems
world-space subdivision 6-7
world-to-frustum transforms 7-9, 9-28, 13-31
world-to-view space transforms 9-27
wrapping 14-16, 14-17
writing loops 1-3, 17-11

Y

yon planes 9-6 to 9-7, 9-18

Z

zoom button (3D Viewer) 2-5

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Proof pages
were created on an Apple LaserWriter

NTX

 printer. Final page negatives were
output directly from text files on an Agfa
Large-Format Imagesetter. Line art was
created using Adobe Illustrator

 and
Adobe Photoshop

. PostScript

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Courier.

WRITER

Tim Monroe

DEVELOPMENTAL EDITORS

Antonio Padial, Jeanne Woodward

ILLUSTRATOR

Sandee Karr

PRODUCTION EDITOR

Gerri Gray

PROJECT MANAGER

Patricia Eastman

COVER ILLUSTRATOR

Graham Metcalfe

Special thanks to Kent Davidson,
Tracey Davis, Robert Dierkes,
Pablo Fernicola, Julian Gómez,
Mark Halstead, Mike Kelley,
Eiichiro Mikami, Brent Pease,
Philip Schneider, Klaus Strelau,
Nick Thompson, David Vasquez,
Dan Venolia, Ingrid Voss, Kevin Wu.

Acknowledgments to George Corrick,
Joe Flesch, Vicky Kaiser,
Pete Litwinowicz, Charles Loop,
Malcolm MacFail, Fábio Pettinati,
Brian Rowe, Steve Rubin, Melissa Sleeter,
Ken Turkowski, John Wang.

This document was created with FrameMaker 4.0.4

	Plate 1 Wireframe and rendered images
	Plate 2 RGB color space
	Plate 3 A texture applied to a geometry
	Plate 4 Illumination shaders
	3D Graphics Programming With QuickDraw 3D
	Contents
	Figures, Tables, and Listings
	About This Book
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment
	For More Information

	Introduction to QuickDraw 3D
	About QuickDraw 3D
	Modeling and Rendering
	Interacting
	Extending QuickDraw 3D
	Naming Conventions
	Constants
	Data Types
	Functions

	Retained and Immediate Modes

	Using QuickDraw 3D
	Compiling Your Application
	Initializing and Terminating QuickDraw 3D
	Creating a Model
	Configuring a Window
	Creating Lights
	Creating a Draw Context
	Creating a Camera
	Creating a View
	Rendering a Model

	QuickDraw 3D Reference
	Constants
	Gestalt Selectors and Response Values
	Boolean Values
	Status Values
	Coordinate Axes

	QuickDraw 3D Routines
	Initializing and Terminating QuickDraw 3D
	Getting Version Information
	Managing Sets
	Managing Shapes
	Managing Strings

	Summary of QuickDraw 3D
	C Summary
	Constants
	QuickDraw 3D Routines

	Errors, Warnings, and Notices

	3D Viewer
	About the 3D Viewer
	Controller Strips
	Badges

	Using the 3D Viewer
	Checking for the 3D Viewer
	Creating a Viewer
	Attaching Data to a Viewer
	Handling Viewer Events

	3D Viewer Reference
	Constants
	Gestalt Selector and Response Values
	Viewer Flags
	Viewer State Flags

	3D Viewer Routines
	Creating and Configuring Viewers
	Updating Viewer Data
	Handling Viewer Events
	Getting Viewer Information
	Handling Edit Commands

	Summary of the 3D Viewer
	C Summary
	Constants
	Data Types
	3D Viewer Routines

	QuickDraw 3D Objects
	About QuickDraw 3D Objects
	The QuickDraw 3D Class Hierarchy
	QuickDraw 3D Objects
	QuickDraw 3D Object Subclasses
	Shared Object Subclasses
	Set Object Subclasses
	Shape Object Subclasses
	Group Object Subclasses
	Shader Object Subclasses

	Reference Counts

	Using QuickDraw 3D Objects
	Determining the Type of a QuickDraw 3D Object
	Defining an Object Metahandler
	Defining Custom Elements

	QuickDraw 3D Objects Reference
	QuickDraw 3D Objects Routines
	Managing Objects Classes
	Managing Objects
	Determining Object Types
	Managing Shared Objects
	Registering Custom Elements

	Application- Defined Routines

	Summary of QuickDraw 3D Objects
	C Summary
	Constants
	Data Types
	QuickDraw 3D Objects Routines
	Application- Defined Routines

	Geometric Objects
	About Geometric Objects
	Attributes of Geometric Objects
	Meshes
	NURB Curves and Patches
	Surface Parameterizations

	Using Geometric Objects
	Creating and Deleting Geometric Objects
	Creating a Mesh
	Traversing a Mesh

	Geometric Objects Reference
	Data Structures
	Points
	Rational Points
	Polar and Spherical Points
	Vectors
	Quaternions
	Rays
	Parametric Points
	Tangents
	Vertices
	Matrices
	Bitmaps and Pixel Maps
	Areas and Plane Equations
	Point Objects
	Lines
	Polylines
	Triangles
	Simple Polygons
	General Polygons
	Boxes
	Trigrids
	Meshes
	NURB Curves
	NURB Patches
	Markers

	Geometric Objects Routines
	Managing Geometric Objects
	Creating and Editing Points
	Creating and Editing Lines
	Creating and Editing Polylines
	Creating and Editing Triangles
	Creating and Editing Simple Polygons
	Creating and Editing General Polygons
	Creating and Editing Boxes
	Creating and Editing Trigrids
	Creating and Editing Meshes
	Traversing Mesh Components, Vertices, Faces, and Edges
	Creating and Editing NURB Curves
	Creating and Editing NURB Patches
	Creating and Editing Markers
	Managing Bitmaps

	Summary of Geometric Objects
	C Summary
	Constants
	Data Types
	Geometric Objects Routines

	Errors, Warnings, and Notices

	Attribute Objects
	About Attribute Objects
	Types of Attributes and Attribute Sets
	Attribute Inheritance

	Using Attribute Objects
	Creating and Configuring Attribute Sets
	Iterating Through an Attribute Set
	Defining Custom Attribute Types

	Attribute Objects Reference
	Constants
	Attribute Types

	Attribute Objects Routines
	Drawing Attributes
	Creating and Managing Attribute Sets
	Registering Custom Attributes

	Application- Defined Routines

	Summary of Attribute Objects
	C Summary
	Constants
	Data Types
	Attribute Objects Routines
	Application- Defined Routines

	Errors

	Style Objects
	About Style Objects
	Backfacing Styles
	Interpolation Styles
	Fill Styles
	Highlight Styles
	Subdivision Styles
	Orientation Styles
	Shadow- Receiving Styles
	Picking ID Styles
	Picking Parts Styles

	Using Style Objects
	Style Objects Reference
	Data Structures
	Subdivision Style Data Structure

	Style Objects Routines
	Managing Styles
	Managing Backfacing Styles
	Managing Interpolation Styles
	Managing Fill Styles
	Managing Highlight Styles
	Managing Subdivision Styles
	Managing Orientation Styles
	Managing Shadow- Receiving Styles
	Managing Picking ID Styles
	Managing Picking Parts Styles

	Summary of Style Objects
	C Summary
	Constants
	Data Types
	Style Objects Routines

	Transform Objects
	About Transform Objects
	Spaces
	Types of Transforms
	Matrix Transforms
	Translate Transforms
	Scale Transforms
	Rotate Transforms
	Rotate- About- Point Transforms
	Rotate- About- Axis Transforms
	Quaternion Transforms

	Transform Objects Reference
	Data Structures
	Rotate Transform Data Structure
	Rotate- About- Point Transform Data Structure
	Rotate- About- Axis Data Structure

	Transform Objects Routines
	Managing Transforms
	Creating and Manipulating Matrix Transforms
	Creating and Manipulating Rotate Transforms
	Creating and Manipulating Rotate- About- Point Transforms
	Creating and Manipulating Rotate- About- Axis Transforms
	Creating and Manipulating Scale Transforms
	Creating and Manipulating Translate Transforms
	Creating and Manipulating Quaternion Transforms

	Summary of Transform Objects
	C Summary
	Constants
	Data Types
	Transform Objects Routines

	Errors

	Light Objects
	About Light Objects
	Ambient Light
	Directional Lights
	Point Lights
	Spot Lights

	Using Light Objects
	Creating a Light
	Manipulating Lights

	Light Objects Reference
	Constants
	Light Attenuation Values
	Light Fall- Off Values

	Data Structures
	Light Data Structure
	Directional Light Data Structure
	Point Light Data Structure
	Spot Light Data Structure

	Light Objects Routines
	Managing Lights
	Managing Ambient Light
	Managing Directional Lights
	Managing Point Lights
	Managing Spot Lights

	Summary of Light Objects
	C Summary
	Constants
	Data Types
	Light Objects Routines

	Notices

	Camera Objects
	About Camera Objects
	Camera Placements
	Camera Ranges
	View Planes and View Ports
	Orthographic Cameras
	View Plane Cameras
	Aspect Ratio Cameras

	Using Camera Objects
	Camera Objects Reference
	Data Structures
	Camera Placement Structure
	Camera Range Structure
	Camera View Port Structure
	Camera Data Structure
	Orthographic Camera Data Structure
	View Plane Camera Data Structure
	Aspect Ratio Camera Data Structure

	Camera Objects Routines
	Managing Cameras
	Managing Orthographic Cameras
	Managing View Plane Cameras
	Managing Aspect Ratio Cameras

	Summary of Camera Objects
	C Summary
	Constants
	Data Types
	Camera Objects Routines

	Errors

	Group Objects
	About Group Objects
	Group Types
	Group Positions
	Group State Flags

	Using Group Objects
	Creating Groups
	Accessing Objects by Position

	Group Objects Reference
	Constants
	Group State Flags

	Group Objects Routines
	Creating Groups
	Managing Groups
	Managing Display Groups
	Getting Group Positions
	Getting Object Positions

	Summary of Group Objects
	C Summary
	Constants
	Data Types
	Group Objects Routines

	Errors

	Renderer Objects
	About Renderer Objects
	Types of Renderers
	Constructive Solid Geometry
	Transparency

	Using Renderer Objects
	Renderer Objects Reference
	Constants
	Vendor IDs
	Engine IDs
	CSG Object IDs
	CSG Equations

	Renderer Objects Routines
	Creating and Managing Renderers
	Managing Interactive Renderers

	Summary of Renderer Objects
	C Summary
	Constants
	Renderer Objects Routines

	Errors and Warnings

	Draw Context Objects
	About Draw Context Objects
	Macintosh Draw Contexts
	Pixmap Draw Contexts

	Using Draw Context Objects
	Creating and Configuring a Draw Context
	Using Double Buffering

	Draw Context Objects Reference
	Data Structures
	Draw Context Data Structure
	Macintosh Draw Context Structure
	Pixmap Draw Context Structure

	Draw Context Objects Routines
	Managing Draw Contexts
	Managing Macintosh Draw Contexts
	Managing Pixmap Draw Contexts

	Summary of the Draw Context Objects
	C Summary
	Constants
	Data Types
	Draw Context Objects Routines

	Errors, Warnings, and Notices

	View Objects
	About View Objects
	Using View Objects
	Creating and Configuring a View
	Rendering an Image

	View Objects Reference
	View Objects Routines
	Creating and Configuring Views
	Rendering in a View
	Picking in a View
	Writing in a View
	Bounding in a View
	Setting Idle Methods
	Writing Custom Data
	Pushing and Popping the Graphics State
	Getting a View’s Transforms
	Managing a View’s Style States
	Managing a View’s Attribute Set

	Application- Defined Routines

	Summary of View Objects
	C Summary
	Constants
	View Objects Routines
	Application- Defined Routines

	Errors and Warnings

	Shader Objects
	About Shader Objects
	Surface- Based Shaders
	Illumination Models
	Lambert Illumination
	Phong Illumination
	Null Illumination

	Textures

	Using Shader Objects
	Using Illumination Shaders
	Using Texture Shaders
	Creating Storage Pixmaps
	Handling uv Values Outside the Valid Range

	Shader Objects Reference
	Constants
	Boundary- Handling Methods

	Shader Objects Routines
	Managing Shaders
	Managing Shader Characteristics
	Managing Texture Shaders
	Managing Illumination Shaders
	Managing Textures
	Managing Pixmap Textures

	Summary of Shader Objects
	C Summary
	Constants
	Shader Objects Routines

	Pick Objects
	About Pick Objects
	Types of Pick Objects
	Hit Identification
	Hit Sorting
	Hit Information

	Using Pick Objects
	Handling Object Picking
	Handling Mesh Part Picking
	Picking in Immediate Mode

	Pick Objects Reference
	Constants
	Hit List Sorting Values
	Hit Information Masks
	Pick Parts Masks

	Data Structures
	Pick Data Structure
	Window- Point Pick Data Structure
	Window- Rectangle Pick Data Structure
	Hit Path Structure
	Hit Data Structure

	Pick Objects Routines
	Managing Pick Objects
	Managing Shape Parts and Mesh Parts
	Picking With Window Points
	Picking With Window Rectangles

	Summary of Pick Objects
	C Summary
	Constants
	Data Types
	Pick Objects Routines

	Warnings

	Storage Objects
	About Storage Objects
	Using Storage Objects
	Creating a Storage Object
	Getting and Setting Storage Object Information

	Storage Objects Reference
	Storage Objects Routines
	Managing Storage Objects
	Creating and Accessing Memory Storage Objects
	Creating and Accessing Handle Storage Objects
	Creating and Accessing Macintosh Storage Objects
	Creating and Accessing FSSpec Storage Objects
	Creating and Accessing UNIX Storage Objects
	Creating and Accessing UNIX Path Name Storage Objects

	Summary of Storage Objects
	C Summary
	Constants
	Storage Objects Routines

	Errors

	File Objects
	About File Objects
	Using File Objects
	Creating a File Object
	Reading Data from a File Object
	Writing Data to a File Object

	File Objects Reference
	Constants
	File Mode Flags

	Data Structures
	Unknown Object Data Structures

	File Objects Routines
	Creating File Objects
	Attaching File Objects to Storage Objects
	Accessing File Objects
	Accessing Objects Directly
	Setting Idle Methods
	Reading and Writing File Subobjects
	Reading and Writing File Data
	Managing Unknown Objects
	Managing View Hints Objects

	Application- Defined Routines

	Summary of File Objects
	C Summary
	Constants
	Data Types
	File Objects Routines
	Application- Defined Routines

	Errors, Warnings, and Notices

	QuickDraw 3D Pointing Device Manager
	About the QuickDraw 3D Pointing Device Manager
	Controllers
	Controller States
	Trackers

	Using the QuickDraw 3D Pointing Device Manager
	Controlling a Camera Position With a Pointing Device

	QuickDraw 3D Pointing Device Manager Reference
	Data Structures
	Controller Data Structure

	QuickDraw 3D Pointing Device Manager Routines
	Creating and Managing Controllers
	Managing Controller States
	Creating and Managing Trackers

	Application- Defined Routines

	Summary of the QuickDraw 3D Pointing Device Manager
	C Summary
	Constants
	Data Types
	QuickDraw 3D Pointing Device Manager Routines
	Application- Defined Routines

	Error Manager
	About the Error Manager
	Using the Error Manager
	Error Manager Reference
	Error Manager Routines
	Registering Error, Warning, and Notice Callback Routines
	Determining Whether an Error Is Fatal
	Getting Errors, Warnings, and Notices Directly
	Getting Operating System Errors

	Application- Defined Routines

	Summary of the Error Manager
	C Summary
	Data Types
	Error Manager Routines
	Application- Defined Routines

	Errors

	QuickDraw 3D Mathematical Utilities
	About QuickDraw 3D Mathematical Utilities
	QuickDraw 3D Mathematical Utilities Reference
	Data Structures
	Bounding Boxes
	Bounding Spheres

	QuickDraw 3D Mathematical Utilities
	Setting Points and Vectors
	Converting Dimensions of Points and Vectors
	Subtracting Points
	Calculating Distances Between Points
	Determining Point Relative Ratios
	Adding and Subtracting Points and Vectors
	Scaling Vectors
	Determining the Lengths of Vectors
	Normalizing Vectors
	Adding and Subtracting Vectors
	Determining Vector Cross Products
	Determining Vector Dot Products
	Transforming Points and Vectors
	Negating Vectors
	Converting Points from Cartesian to Polar or Spherical Form
	Determining Point Affine Combinations
	Managing Matrices
	Setting Up Transformation Matrices
	Utility Functions
	Managing Quaternions
	Managing Bounding Boxes
	Managing Bounding Spheres

	Summary of QuickDraw 3D Mathematical Utilities
	C Summary
	Constants
	Data Types
	QuickDraw 3D Mathematical Utilities

	QuickDraw 3D Color Utilities
	About the QuickDraw 3D Color Utilities
	Using the QuickDraw 3D Color Utilities
	QuickDraw 3D Color Utilities Reference
	Data Structures
	Color Structures

	QuickDraw 3D Color Utilities

	Summary of the QuickDraw 3D Color Utilities
	C Summary
	Data Types
	QuickDraw 3D Color Utilities

	Bibliography
	Glossary
	Index

